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Abstract

The Image Data Model (ImageDM) describes datasets characterized by an N-
dimensional, regularly sampled numeric data array with associated metadata
describing an overall “image” dataset. Image datasets with dimension greater
than 2 are often referred to as “cube” or “image cube” datasets; in general either
term may be used to refer to any n-dimensional image dataset. An image may
have an associated world coordinate system (WCS) associating a physical scale
with each measurement axis. The standard axes types are the physical attributes
of an observable, i.e., spatial (including celestial projections), spectral (including
redshift and velocity), time, and polarization. The ImageDM encompasses all
such multidimensional, regularly sampled, n-D array valued data where the WCS
describing the attributes of each data sample is separable from the data array.
Support for sparse data is included. Although regularly sampled, N-dimensional
array-valued data is emphasized, generalized hypercube or n-cube data
including event and visibility data is also partially addressed.

The ImageDM is related to other IVOA Data models (Observation DM, ObsCore
DM, Characterization DM, and Spectral DM), and is intended to serve as the
basis for VO data access protocols such as SIA (Simple Image Access) and
TAP/ObsTAP (table access, indexing of observational data products), including
support for both 2-D images and multidimensional cubes, as well as very large
(Terabyte-sized) cube datasets.

As with most of the VO Data Models, ImageDM makes use of other VO data
models including FITS, STC, Utypes, Units and UCDs. ImageDM instances are
serializable in a variety of data formats including but not limited to FITS (for n-D
image dataset instances) and VOTable (primarily for discovery queries).
Additional data formats such as HDF5, CASA image tables, and JPEG2000 are
also considered, and can provide better performance for large cube datasets.



Link to IVOA Architecture

The figure below shows where the Image DM fits within the IVOA architecture:
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Status of This Document
The first release of this document was 2013 May 05.

This document has been produced by the [VOA Data Model Working Group.

It has been reviewed by IVOA Members and other interested parties, and has
been endorsed by the IVOA Executive Committee as an IVOA Recommendation.
It is a stable document and may be used as reference material or cited as a
normative reference from another document. IVOA's role in making the
Recommendation is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and interoperability
inside the Astronomical Community.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.
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1 Introduction

The concept of the astronomical image goes back decades, probably to the
introduction of the flexible image transport format (FITS) in the late 1970s by Wells
and Greisen. Later papers by Greisen, Calabretta, and others added the capability to
define a world coordinate system (WCS) that can be associated with an image to
define the physical coordinates in an M-dimensional space of each data sample
(observable) in the N-dimensional array comprising the data segment of the image.
Other metadata elements (FITS keywords) are defined to describe the origins and
content of the particular image dataset.

A key aspect of the astronomical image is the separation of metadata such as the
WCS from the data array, which is a simple N-dimensional array of numerical data
values. Representing the data portion as a simple N-dimensional numerical array is
important for computational efficiency as well as storage optimization and
flexibility. This is especially important for large images or image cubes, which in the
present era may be Gigabytes or Terabytes in size for a single dataset. Storing the
data as a multidimensional numeric array allows generic software tools to be used
for computation, e.g., the array processing capabilities of various scientific
languages, or associated tools such as NumPy in Python. The N-d array (including
cube data via various techniques) is relatively easy to render graphically as a
conventional 2-D graphical image.

Information may be lost in the process of “imaging” an astronomical dataset but the
advantages in terms of efficiency and the ability to use generic tools to process and
visualize the data often outweigh the loss of information. A multi-level approach
can mitigate the problem, using an imaged version of the dataset for initial
interaction with the data, with the ability to “drill-down” to the more fundamental
data for more precise analysis (this is the approach adopted for the ImageDM, e.g.,
for event and visibility data).

Another important aspect of the astronomical image is abstraction. While logically
the data portion of the image may be a simple N-d array, physically the data may be
represented or stored in many different ways. Large cubes may be physically stored
in multiple smaller segments, or data may be stored in N-d blocks to provide
uniform access along any dimension or axis of the image. Sparse cubes may be
stored as multiple segments, each at a given location within the larger logical cube.
Data may be stored in a compressed form, or may be encoded, e.g., via a multi-
resolution technique such as a wavelet transform (JPEG2000). Each such
representation offers certain advantages and disadvantages; by separating the
logical view of the data from the details of how it is physically represented, the
optimum choice may be made for each application, transparently to higher-level
analysis software.



1.1 Motivation for a VO Image Data Model

Given that FITS is so widely used within astronomy, one might reasonably ask why
we need a VO Image data model; why not just use FITS instead? FITS actually is
used directly within VO; it has been adopted as a core VO technology, used mainly as
an efficient binary representation for moderate sized N-d image datasets as well as
tables. In the case of image data, FITS is used mainly to represent image datasets
returned by a VO service to a client application.

Separation of abstract data model from representation. The main limitation of
FITS in a VO context is the lack of separation of the abstract model (e.g., a WCS) from
the representation (FITS keywords encoded as 80 character card images)). In a
typical VO scenario, a client application or user queries for a list of candidate image
datasets matching some client-specified criteria, then selects datasets of interest for
retrieval. The standard form for the query response is a VOTable (XML), whereas
image datasets are most commonly returned as FITS images.

In the VO image or cube datasets may be very large, may be computed on the fly to
match what the client requested (an example of virtual data), and may be used for
any purpose, such usage being unknown to the data service. When scaling up,
operations may need to be automated, requiring sufficiently detailed metadata to
permit automated data selection or generation. To satisfy these diverse use cases
the metadata returned in a discovery query needs to be fairly detailed, describing in
some detail the characteristics of each candidate physical or virtual dataset.

The VO uses formal data models such as the ImageDM to describe the characteristics
of physical or virtual dataset instances. Hence in the case of an image-specific
discovery query, the metadata returned to describe each candidate image dataset is
an instance of the ImageDM, minus the image data array of course. An actual image
dataset ideally includes the same standard image metadata, plus possibly some
additional dataset-specific custom metadata, plus the data segment for the image;
the actual metadata returned will in general depend upon the application
requirements and the data format used.

