International
Virtual
Observatory

Alliance

IVOA Server-side Operations for Data
Access

Version 1.0

IVOA Working Draft 2015-12-12

Working group
DAL
This version
http://www.ivoa.net /documents/SODA /20151212

Latest version
http://www.ivoa.net /documents/SODA

Previous versions
WD-AccessData-1.0-20151021
WD-AccessData-1.0-20140730

WD-AccessData-1.0-20140312
Author(s)

Frangois Bonnarel, Markus Demleitner, Patrick Dowler, Douglas
Tody

Editor(s)
Frangois Bonnarel

Abstract

This document describes the SODA web service capability. SODA is a
low-level data access capability or server side data processing that can act
upon the data files, performing various kinds of operations: filtering/subsec-
tion, transformations, pixel operations, and applying functions to the data.

http://www.ivoa.net/documents/SODA/20151212
http://www.ivoa.net/documents/SODA

Status of This Document

This is an IVOA Working Draft for review by IVOA members and other
interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in
progress”.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

Contents
1 Introduction 3
1.1 The Role in the IVOA Architecture 3
1.2 Motivating Use Cases 4
1.2.1 Retrieve Subsection of a Datacube 4
1.2.2 Retrieve subsection of a 2D Image 4
1.2.3 Retrieve subsection of a Spectrum 4
1.3 Provide the data in different formats 4
1.3.1 Flatten a Datacube into a 2D Image 4
1.3.2 Flatten a Datacube into a 1D Spectrum 4
1.3.3 Rebin Data by a Fixed Factor 5
1.3.4 Reproject Data onto a Specified Grid)
1.3.5 Compute Aggregate Functions over the Data 5
1.3.6 Apply Standard Function to Data Values 5
1.3.7 Apply Arbitrary User-Specified Function to Data Values 5
1.3.8 Run Arbitrary User-Supplied Code on the Data 5
2 Resources 5
2.1 {sync}resource 6
2.2 {async} resource 6
2.3 Examples: DALI-examples 7
2.4 Availability: VOSI-availability 7
2.5 Capabilities: VOSI-capabilities 7
2.6 Parameter Description and Three-Factor Semantics 8
2.6.1 Three-factor Semantics 9
2.6.2 Discovery of Supported Parameters 9
2.6.3 Client Handling of Discovered Parameters 12

http://www.ivoa.net/Documents/

3 Parameters for {sync} and {async} 12

3.1 Common Parameters 13

3.1.1 ID ... 13

3.2 Filtering Parameters L. 13

3.2.1 POS 13

322 BAND 14

323 TIME 15

3.2.4 POL 16

4 {sync} Responses 16

4.1 Successful Requests L. 17

4.2 SODA Service Descriptor 17

4.3 Errors 18

5 {async} Responses 18

A Changes from Previous Versions 18

A1 WD-SODA-1.0-20151120 18

A.2 WD-AccessData-1.0-20151021 18

A.3 WD-AccessData-1.0-20140730 18

A.4 WD-AccessData-1.0-20140312 19
Acknowledgments

The authors would like to thank all the participants in DAL- WG discussions
for their ideas, critical reviews, and contributions to this document.

1 Introduction

The SODA web service interface defines a RESTful web service for perform-
ing server-side operations and processing on data before transfer.

1.1 The Role in the IVOA Architecture

TODO: new diagram from TCG
SODA services conform to the Data Access layer Interface (Dowler et al.,

2013) specification, including the Virtual Observatory Support Interfaces
(Grid and Web Services Working Group, 2011) resources.

1.2 Motivating Use Cases

Below are some of the more common use cases that have motivated the
development of the SODA specification. While this is not complete, it helps
to understand the problem area covered by this specification.

1.2.1 Retrieve Subsection of a Datacube

Cutout a subsection using coordinate axis values. The input to the cutout
operation will include one or more of the following:

e a region on the sky
e an energy value or range
e a time value or range

e one or more polarization states

The region on the sky should be something simple: a circle, a range of
coordinate values, or maybe a polygon.
1.2.2 Retrieve subsection of a 2D Image

This is a special case of 1.2.1, where the cutout is only in the spatial axes.

1.2.3 Retrieve subsection of a Spectrum

This is a special case of 1.2.1, where the cutout is only in the spectral axis.

1.3 Provide the data in different formats

Examples are images in PNG, or JPEG instead of FITS and spectra in csv,
FITS or VOTable.

1.3.1 Flatten a Datacube into a 2D Image

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.2 Flatten a Datacube into a 1D Spectrum

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.3 Rebin Data by a Fixed Factor

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.4 Reproject Data onto a Specified Grid

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.5 Compute Aggregate Functions over the Data

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.6 Apply Standard Function to Data Values

It could be “denoising” with standard methods or “on the fly” recalibration.
This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.7 Apply Arbitrary User-Specified Function to Data Values

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.8 Run Arbitrary User-Supplied Code on the Data

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

2 Resources

SODA services are implemented as HT'TP REST (Richardson and Ruby,
2007) web services with a {sync} resource that conforms to the DALI- sync
resource description.

A stand-alone SODA service may have one or both of the {sync} and
{async} resources. For either type, it could have multiple resources (e.g.
to support alternate authentication schemes). The SODA service may also
include other custom or supporting resources.

Either the {sync} or {async} SODA capability may be included as part of
other web services. For example, a single web service could contain the STA-
2.0 {query} capability, the DataLink-1.0 {links} capability, and the SODA
{sync} capability. Such a service must also have the VOSI-availability and

resource type resource name required

{sync} service specific

{async} service specific
DALI-examples /examples no
VOSI-availability /availability yes
VOSI-capabilities /capabilities yes

Table 1: Endpoints for AccessData services

VOSI-capabilities resources to report on and describe all the implemented
capabilities.

2.1 {sync} resource

The {sync} resource is a synchronous web service resource that conforms
to the DALI-sync description. Implementors are free to name this resource
however they like, except that the name must consist of one URI segment
only (i.e., contain no slash). This is to allow clients, given the access URL,
can reliably find out the URL of the capabilities endpoint. Clients, in turn,
can find the resource path using the VOSI-capabilities resource, but will
in general be provided the access URLs through a previous data discovery
query or through direct user input.

The {sync} resource performs the data access as specified by the input
parameters and returns the data directly in the output stream. Synchronous
data access is suitable when the operations can be quickly performed and the
data stream can be setup and written to (by the service) in a short period
of time (e.g. before any timeouts).

2.2 {async} resource

The {async} resource is an asynchronous web service resource that conforms
to the DALI-async description. The considerations on naming the resource
given in sect. 2.1 apply for it.

The {async} resource performs the data access as specified by the input
parameters and either (i) stores the results for later transfer or (ii) pushes the
results to a specified destination (e.g. to a VOSpace location). Asynchronous
data access usually introduces resource constraints on the service (which
may be limited) and usually imposes a higher latency before any results can
be seen because the location of results does not have to be valid until the
data access job is complete. Asynchronous data access is intended for (but
not limited to) use when the operations take considerable time and results
must be staged (e.g. some multi-pass algorithms or operations that result in
multiple outputs).

2.3 Examples: DALI-examples

SODA services should provide a DALI-examples resource with one example
invocation that shows the variety operations the service can perform. Ex-
ample operations using the {sync} resource and that output a small data
stream are preferred, as the examples may be used by automatic validators
doing relatively frequent (of order daily) queries.

Parameters to be passed to the service must be given using the DALI
generic-parameter term.

2.4 Availability: VOSlI-availability

A SODA web service must have a VOSI-availability resource (Grid and Web
Services Working Group, 2011) as described in DALI (Dowler et al., 2013).

2.5 Capabilities: VOSI-capabilities

A web service that includes SODA capabilities must have a VOSI-capabilities
resource (Grid and Web Services Working Group, 2011) as described in DALI
(Dowler et al., 2013). The standardID for the {sync} resource is

ivo://ivoa.net/std/SODA#sync-1.0.

The standardID for the {async} resource is

ivo://ivoa.net/std/SODA#async-1.0.