A VO data discovery query describes candidate datasets (N-d images in this case) in
VOTable XML, whereas actual image datasets are commonly formatted as FITS
images, both containing the same standard metadata describing the object. Hence
we need to define the ImageDM as an abstract data model, independently of
serialization, to satisfy our most basic query/access use case. More generally, one
may want to serialize image datasets in data formats other than FITS (HDF5, CASA
image tables, JPEG, etc.), presenting the same logical data object in each case
regardless of the serialization.

Standard VO metadata. VO metadata is considerably richer than what is defined in
the FITS standards (although FITS is often extended via nonstandard conventions to
model more complex data objects). This is necessary to support uniform data
discovery as well as to model specific classes of data such as images, spectra, time
series, SEDs, and so forth. The data model for a specific class of data such as an N-d
image (i.e., ImageDM) inherits from the more generic VO data models such as



Observation and Characterisation. The data model for a specific class of data such as
Image also needs to be extended to model the unique characteristics of the new
class of data. In the case of ImageDM, the WCS submodel is a primary example of
such an extension required for N-d image data. A convention for representing
sparse data, particularly important for large higher-dimensional cubes, is another.

Summary. The strategy for developing the VO ImageDM is to capture the most
important elements of the FITS image and WCS models, while also providing
compatibility and re-use of the relevant VO data models and VO data modeling
framework. In particular it should be possible to describe an image dataset in the
ImageDM and convert to and from the equivalent FITS image, meanwhile describing
the Image dataset in a VOTable-based discovery query. Further, it should be
possible to serialize an ImageDM instance in other formats and encodings, making it
possible to address new use cases such as very large cubes and VO data discovery
and virtual data generation, while preserving the semantics of the major FITS
models such as the N-d image and associated WCS, leveraging the large investment
in FITS by both astronomical software and astronomical data archives.

2 Image Data Model

[The following is copied from the ImageDM section of the Cube whitepaper and has not
yet been fully integrated.]

The Image data model provides the basis for discovery and access to astronomical
“image” data in the VO.

Observation/Dataset (abstract)

ObsCoreDM SpectralDM ImageDM
ObsTAP Image
SED Spectrum TimeSeries

Here “image” refers (in the simplest cases) to a multidimensional, regularly sampled
numerical array with associated metadata describing the dataset instance. Unless
dimensionality is otherwise indicated, the terms image and cube are
interchangeable and both refer to N-dimensional image data. Image is a specialized



case of general hypercube data where the data samples are represented as a uniform
multidimensional array of numerical values, allowing efficient computation and
representation. A hypercube of dimension N is known as an n-cube. It follows that
an N-dimensional image is a special case of an n-cube where the data samples are
represented as a uniform N-dimensional numeric array. The data samples of an
image are referred to as pixels (picture elements) or as voxels (volume elements),
pixels being the preferred term for 2D images.

ImageDM

1
1..%*

Base-IMSA |<}——— Image
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» » > » » » » »>
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Dataset Curation DatalD Target Mapping
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Characterisation Coordsys Derived Data

Typical instances of astronomical image data include a 2-dimensional FITS image
and a 3 or 4-dimensional FITS image cube, or comparable image datasets in other
formats. Although a spectrum may be represented as a 1-dimensional image, VO
defines a more general Spectrum data model for spectra, and likewise for time series
data. Visibility and event data may be considered a form of hypercube data in the
most general sense; while the Image model does not directly address such data, both
visibility and event data can be viewed as an image, and this is often done for
reasons of efficiency and to allow generic image visualization and analysis software
to be used.

As with most VO data models, the Image data model is defined as an abstract model
independently of how it is realized, or serialized in some particular data stream or
file format. Image inherits generic dataset metadata from common VO data models
such as Observation, Characterization, and Space Time Coordinates (STC). Other VO
data models such as Spectrum and its underlying Spectral data model (SDM) are
largely the same as Image, all being derived from the same root generic dataset
models. Image also inherits from and is semantically compatible with the FITS
image and FITS world coordinate system (WCS) models. Unlike traditional FITS
however, Image may be serialized in a variety of data formats including but not
limited to the FITS serialization (this approach could provide a way forward to
modernize FITS and free it from its overly restrictive legacy serialization).



2.1 Abstract Model

The abstract Image data model provides a unified description of simple ND-image
instances, sparse images/cubes, and indirectly, generalized hypercube data such as
visibility and event data.

The root abstract data model is a collection of sub-arrays/images that all fit into a
single super-array. The metadata (including WCS) for the super-array must be
provided to describe the overall Image dataset. WCS metadata for each sub-array
needs to be provided with that sub-array. The sub-arrays in the collection need not
be the same size.

* With this model, a standard single ND-image is a special case — the
collection of sub-arrays may consist of just one sub-array that is congruent
with the super-array, for example a single 2D or ND image.

* In the sparse image case, regions of the multidimensional image space have
no data. An individual sub-array may be sparse, the area of the super-array
may be only partially covered by the provided sub-arrays, or both cases may
occur simultaneously.

* Support for generalized hypercube data (typically visibility or event data) is
provided only indirectly. By default, Image provides an image view of such
data. A reference (possibly in the form of a VO datalink) to the underlying
more fundamental data may optionally be provided, allowing the client to
retrieve the underlying data and work with it directly. Ideally the referenced
hypercube data should be filtered (in all dimensions) to return only data
within the region covered by the image view.

An instance of the Image data model may contain the image data array or arrays, or
may contain only metadata plus a reference to externally stored data. The
referenced external data may be a static data object or may be virtual data that is
computed upon demand when accessed. This is used for example in data queries
where the Image instance refers to an available remote dataset, or in pass-through
of hypercube data where the Image instance may contain embedded information for
how to filter and generate the remote event or visibility data corresponding to the
Image instance.