All DAL services must implement the /capabilities resource. The
following capabilities document shows the minimal metadata for a stand-
alone SODA service and does not require a registry extension schema;:

<?7xml version="1.0"7>
<capabilities
xmlns:vosi="http://www.ivoa.net/xml/V0OSICapabilities/v1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:vod="http://www.ivoa.net/xml/VODataService/v1.1">
<capability standardID="ivo://ivoa.net/std/V0SI#capabilities">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">http://example.com/data/capabilities</accessURL>
</interface>
</capability>
<capability standardID="ivo://ivoa.net/std/V0SI#availability">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">
http: //example.com/data/availability
</accessURL>

Note

As SODA builds upon several concepts of Datalink
(Dowler et al., 2015), that document should be read
before trying to understand the following material.

</interface>
</capability>
<capability standardid="ivo://ivoa.net/std/SODA#sync-1.0">
<interface xsi:type='"vod:ParamHTTP" role="std" version="1.0">
<accessurl use="full">
http: //example.com/data/sync
</accessurl>
</interface>
<!-- service details from extension schema could go here -->
</capability>
<capability standardid="ivo://ivoa.net/std/S0DA#async-1.0">
<interface xsi:type="vod:ParamHTTP" role="std" version="1.0">
<accessurl use="full">
http: //example.com/data/async
</accessurl>
</interface>
<!-- service details from extension schema could go here -->
</capability>
</capabilities>

Note that the {sync} and {async} resources do not have to be named
as shown in the accessURL(s) above. Multiple capability elements for the
{sync} and the {async} resources may be included; this is typically used if
the differ in protocol (http vs. https) and/or authentication requirements.

2.6 Parameter Description and Three-Factor Semantics

In contrast to previous IVOA DAL protocols, SODA is not a data discovery
protocol but instead operates on concrete datasets. In a typical case, most
combinations of parameters (e.g., a positional or spectral cutout) will yield
no output at all, as the coverage of an individual dataset is very limited. To
provide meaningful user interfaces, clients therefore need detailed informa-
tion on the service parameters, in particular as regards their domains (i.e.,
set of values that are likely to yield non-empty results).

Conversely, efficient handling of complex datasets will typically require
rich service APIs, not unlikely involving service-specific parameters. It is
therefore important that services provide expressive and correct metadata
on each combination of service and dataset, and that clients interpret that

metadata and use it in the generation of user interfaces (Uls) or, in the case
of libraries, programming interfaces (APIs).

To satisfy these requirements, this specification defines an extensible se-
mantics for parameters as well as a simple recipe for the generation of Uls
or APIs.

2.6.1 Three-factor Semantics

Parameters in SODA are defined by triples of name, UCD, and unit (the
“SODA triple”). Operators are free to support as many such parameters as is
appropriate for their datasets, but they are encouraged to support standard
parameters whenever possible. With the three factors, it is unlikely that
two operators will by accident use the same three factors for parameters of
differing semantics. In this way, when a new standard parameter is adopted,
no existing service should require changes to remain compliant.

With standard parameters as defined in this document, clients can rely on
certain semantics and exploit that knowledge in the provision of special Uls
or APIs. Standard parameters defined so far are given in table 2. Instructions
for how to propose additional standard parameters are given on the landing
page of the IVOA DAL working group'.

Name UCD Unit Semantics

1D meta.ref.url;meta.curation cf. sect. 3.1.1
POS pos cf. sect. 3.2.1
BAND em m cf. sect. 3.2.2
TIME time d cf. sect. 3.2.3
POL pol cf. sect. 3.2.4

Table 2: SODA triples for the standard parameters defined here.

Both standard and non-standard parameters should follow DALI conven-
tions if at all possible. Roughly, float-valued parameters should be mapped
to interval-valued parameters (i.e., do not split up minimum and maximum
into separate parameters). Depending on their semantics, integer parameters
should either be intervals or enumerated parameters (which typically can be
repeated). String-valued parameters should always be enumerated.

2.6.2 Discovery of Supported Parameters

There are two principal ways a client will be led to a SODA service: From a
service descriptor that is part of a DAL response, or from a service descriptor
that is part of a Datallink document. In both cases, clients must obtain the

! At the time of writing, this is http://wiki.ivoa.net /twiki/bin/view /TVOA /TvoaResReg.

http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaResReg

set of supported parameters and their domains from the applicable service
descriptor.

As both the information flow and the transaction semantics are subtly
different, we treat the two cases separately:

SODA within a DAL response A service descriptor returned as part of
DAL response (e.g., SIAv2 or SSAP) as described in DataLink applies to the
entire set of returned documents.

Services are should define the parameter domains using PARAM/ VALUES as
applicable to the entire subset returned even when clients can discover them
from the metadata given in the DAL response. For instance, in a response
containing two cubes, one of which covers wavelengths between 650 nm and
750 nm, the other covering 800 nm through 900 nm, the declared PARAM
would be

<PARAM name="BAND" ucd="em" unit="m" type="float"
arraysize="2" xtype="interval">
<DESCRIPTION>Wavelength range to cut out</DESCRIPTION>
<VALUES>
<MIN value="6.5e-7"/>
<MAX value="9e-7"/>
</VALUES>
</PARAM>

With non-standard parameters, services should try even harder to define
the domain using VALUES because otherwise clients will not be able to offer
users discoverable Uls or APIs. For instance,

<PARAM name="FORMAT" arraysize="x" datatype="char"
ucd="meta.code.mime">
<DESCRIPTION>Media type of the output format the service
should generate.</DESCRIPTION>
<VALUES>
<0OPTION name="VOTable, spectral DM 2 serialization"
value="application/x-votable+xml"/>
<OPTION name="FITS binary table" value="application/fits"/>
<OPTION name="Comma separated values" value="text/csv"/>
</VALUES>
</PARAM>

In particular for such nonstandard parameters, providing an expressive
DESCRIPTION within the parameter is important to ensure users understand
what the parameter effects.

When building Uls or APIs, clients should use the the service-provided
VALUES. In cases where one or more datasets are already selected by the

10

user, clients may obtain domains for standard parameters from the provided
metadata.

With SODA descriptors embedded in DAL responses, there is addition-
ally the mechanism of PARAMs with ref attributes as described by DataLink;
for instance,

<PARAM name="ID" arraysize="*" datatype="char" ref="ssa_pubDID"
ucd="meta.id;meta.main">
<DESCRIPTION>The pubisher DID of the dataset of
interest </DESCRIPTION>
</PARAM>

These should never be exposed in Uls or APIs but instead immediately
satisfied from the DAL response as described in DataLink.

Standalone SODA Here, the client only has a reference to or copy of a
DataLink document describing the dataset. This can happen as a result
of an ObsTAP query that has yielded an access url with a DataLink ac-
cess_format — as the set of returned columns is under user control, it may
not have the complete metadata —, or because a discovered link is obtained
from a web page or via SAMP.

In such a DataLink document, the service must give PARAM domains tai-
lored to the dataset in question. A cube with a spectral coverage from 800 nm
to 900 nm would declare

<PARAM name="BAND" ucd="em" unit="m" datatype="float"
arraysize="2" xtype="interval">
<DESCRIPTION>Wavelength range to cut out</DESCRIPTION>
<VALUES>
<MIN value="8e-7"/>
<MAX value="9e-7"/>
</VALUES>
</PARAM>

A custom parameter letting a user retrieve only certain orders of an
Echelle spectrum would be declared as follows when orders 85 through 142
are present in the given dataset:

<PARAM name="ECHELLE_ORDER" datatype="short" ucd="instr.order"
arraysize="2" xtype="interval">
<DESCRIPTION>Echelle orders to retrieve</DESCRIPTION>
<VALUES>
<MIN value="85"/>
<MAX value="142"/>
</VALUES>
</PARAM>

11

Uls and APIs should provide simple means of accessing information on
the domains of the parameters, as well as the service-provided DESCRIPTION.

2.6.3 Client Handling of Discovered Parameters

To keep SODA clients useful even when advanced data products are being
accessed, the following procedure should be followed by clients:

1. Obtain the parameter triples and the parameters’ domains as described
in sect. 2.6.2.

2. Identify standard parameters understood by the client and provide
suitable input widgets (e.g., a rubberband on top of a sky rendering, or
a spatial_cutout method possibly allowing library-specific coverage
objects) for them.