2.1.1 Hypercube Data

Image allows the format of any referenced event or visibility data to be queried, but
the actual format used is determined and defined externally (e.g., by the data
provider or by some external standard) rather than by the Image data model. For
this to be useful the client must be able to deal with the provided data, however it
may be possible to perform advanced analysis by working directly with the more
fundamental hypercube data. An X-ray analysis tool for example, might work
directly with the event data for an observation, performing multiwavelength
analysis combining the event data with image data from other sources. A generic
image analysis tool could perform a similar analysis using the image view of the
same image dataset.
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2.1.2 Sparse Data

Given a single sparse sub-array (ND-image), each sparse image axis may be indexed
by a table giving the coordinates of each provided sample (FITS WCS for example
defines a TAB coordinate type for this purpose). Any image axis may be sparse;
arbitrary or irregular sample spacing may also be represented using this technique.
For example, an irregularly sampled spectral, time, or polarization axis may specify
the specific coordinates at which each data sample is provided.

More subtly, the 2D spatial plane may contain data only at specific locations within
the 2D plane. If the coordinates of a sample point are specified in floating point they
may be randomly located at WCS-defined coordinates within the covered region, for
example the sampled points may correspond to the observed sources within a field.
If the coordinates of each sample point are expressed as integer values then the
spatial plane is regularly sampled (pixelated) but sparse, with data provided only
for data samples that are indexed. For example, if we have a spectral image cube
that is sparse in the spatial plane with 4K resolution elements along the spectral
axis, the data array would consist of N vectors each of length 4K, where N is the
number of sampled points in the spatial plane. The associated index table might
define the RA and DEC of each sampled spatial point in the cube, or the (i,j) pixel
coordinates of each sampled point in the case of a sparse pixel array.

11



Example of a sparse image (image or image
cube which is sparse on the two coupled
spatial axes). Data was obtained only for the
points shown as gray in the figure. Rather
than store the entire array, only data for the
five sampled regions is stored. The
coordinates of each sampled region are stored
in a table included in the WCS for the image/
cube. In this example the sparse cube would
be represented in 5/64 of the space that
would be required to store the fully sampled
cube.

Sparse data represented by multiple sub-arrays is more verbose, but simpler in
some respects. In this case the overall dataset consists of a super-array containing
overall dataset metadata and optional image data for the super-array region, plus
some number of sub-arrays providing image data for the covered regions. The sub-
arrays may or may not share the same sampling and coordinate frame / projection.
An example might be a spatial field where data is available only for several sub-
fields, or a spectral data cube where data is available only for several widely spaced
spectral bands. The specific serialization used defines how to aggregate multiple

Example of a sparse image (image or image
cube which is sparse on the two coupled
spatial axes), that is composed of several sub-
arrays. The outer box defines the area of the
super-array, or overall Image dataset. The four
sub-arrays are individual

smaller images for which data was obtained.
This example illustrates the use of multiple
sub-arrays to cover a larger spatial region,
however the same technique may be used for
other axes such as the spectral, time, and
polarization axes of a general cube.

sub-arrays within a single dataset.
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3 Data Model Classes

[Define each class element of the ImageDM and relate to more fundamental data
models such as Observation and Characterisation. The following is copied from the
relevant section of the SIAVZ specification and has not yet been fully integrated.]

3.1 Types of Metadata

Metadata describing an image instance is grouped into a number of component data
models as summarized in the table below, and explained in more detail in the
sections that follow.

Service Metadata

Query Describes the query itself
Association Logical associations
Access Dataset access-related metadata

Data Model Metadata

Dataset General dataset metadata

DatalID Dataset identification (creation)
Provenance Instrumentalm or software Provenance
Curation Publisher metadata

Target Observed target, if any

CoordSys Coordinate system frames

Char Dataset characterization

Mapping Dataset Axes Mapping or WCS

Characterization Metadata

Char/FluxAxis Observable, normally a flux measurement
Char/SpectralAxis Spectral measurement axis, e.g., wavelength
Char/TimeAxis Temporal measurement axis
Char/SpatialAxis Spatial measurement axis

Char/Polarization Polarization Axis

Char/*.Coverage Coverage in any axis

Char/*.Resolution Resolution on any axis
Char/*.SamplingPrecision Sampling or Precision on any axis
Char/*.Accuracy Accuracy and error in any axis

Mapping metadata

Image matrix mapping

WCS Mapping

Service metadata is specific to the functioning of the service itself, for example to
step through large queries or retrieve selected datasets. Data model metadata
describes each dataset. Characterization metadata physically characterizes the

13



dataset in terms of the spatial, spectral, and temporal measurement axes and the
observable. Characterization is part of the data model but is broken out separately
in the table above to show the major elements of the characterization model. Most
image metadata is generic dataset metadata that can be used to describe any type of
data.

Each of these types of query response metadata is discussed in more detail in the
sections that follow.

3.2 Query Metadata

Query metadata describes the query itself.

UTYPE Description Req

Query.Score Degree of match to query params REC

3.2.1 Query.Score

A record with a higher score more closely matches the query parameters. The score
is expressed as a floating point number with an arbitrary scale (different queries
may return results with different scale factors and cannot be inter-compared). If
scoring is used, the query response table should be returned sorted in order of
decreasing values of score, with the top-scoring items at the top of the list. The
details of the heuristic used to compute the score are left to the service. See the
discussion of the Top parameter in section .....

3.3 Association Metadata

Association metadata is used to describe logical associations relating datasets
described in the query response, as described in section ... . Logical associations
between query response records may refer to the data access operation itself, e.g.,
where the same data object is available in multiple output formats, or to logical
associations relating the physical data, e.g., where multiple primary datasets are
part of the same observation. The same dataset may belong to multiple
associations.

UTYPE Description Req
Association. Type Type of association OPT
Association.ID Unique ID identifying the association instance OPT
Association.Key Unique key different for each element of association OPT

Each such association is described by a separate instance of the Association model,
with a defined Association Type, ID, and Key. In many cases the Association Type
and Key can be represented as fixed PARAMs, leaving only Association.ID to be
represented as a FIELD in each table row.

14



In general, specification of the allowable Association types is beyond the scope of
this specification. The semantic details of Associations are intended to be defined
either at a lower level, for a specific data collection or service, or at a higher level,
e.g., to describe complex data associations. An exception is the MultiFormat
association described in the next section.