3. For the remaining parameters, provide generic Ul or API elements
(e.g., sliders or text boxes with domains annotated for intervals, pop-
up menus for enumerated values).

Until this standard defines suitable ways to define whether or not a non-
standard parameter can be given multiple times, clients should assume that
intervals can only be given once, whereas enumerated parameters can be
given multiple times.

This heuristics will yield erroneous results in important cases (e.g., the
FORMAT parameter defined above that can reasonably be assumed to be
singled-valued in almost all services). Services should, in the presence of such
interface problems, proceed in a best-effort way (i.e., not fail and rather pick
one of the user-provided values).

We expect that the declaration of parameter multiplicities, as well as
annotating conflicting parameters (e.g., when a constraint is given both in
physical and pixel coordinates) will be effected using a suitable data model
(e.g., PDL) in VO-DML; clients should therefore be prepared to encounter
VO-DML GROUPs in DataLink responses. In SODA development, we will
make sure that clients ignoring such GROUPs will be compatible with such
future SODA services.

3 Parameters for {sync} and {async}

The {sync} and {async} resources accept the same set of parameters.

12

3.1 Common Parameters
3.1.1 ID

The ID parameter is used to specify the dataset or file to be accessed. The
values for the ID parameter are generally discovered from data discovery or
DataLink requests. The values must be treated as opaque identifiers that
are used as-is. The DataLink specification (Dowler et al., 2015) describes
mechanisms for conveying opaque parameters and values in service descriptor
resources that can be used by clients to set the ID parameter.

The ID parameter is single-valued in {sync} requests, so {sync} soda
requests access a single dataset or file. Multiple ID parameters may be
submitted in {async} requests on order to bundle access to multiple datasets
or files in a single job.

The ID ucd is “meta.id”, and its unit is blank. In addition its xtype is
“ivoident” and its datatype “char’, with arraysize “*”.

3.2 Filtering Parameters

Filtering parameters are used to extract subsets of larger datasets or data
files. In general, filtering parameters are single-valued in {sync} requests and
multi-valued in {async} requests (exceptions noted below). When multiple
values of filtering parameters are used in an {async} job, each combination of
values produces zero or one result. For example, if an {async} job included
two POS and two BAND values, there could be as many as four results (or
fewer if some combinations do not produce a result because the filter does
not intersect the bounds of the data).

3.2.1 POS

The POS parameter defines the positional region(s) to be extracted from
the data. The value is made up of a shape keyword followed by coordinate
values. The allowed shapes are:

Shape Coordinate values

CIRCLE <longitude> <latitude> <radius>
RANGE <longitudel> <longitude2> <latitudel> <latitude2>
POLYGON <longitudel> <latitudel> ... (at least 3 pairs)

Table 3: POS Values in Spherical Coordinates

As in DALI, open intervals use -Inf or +Inf as one limit.
Examples for POS values:

e A circle at (12,34) with radius 0.5:

13

POS=CIRCLE 12 34 0.5

e A range of [12,14] in longitude and [34,36] in latitude:
POS=RANGE 12 14 34 36

e A polygon from (12,34) to (14,34) to (14,36) to (12,36) and (implicitly)
back to (12,34):

POS=POLYGON 12 34 14 34 14 36 12 36

The inside is always assumed to be the smaller of the region to the
left and the region to the right so only polygons smaller than half the
sphere can be specified.

e A band around the equator:

POS=RANGE 0 360 —2 2

e The north pole:
POS=RANGE 0 360 89 +Inf

This syntax is in the same style as STC-S, but with no reference positions,
coordinate systems, units, or geometric operators like union, intersection,
not, etc.

All longitude and latitude values (plus the radius of the CIRCLE) are
expressed in degrees in the ICRS. A future version of this specification may
allow the use of other reference systems (specifically the native system of the
data).

The POS parameter is single-valued for {sync} requests and multi-valued
for {async} jobs.

The unit of POS is “deg” and the ucd is “pos”. However the datatype of
the POS parameter is “char”, and the xtype can take one of the three values

79 Ll

“circle”, “range” and “polygon” as defined in DALI.

3.2.2 BAND

The BAND parameter defines the energy interval(s) to be extracted from
the data. The value is an open or closed numeric interval of values in the
native spectral axis coordinate system and units of the data. The intervals
always include the bounding values. As in DALI, open intervals use -Inf or
+Inf as one limit.

If there is one single value the interval is assumed to be infinitely small
(a scalar value).

14

e The closed interval [500,550]:
BAND=500 550

e The open interval (-inf,300]:
BAND=—Inf 300

e The open interval |750,inf):
BAND=750 +Inf

e The scalar value 550, equivalent to [550,550]:
BAND=550

Extracting using a scalar value should normally extract a single pixel
along the energy axis of the data; extracting using an interval should extract
one or more pixels.

All energy values are expressed as barycentric wavelength in meters. A
future version of this specification may allow the use of other reference sys-
tems (specifically the native system of ther data).

The BAND parameter is single-valued for {sync} requests and multi-
valued for {async} jobs.

The ucd of the BAND parameter is “em”, the unit is “m”. Its datatype is
double with an arraysize of 2, and the xtype is “interval” as defined in DALI.

3.2.3 TIME

The TIME parameter defines the time interval(s) to be extracted from the
data. The value is an open or closed interval with either numeric values
(interpreted as Modified Julian Dates). As in DALI, open intervals use -Inf
or +Inf as one limit.

If there is one single value the numeric interval is assumed to be infinitely
small (a scalar value).

e An open interval from the MJD 55100.0 and all later times:
TIME= 55100.0 +Inf

e A range of MJD values:
TIME=b55123.456 55123.466

e An instant in time using Modified Julian Date:

TIME=55678.123456

15

Time values are always UTC. The TIME parameter is single-valued for
{sync} requests and multi-valued for {async} jobs.

The ucd of the TIME parameter is “time” and the unit is “d”. The
datatype is “double” with an arraysize of 2, and the xtype is, again, “interval”
as defined in DALI

3.24 POL

The POL parameter defines the polarization state(s) (Stokes) to be extracted
from the data.

e Extract the unpolarized intensity:

POL=I

e Extract the standard circular polarization:

POL=V

e The POL parameter is multi-valued; multiple values can be included
in a single request and all will be extracted. Extract only the IQU
components:

POL=I
POL=Q
POL=U

The POL is multi-valued for both {sync} and {async} requests. Unlike
general filtering parameters, all values of POL are combined into a single
filter; for example, if the request includes the three values above, the job
would generate one result with some or all of these polarization states (per
combination of ID and other filtering parameters).

The ucd of the POL PARAMETER is “pol” and the unit is blank. The
datatype is “char” with arraysize “*”, and the xtype is “stokes”.

4 {sync} Responses
All responses from the {sync} resource follow the rules for DALI-sync re-

sources, except that the {sync} response allows for error messages for indi-
vidual input identifier values.

16

4.1 Successful Requests

Successfully executed requests should result in a response with HT'TP status
code 200 (OK) and a response in the format requested by the client or in
the default format for the service.

If the values specified for cutout parameters do not include any pixels
from the target dataset/file, the service must respond with HTTP status
code 204 (No Content) and no response body.

The service should set the following HT'TP headers to the correct values
where possible.

Content-Type mime-type of the response
Content-Encoding encoding/compression of the response (if applicable)

Since the response is usually dynamically generated, the Content-Length
and Last-Modified headers cannot usually be set.

4.2 SODA Service Descriptor

The DataLink (Dowler et al., 2015) specification describes a mechanism for
describing a service within a VOTable resource and recommends that services
can describe themselves with a special resource with name="this". SODA
responses for empty sync queries should include a descriptor describing both
standard and custom query parameters (if applicable). The descriptor for a
service with standard parameters (see sect. 3) would be:

<RESOURCE type="meta" utype="adhoc:service" name="this">

<PARAM name="standardID" datatype="char" arraysize="x"
value="ivo://ivoa.net/std/SODA#sync-1.0" />

<PARAM name="accessURL" datatype="char" arraysize="*"
value="http://example.com/SODA/sync" />