3.3.1 MultiFormat Association

A pre-defined case is the MultiFormat association, where several records refer to the
same dataset which is available in several different output data formats. In this case
Association.Type should be set to “MultiFormat”, Association.ID can be anything,
and Association.Key should be set to “@Access.Format” to indicate that the key
which differentiates the elements of the association is the value of the
Access.Format field of the record. If several query response records are of this type
the association should be specified to indicate the association. In all other cases
(currently undefined by the protocol) the association may be specified.

3.3.2 Association.Type

A service-defined type used to indicate what type of association is being referred to.
The value should be unique within the scope of the query response. There can be
many types of logical associations. Associations provide a means of describing
complex data aggregations relating multiple datasets. Examples of possible
associations might be a multi-CCD detector observation consisting of as many
images as CCD, each of which appears in the query response as an individual image,
or a group of query response records which all refer to the same dataset but differ
only in the output format.

Since the association type may be shared by many table records, it may be best
specified as a PARAM in the output VOTable, using an ID-REF to link it to the
association it refers to. An association type should be provided for each association
in the table.

3.3.3 Association.ID

The association ID is a string, unique within the scope of a given VOTable,
identifying one instance of a given association. All members of the association
instance share the same Association.ID. The association ID must be provided for
any association. The content of the string is up to the service. Multiple association
IDs may be provided for a single record if a record belongs to more than one
association. Note that Association.ID is unrelated to the VOTable ID, which is used
to uniquely identify the elements of a VOTable.

Extension metadata may optionally be provided to describe an association in more
detail. Extension metadata appears in the output VOTable as optional additional
RESOURCE elements (see section ...). The ID-REF mechanism may be used to link
such an extension record to the association in the main table. The contents of an
association metadata extension record are externally defined by the application
using the data model.

15



3.3.4 Association.Key

The association key should be provided to identify what is “different” for each
member of an association. The value is a string and may be either an arbitrary value
defined by the association, or a reference to one or more table fields which form the
association key. If a table field is referenced the ‘@" character should be prefixed to
the VOTable ID of the referenced FIELD to indicate the indirection (e.g.,
“@Format”), otherwise the literal string is used as the key. A key may contain
multiple elements delimited by commas.

3.4 Access Metadata

Access metadata is required to tell a client how to access the datasets described in
the SSA query response.

UTYPE Description Req
Access.Reference URI (URL) or template used to access the dataset | MAN
Access.Format MIME type of dataset MAN
Access.Size Estimated (not actual) dataset size REC
Access.Parameters.* OPT

3.4.1 Access Reference

The simplest case of access reference is a URI (typically a URL) which can be used to
synchronously retrieve the specific dataset described in a row of the query table
response. If the dataset pointed to by the access reference does not exist at query
time, it will be computed on the fly when accessed.

Access Reference can also be an URI template if some of the PARAMETERS can be
filled interactively by the client during the AccessData phase. Access.Parameters will
help to do this.

SIAV2 supports data staging and asynchronous data access. Support for these
functionalities is described below and is useful to support generation of simulated
or synthetic data, as well as very large images retrieval.

When the access reference is a URL, it is convenient to be able to input the access
reference directly in a Web browser or other standard Web tool to access the
referenced dataset. For this reason the access reference string should be URL-
encoded if it contains any reserved URL metacharacters (the “#” character used in
dataset identifiers is particularly nasty). See also section.... The CDATA construct
used in earlier data access interfaces (SIAP V1.0) does not serve the same purpose
and should not be used; use URL encoding instead.

3.4.2 Output Format

The file format of a candidate dataset is specified by its MIME type. Both
uncompressed and compressed data can be indicated in this fashion.

16



The file format says nothing about the data model used by whatever data object is
stored in the file; this is specified by the Dataset.DataModel attribute discussed in
section ......

A single data object may be available in multiple file formats. In such a case an
association should be defined to indicate that the entries all refer to the same data
object.

3.4.3 Dataset Size Estimate

The approximate estimated size of the dataset, specified in kilobytes, should be
given to help the client estimate download times and storage requirements when
generating execution plans. Only an approximate, order of magnitude value is
required (a value rounded up to the nearest hundred KB would be sufficient). In the
VO dataset sizes can vary by many orders of magnitude hence it is important to
know this information to optimize execution plans before attempting to download
data or request computation. It is preferable to return an order of magnitude
estimate of the dataset size, than no value at all. A precise value is not required.

3.4.4 Access Parameters:

[This should probably be handled by getCapabilties instead but is left in here for
the present to record the type of functionality which we need to describe.]

These parameters allow to describe detailed and specific access modes to the data:

* Access.param.Interactive gives the list of interactive parameters
providing optionnaly possible ranges of values (eg POS, SIZE,
COMPRESS, etc...)

* In order to give information to the client of where to find appropriate
information in the retrieved file a couple of UTypes have been defined.
Such specification is made necessary because sometimes the actual
science data is only a subpart of the retrieved file :

* Acces.param.extnum and Access.param.extname give the Extension
number and Extension name in FITS (or VOTABLE)

* Access.param.Cutout gives the cutout limit (a la “IRAF”) in Fits Array,

* Access.param.Field and acces.param.row give the name/number of
the Field/row in FITS table or VOTABLE....)

3.5 Data Model Metadata

The following metadata components are in common with other VO data models such
as ObsCore and the Spectral data model.

3.5.1 General Dataset Metadata

General dataset metadata describes the overall dataset.

| UTYPE | Description Reqg | Default

17



Dataset.DataModel | Datamodel name and version MAN [ Obs-1.0
Dataset.Type Type of dataset MAN | Image,
cube
Dataset.Length Number of pixels in image/cube MAN
Dataset.Deleted Set to deletion time, if dataset is deleted OPT

Dataset.DataModel is a string identifying the data model type and version used in
the described dataset. For Image-compliant data this should be a value such as
"Obs-1.0", as specified in the Obs data model document for the version of the data
model being used. For pass-through of native project data some other value should
be used which identifies the specific project data model used, e.g., "HST-STIS-1.0".