<GROUP name="inputParams">
<PARAM name="ID" ucd="meta.id" datatype="char"
arraysize="*" xtype="ivoident" />
<PARAM name="P0S" ucd="pos" unit="deg" datatype="char"
arraysize="#" xtype="circle" />
<PARAM name="P0S" ucd="pos" unit="deg" datatype="char"
arraysize="x" xtype="range" />
<PARAM name="P0S" ucd="pos" unit="deg" datatype="char"
arraysize="*" xtype="polygon" />
<PARAM name="BAND" ucd="em" unit="m" datatype="double"
arraysize="x" xtype="interval" />
<PARAM name="TIME" ucd="time" unit="d" datatype="double"
arraysize="x" xtype="interval" />
<PARAM name="POL" ucd="pol" datatype="char" arraysize="x*"
xtype="Stokes" />

</GROUP>

17

</RESQURCE>

This VOTable resource should be output for empty sync queries; Thus
all inputs and outputs would be fully described.

4.3 Errors

The error handling specified for DALI-sync resources applies to service fail-
ure. Error documents should be text using the text/plain content-type and
the text must begin with one of the following strings:

Error General error (not covered below)
AuthenticationError Not authenticated
AuthorizationError Not authorized to access the resource
ServiceUnavailable Transient error (could succeed with retry)
UsageError Permanent error (retry pointless)

Table 4: 777

5 {async} Responses

The {async} resource conforms to the DALI-async resource description,
which means the job is a UWS job with all the job control features available.
All result files are to be listed as children of the UWS results resource. The
service provider is free to name each result.

A Changes from Previous Versions

A.1 WD-SODA-1.0-20151120

Change the name of the protocol. Suppression of SELECT and COORD.
xtype description are in DALI. Reference to this has been added.

A.2 WD-AccessData-1.0-20151021

Added general introduction on PARAMETER description to section 3. Mod-
ified SELECT and COORD sections in order to detach them from SimDal.
Added Appendix on xtype description with BNF syntax.

A.3 WD-AccessData-1.0-20140730

e Removed REQUEST parameter since the DAL-WG decision to not
include it when there is only one value.

18

e Clarified that ID and filierting parameters are single valued for {sync}
and multi-valued for {async}, wth POL being multi-valued but still
being treated as a single filter.

A.4 WD-AccessData-1.0-20140312

This is the initial document version.

References

Dowler, P., Bonnarel, F., Michel, L. and Demleitner, M. (2015), ‘ITVOA Rec-
ommendation: IVOA DataLink’, IVOA Working Draft, arXiv:1509.06152.
URL: http://www.ivoa.net/documents/DataLink/

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2013), ‘Data access
layer interface, version 1.0’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/DALI

Grid and Web Services Working Group (2011), ‘IVOA support interfaces
version 1.0’

URL: http://www.ivoa.net/documents/VOSI/index.html
Richardson, L. and Ruby, S. (2007), RESTful Web Services, O’Reilly.

19

	Introduction
	The Role in the IVOA Architecture
	Motivating Use Cases
	Retrieve Subsection of a Datacube
	Retrieve subsection of a 2D Image
	Retrieve subsection of a Spectrum

	Provide the data in different formats
	Flatten a Datacube into a 2D Image
	Flatten a Datacube into a 1D Spectrum
	Rebin Data by a Fixed Factor
	Reproject Data onto a Specified Grid
	Compute Aggregate Functions over the Data
	Apply Standard Function to Data Values
	Apply Arbitrary User-Specified Function to Data Values
	Run Arbitrary User-Supplied Code on the Data

	Resources
	{sync} resource
	{async} resource
	Examples: DALI-examples
	Availability: VOSI-availability
	Capabilities: VOSI-capabilities
	Parameter Description and Three-Factor Semantics
	Three-factor Semantics
	Discovery of Supported Parameters
	Client Handling of Discovered Parameters

	Parameters for {sync} and {async}
	Common Parameters
	ID

	Filtering Parameters
	POS
	BAND
	TIME
	POL

	{sync} Responses
	Successful Requests
	SODA Service Descriptor
	Errors

	{async} Responses
	Changes from Previous Versions
	WD-SODA-1.0-20151120
	WD-AccessData-1.0-20151021
	WD-AccessData-1.0-20140730
	WD-AccessData-1.0-20140312