For the ImageDM, Dataset.Type is either "Image", or “Cube”. Dataset.Length is
mandatory and specifies the dimensionless "length" of the image, i.e., the total
number of pixels or samples in the full image. Dataset.Deleted is used with the
MTIME query parameter to inform the client that a previously existing dataset has
been deleted; if a service supports MTIME it should also support Dataset.Deleted.
The value is the ISO 8601 date (as in MTIME) at which the dataset was deleted, or
null for a normal non-deleted dataset. Dataset.Deleted should be returned in a
query only if MTIME is used in the query, and the deletion date matches the interval
of time specified by MTIME. Otherwise deleted datasets should never be visible in a
query. A service may permanently delete dataset deletion history after a period of
time (currently unspecified) long enough to permit clients to discover deleted
datasets.

3.5.2 Dataset Identification and Provenance Metadata

Dataset identification metadata is used to describe the fundamental identify of a
dataset, including where it came from and how it was created.

UTYPE Description Reqg | Default
DatalD.Title Dataset title MAN
DatalD.Creator Creator name (string) REC
DatalD.Collection IVOA Identifier of collection REC
DatalD.DatasetID IVOA Dataset ID OPT
DatalD.CreatorDID Creator assigned dataset identifier REC
DatalD.Date Data processing/creation date OPT
DatalD.Version Version of creator-produced dataset | OPT
DatalD.CreationType Dataset creation type REC | archival
Provenance.ObsConfig.Instrument | Instrument name OPT
DatalD.ObsConfig.Bandpass Bandpass name, e.g., filter OPT
DatalD.ObsConfig.DataSource Original source of data REC | survey

Dataset.Title is a short, human-readable description of a dataset, and should be less
than one line of text. Information such as the instrument or survey name, filter,
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target name, etc.,, is typically included in a condensed form. The exact contents of
Dataset.Title are up to the data provider. Dataset.Creator identifies the entity which
created the dataset, and should be a short string consistent with the RSM
specification, e.g., "SDSS". Dataset.Collection is the registered IVOA identifer of the
data collection to which the dataset belongs, e.g., "ivo://sdss/dr5/spec".

The CreatorDID is the IVOA dataset identifier (if any) assigned by the entity which
created the dataset content, typically (but not always) an observatory or survey
project. If the dataset referred to is virtual data, CreatorDID refers to the parent
dataset from which the virtual data will be created (see .... for further details). If a
CreatorDID has been assigned to a dataset it should be provided, otherwise it
should be omitted. DatalD.Date, specified in ISO time format, specifies the date
when the dataset was created or last modified by the DatalD.Creator entity. If a
dataset is modified or replaced without changing its CreatorDID, DatalD.Date and
DatalD.Version should be updated accordingly. DatalD.CreationType describes how
the dataset returned by the service was or will be created, as defined in section ....

Provenance metadata are used to provide information on the scientific origin of the
DataSet either on the observing or on the processing point of view.

Provenance.ObsConfig.Instrument is a short string identifying the instrument used
to create the data (instrument may be an actual telescope instrument or something
else, e.g., a program in the case of theory data). Provenance.ObsConfig.Bandpass is a
short string specifying the bandpass name if any, e.g, a filter name or an
instrumental bandpass such as |, |, K, Q, HI, and so forth. Values specified with
Provenance.ObsConfig.Bandpass may be used as input to the BAND parameter (.....)
to refine a query (if this feature is supported by the service).

Provenance.DataSource describes the original source of the data.

3.5.3 Curation Metadata

Curation metadata describes who curates the dataset and how it is published to the
VO.

UTYPE Description Reqg | Default
Curation.Publisher Publisher MAN
Curation.Reference URL or Bibcode for documentation | REC
Curation.PublisherDID Publisher's ID for the dataset REC
Curation.Date Date curated dataset last modified OPT
Curation.Version Version of curated dataset OPT
Curation.Rights Restrictions: public, proprietary, etc | OPT public

Curation.Publisher is a short string identifying the publisher of the data, e.g., a data
archive or data center, or an indexing service such as the ADS.
Curation.PublisherDID is the IVOA dataset identifier (URI) assigned by the publisher
to identify the dataset within its holdings. Curation.Reference is a forward link to

19



publications which reference the dataset; multiple instances are permitted.
Curation.Date and Curation.Version refer to the dataset as curated by the publisher,
hence can differ from the same values given in DatalD, which refer to the content of
the dataset as generated by the dataset Creator. Curation.Rights specifies whether
the dataset is "public" or "proprietary". Proprietary data requires authentication
and authorization by the data provider to access, and once downloaded should be
protected from subsequent access on the client side.

Note:
If the same dataset is replicated at several locations with multiple
publishers, it is possible to set up an association group to indicate this
fact.

3.5.4 Astronomical Target Metadata

Target metadata describes the astronomical target observed, if any.

UTYPE Description Req | Default
Target.Name Target name OPT
Target.Class Target or object class OPT
Target.Redshift Target redshift OPT
Target.VarAmpl Target variability amplitude, typical | OPT

Target.Name is a short string identifying the observed astronomical object, suitable
for input to a name resolver. Target.Class is the object class if known, e.g., Star,
Galaxy, AGN, QSO, and so forth (see section ). Target.Redshift, Target.VarAmpl], are
as defined in the data model. Either standard target values, or derived quantities,
may be used in the query response.

3.5.5 Coordinate System Metadata

Coordinate system metadata describes the coordinate system reference frames used
in the ImageDM instance.

UTYPE Description Reqg | Default
CoordSys.SpaceFrame.Name Spatial coordinate frame REC | ICRS
CoordSys.SpaceFrame.Equinox Equinox OPT | 2000.0
CoordSys.TimeFrame.Name Timescale OPT |TT
CoordSys.TimeFrame.Zero Zero point of timescale in MJD OPT 0.0

These reference frames apply to all spatial (sky), spectral, and time coordinates
used in the ImageDM instance (including Characterization) unless otherwise
specified. Note that spatial coordinates are not limited to the celestial sphere; any
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spatial coordinate frame specified in the data model may be specified, including
solar and planetary coordinate systems, although the default is ICRS.
3.5.6 Dataset Characterization Axis Metadata

The Characterization axis metadata specifies the type of physical quantity on each
physical measurement axis as well as the observable.

UTYPE Description Reqg | Default
Char/FluxAxis.Ucd ucd for flux REC
Char/SpectralAxis.Ucd ucd for spectral coord REC
Char/TimeAxis.Ucd ucd for time coord REC
Char/Spatial Axis.Ucd ucd for time coord REC
Char/PolarizationAxis.Ucd Ucd for pol axis REC

Values are specified as UCDs, as defined in the data model. For example, to specify
that the flux axis is flux density per unit wavelength, the value "phot.fluDens;em.wl"

would be given.

3.5.7 Characterization Coverage Metadata

The Coverage component of the Characterization data model (Char) describes the
coverage of the dataset in each of the four primary measurement axes.

UTYPE Description
Char/SpatialAxis.Coverage.Location.coord Observed position, e.g., RA DEC MAN
Char/SpatialAxis.Coverage.Bounds.Extent angular area, sq deg MAN
Char/Spatial Axis.Coverage.Bounds.limits.LoLimit2Vec
Char/Spatial Axis.Coverage.Bounds.limits.HiLimit2Vec
Char/SpatialAxis.Coverage.Support.AreaType
Char/SpatialAxis.Coverage.Support.Area Accurate Field of View OPT
Char/TimeAxis.Coverage.Location.coord Midpoint of exposure (MJD) MAN
Char/TimeAxis.Coverage.Bounds.Extent Total elapsed exposure time REC
Char/TimeAxis.Coverage.Bounds.limits.LoLimit Start time OPT
Char/TimeAxis.Coverage.Bounds.limits.HiLimit Stop time OPT
Char/TimeAxis.Coverage.Support.Extent Effective exposure time OPT
Char/SpectralAxis.Coverage.Location.coord Midpoint of Spectral coord range MAN
Char/SpectralAxis.Coverage.Bounds.Extent Width of spectrum in meters MAN
Char/SpectralAxis.Coverage.Bounds.limits.LoLimit Start in spectral coordinate REC
Char/SpectralAxis.Coverage.Bounds.limits.HiLimit Stop in spectral coordinate REC

Char/PolarizationAxis.enumeration

Within Char, Coverage specifies the location (central or characteristic value), bounds
(measurement limits), support (region covered within the bounds), for each
measurement axis. The coordinate system reference frames specified in Coordsys
apply here. Spatial coordinates are specified in units of decimal degrees, spectral

21



coordinates in units of meters, and time coordinates in units of days. The
Polarization axis is peculiar in this that it gives the list of available polarization
parameters for the polarization system given by the UCD (eg Q, U, V parameters for
Stokes system....)

3.5.8 Characterization Resolution and Sampling Metadata

The Resolution component of Characterization specifies the sampling and
resolution estimates for the dataset.

UTYPE Description Reqg | Default
Char/Spectral Axis.Resolution Spectral res. FWHM REC | BinSize
Char/TimeAxis.Resolution Temporal res. FWHM OPT | BinSize
Char/Spatial Axis.Resolution Spatial resolution of REC
data

Char/Spectral Axis.SamplingPrecision.RefVal Wavelength bin size OPT
Char/TimeAxis.SamplingPrecision.RefVal Time bin size OPT
Char/SpectralAxis.SamplingPrecision.FillFactor | Sampling filling factor | OPT | 1.0

Char/Spatial Axis.SamplingPrecision.FillFactor | Sampling filling factor | OPT | 1.0
Char/TimeAxis.SamplingPrecision.FillFactor Sampling filling factor | OPT | 1.0

The spatial and spectral resolution should be specified. Note that, for consistency
within Char, the spectral resolution is specified here in spectral coordinate units
(FWHM in meters), unlike the SPECRP query parameter, which is specified as »/dA.

3.5.9 Characterization Accuracy and Error Metadata

The Accuracy component of Characterization specifies the sampling, resolution,
and error estimates for the dataset.

UTYPE Description Reqg | Default
Char/FluxAxis.Accuracy.StatError Statistical error OPT
Char/FluxAxis.Accuracy.SysError Systematic error OPT
Char/FluxAxis. CalibrationStatus Type of flux calibration REC | calibrated
Char/Spectral Axis.Accuracy.StatError | Spectral coord meas. error OPT
Char/Spectral Axis.Accuracy.SysError | Spectral coord meas. error OPT
Char/Spectral Axis. CalibrationStatus Type of coord calibration REC | calibrated
Char/TimeAxis.Accuracy.StatError Time coord statistical error OPT
Char/TimeAxis.Accuracy.SysError Time coord systematic error OPT
Char/TimeAxis. CalibrationStatus Type of coord calibration OPT | calibrated
Char/Spatial Axis.Accuracy.StatError Astrometric statistical error REC
Char.Spatial Axis.Accuracy.SysError Systematic error OPT
Char.Spatial Axis. CalibrationStatus Type of coord calibration REC | calibrated
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Both overall statistical and systematic error estimates may be specified. The
calibration status of all three primary measurement axes as well as the observable
should be given, otherwise "calibrated"” is assumed.

3.6 Mapping Metadata

The mapping model specifies the image matrix and the transformation from image
pixel coordinates to the specified world coordinate system (WCS). Image axes with
any combination of spatial, spectral, time, or polarization coordinates are supported.

UTYPE | Description Req | Default
Image Matrix Transform
Mapping.NAxes Number of image axes
Mapping.NAxis[] Length of each axis in pixels

Mapping.CoordRefPixel[]

Reference pixel

Mapping.CoordRefValue[]

WCS value at reference pixel

Mapping.CDMatrix|] Coord definition matrix
Mapping.PCMatrix[] Coord definition matrix
Mapping.CDelt[] World coord delta per pixel
Mapping.AxisMap|] Image-to-WCS axis mapping
Mapping. WCSAxes Number of WCS axes

World Coord Transform

Mapping.Spatial Axis.CoordType

Coordinate type as in FITS

Mapping.Spatial Axis.Projection

Celestial projection

Mapping.Spatial Axis.CoordFrame

Spatial coordinate frame

Mapping.Spatial Axis.CoordEquinox

Coordinate equinox (if used)

Mapping.Spatial Axis.CoordUnit

Unit for coordinate value

Mapping.Spatial Axis.CoordName

Axis name (optional)

Mapping.Spectral Axis.CoordType

Coordinate type as in FITS

Mapping.Spectral Axis.Algorithm

Algorithm type as in FITS

Mapping.Spectral Axis.RestFreq

Rest frequency of spectral line

Mapping.Spectral Axis.RestWave

Rest wavelength of spectral line

Mapping.Spectral Axis.CoordUnit

Unit for spectral coordinate value

Mapping.Spectral Axis.CoordName

Axis name (optional)

Mapping.Spectral Axis.CoordValue[]

Spectral value/band at pixel index

Mapping.TimeAxis.CoordType

Time scale (UTC, TT, TAI ...)

Mapping.TimeAxis.CoordUnit

Time unit

Mapping.TimeAxis.CoordName

Time axis name (optional)

Mapping.TimeAxis.CoordValue[]

Time value at pixel index

Mapping.TimeAxis.RefPosition

TOPOCENT, BARYCENT, ...

Mapping.PolAxis.CoordType

Polarization system (Stokes etc.)

Mapping.PolAxis.CoordName

Polarization axis name (optional)

Mapping.PolAxis.CoordValue[]

Polarization type at pixel index
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In the above table, UTYPEs that have “[]” appended are vector-valued (the value is a
string consisting of a sequence of numbers or string tokens delimited by spaces).
The “[]” is not part of the actual UTYPE.

The Mapping model used in the ImageDM is essentially the same as FITS WCS
although it is represented slightly differently and has been somewhat simplified.
The biggest deviation is in the representation of polarization that is represented as a
simple lookup table assigning a polarization type to each pixel index on the
polarization axis (e.g, “I”, “Q”, “U”, “V” for full Stokes).

A detailed description of the FITS WCS model is beyond the scope of the current
document but can be found in FITS WCS papers 1-5. In summary the WCS
transformation consists of a general linear transformation of the input image pixel
coordinates (with the transform represented either as the CD matrix or as the PC
matrix plus CDELT), followed optionally by a nonlinear transformation to produce
the final world coordinates. To apply the linear transformation one first subtracts
the coordinates of the reference pixel, then applies the transformation matrix, and
finally adds the world coordinates at the reference pixel to establish the zero point.
The result is a linear transformation of the input pixel coordinates to “intermediate”
(linear) world coordinates.

In our representation the AxisMap is then used to map the axes of the intermediate
world coordinates to the axes of the final world coordinate system. The spatial,
spectral, time, or polarization transforms may then be applied independently to the
associated intermediate world coordinte values. A nonlinear coordinate system
may be represented either as a continuous function consisting of a well-known
projection or algorithm of some sort (e.g., TAN, F2V, etc.), or as a lookup table
wherein each pixel index on the axis is directly assigned a world coordinate.

[More needs to be added here to fully specify this metadata, in particular the vector
representation, allowable units, and allowable coordinate types and algorithms,
following the FITS model, but this should suffice to demonstrate the approach.]

3.7 Additional Service-Defined Metadata

A given service may return additional query response metadata not defined by the
ImageDM. This additional metadata may take the form of additional table columns,
or additional RESOURCE elements in the query response VOTable.

Service-defined output metadata should use service-defined UTYPEs and UCDs as
long as they do not clash - and can be easily distinguished - from mandatory and
reserved ImageDM output columns.

3.8 Metadata Extension Mechanism

The metadata extension mechanism allows a data provider to add additional custom
metadata to the query response to describe collection-specific details of the data.
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4 Data Access Model

[The following is copied from SIAVZ working draft and has not yet been fully
integrated. The idea is to define the access model in terms of the ImageDM, i.e., the
capabilities provided and how they map back to the Image model, but leaving how the
access operation is formulated up to the specific, separately-defined data access
protocol.]

The accessData operation provides advanced capabilities for precise, client directed
access to a specific image or image collection. Unlike queryData, accessData is not a
query but rather a command to the service to generate a single image, and the
output is not a table of candidate datasets but the actual requested image (or an
error response if an error occurs). Use of accessData will generally require a prior
call to queryData to get metadata describing the image or image collection to be
accessed in order to plan subsequent access requests. AccessData is ideal for cases
where an image with a specific orientation and scale is required, or for cases where
the same image or image collection is to be repeatedly accessed, for example to
generate multiple small image cutouts from an image, or to interactively view
subsets of a large image cube.

4.1.1 Logical Access Model

The accessData operation is used to generate an image upon demand as directed by
the client application. Upon successful execution the output is an image the
parameters of which are what was specified by the client. The input may be an
archive image, some other form of archive dataset (e.g., radio visibility or event data
from which an image is to be generated), or a uniform data collection consisting of
multiple data products from which the service automatically selects data to generate
the output image.

In producing an output image from the input dataset accessData defines a number of
transformations which it can perform. All are optional; in the simplest case the
input dataset is an archival image which is merely delivered unchanged as the
output image with no transformations having been performed. Another common
case is to apply only a single transformation such as an image section or a general
W(CS-based projection. In the most complex case more than one transformation
may be applied in sequence.

Starting from the input dataset of whatever type, the following transformations are
available to generate the output image:

* Per-axis input filter. The spatial, spectral, temporal or polarization axis (if
any) can be filtered to select only the data of interest. Filters are defined as a
range-list of acceptable ranges of values using the BAND, TIME, and POL
parameters as specified later in this section, for the spectral, temporal, and
polarization axes respectively. POS and SIZE are specified as for queryData
except that the default coordinate frame matches that of the data being
accessed (more on this below). Often the 1D BAND, TIME, and POL axes
consist of a discrete set of samples in which case the filter merely selects the
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samples to be output, and the axis in question gets shorter (for example
selecting a single band of a multiband image or a single polarization from a
polarization cube). In the case of axis reduction where an axis is “scrunched”,
possibly collapsing the entire axis to a single pixel, the filter can also be used
to exclude data from the computation. Data which is excluded by a filter is
not used for any subsequent computations as the output image is computed.

* WCS-based projection. This step defines as output a pixellated image with
the given image geometry (number of axes and length of each axis) and
world coordinate system (WCS). Since the input dataset has a well-defined
sampling and world coordinate system the operation is fully defined. If the
input dataset is a pixellated image the image is reprojected as defined by the
new WCS. If the input dataset is something more fundamental such as radio
visibility or event data then the input data is sampled or imaged to produce
the output image. Distortion, scale changes, rotation, cutting out, axis
reduction, and dimensional reduction are all possible by correctly defining
the output image geometry and WCS.

* Image section. The image section provides a way to select a subset of a
pixellated image by the simple expedient of specifying the pixel coordinates
in the input image of the subset of data to be extracted (in our case here pixel
coordinates would be specified relative to the image resulting from the
application of steps 1 and 2 above). Axis flipping, dimensional reduction, and
axis reduction (scrunching of an axis, combining a block of pixels into one
pixel) can also be specified using an image section. Dimensional reduction,
reducing the dimensionality of the image, occurs if an axis is reduced to a
single value. The image section can provide a convenient technique for
cutting out sections of images for applications that find it more natural to
work in pixel than world coordinates. For example the section “[*, *, 31"
applied to a cube would produce a 2D X-Y image as output, extracting the
image plane at Z=3. Dimensional reduction affects only the dimensionality of
the image pixel matrix; the WCS retains its original dimensionality.

* Function. More complex transformations can be performed by applying an
optional transformation function to an axis (typically the Z axis of a cube).
For example the spectral index could be computed from a spectral data cube
by computing the slope of the spectral distribution along the Z axis at each
point [x,y,z] in the output image.

* These processing stages define a logical set of transformations which can
optionally be applied, in the order specifed, to the input dataset to compute
the output image. Defining a logical order for application of the
transformations is necessary in order for the overall operation to be well
defined, as the output of each stage of the transformation defines the input
to the following stage.

In terms of implementation the service is free to perform the computation in any
way it wants so long as the result agrees with what is defined by the logical
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sequence of transformations. It is possible for example, for each pixel in the final
output image, to trace backwards through the sequence of logical transformations to
determine the signal from the input dataset contributing to that pixel. Any actual
computation which reproduces the overall transformation is permitted.

In practice it may be possible to apply all the transformations at once in a single
computation, or the actual computation may include additional finer-grained
processing steps specific to the particular type of data being accessed and the
sofware available for processing. The AccessData model specifies the final output
image to be generated, but it is up to the service to determine the best way to
produce this image given the data being accessed and the software available. The
actual processing performed may vary greatly depending upon what type of data is
accessed. [We need to add some use cases to illustrate in concrete terms how this
works.].

Since accessData tells the service what to do rather than asking it what it can do, it is
easy for the client to pose an invalid request which cannot be evaluated. In the
event of an error the service should simply return an error status to the client
indicating the nature of the error which occurred.

5 Serializations

[The following is copied from the ImageDM section of the Cube whitepaper and has not
yet been fully integrated.]

Utype strings defined by the data model specification uniquely identify the elements
of the Image data model, as in other VO data models. Aliases may also be defined for
particular serializations, e.g., eight character FITS keywords, mapped one-to-one to
data model Utypes, are defined to serialize an Image instance in FITS. Utypes and
their aliases merely identify the fields of a data model instance. The semantics,
usage, and meaning of the data model itself are defined separately from an instance,
e.g., in the data model specification or in a schema of some sort.

The exact same Image instance may be represented in any number of forms by this
technique without any loss of information (excepting possibly instance extensions
not part of the formal data model). Instances may be converted from one
serialization to another without loss of information.

Standard or optional Image serializations include the following:

e FITS. The primary standard for efficient binary representation of
astronomical image data including multidimensional data cubes. Individual
images may be represented in a single FITS file. Multiple images, e.g., Image
sub-arrays as defined above, may be represented either as multiple distinct
FITS images, as FITS image extensions in a multi-extension FITS file, or as the
rows of a binary table. FITS WCS supports cube data including spatial,
spectral, and polarization axes; full support for time is just now being
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standardized. The TAB WCS coordinate type supports sparse data axes.
Image compression is supported.

VOTable. VOTable is primarily used to represent “dataless” instances of the
Image model, e.g., in data discovery queries where a dataless Image instance
is used to describe and point to a remote dataset. VOTable could also be used
to serialize images that include a data element; while not as storage or access
efficient as FITS this could be useful for small image use cases, e.g., embedded
preview images.

HDF5. HDFS5S is essentially a generic hierarchical container for data, similar
to a hierarchical file system but with richer metadata, allowing large logically
related collections of data objects to be efficiently stored as a single file. An
Image instance can be represented as a single object in HDF5, or as a set of
related objects, e.g., if the Image instance has multiple sub-arrays. Within
astronomy, LOFAR is using HDF5 for image (and other data) storage but
supports FITS, CASA image tables, and other data formats for data export as
well.

CASA Image Table. CASA (the radio data processing package used by ALMA
and other projects) defines an image table format, in addition to FITS that is
also supported. The image table format provides some flexibility in how the
data element is organized. Unlike FITS that has a fixed, FORTRAN-array like
ordering of image pixels or voxels, the CASA image table format supports
additional options for ordering pixels, such as a blocked ordering which
provides uniform time to access for any image axis.

JPEG. Graphics formats like JPEG are obviously important for graphical
applications and are widely supported by a wealth of generic software
outside astronomy. JPEG (and various other graphics formats) have the
capability to embed arbitrary metadata directly in the image instance, hence
this can be considered a form of Image serialization, although it is limited to
2-D images used for graphical use cases such as visualization.

Binary. A special case of an Image serialization is the data segment of the
Image instance with no associated header metadata, except possibly
metadata defining the format (shape, depth, ordering, etc.) of the data array.
This would be useful in applications where the Image instance metadata is
known by other means. For example in a SIAV2 accessData operation, the
client fully specifies the image data to be returned and there may be little
need to return header metadata that would be redundant and probably
ignored. This image format could improve performance in applications such
as real time visualization and analysis.

Other serializations may be defined, e.g., the Starlink NDF format is similar in
capabilities to the above. This list is intended only to describe some of the major
image serializations, and the range of such serializations possible to support a wide
range of applications.
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Appendix A: Data Model Summary

Appendix B: Data Model Serializations
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