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Abstract 
 
The Image Data Model (ImageDM) describes datasets characterized by an N-
dimensional, regularly sampled numeric data array with associated metadata describing 
an overall multi-dimensional “image” dataset.  Image datasets with dimension greater 
than 2 are often referred to as “cube” or “image cube” datasets and may be considered 
examples of hypercube or n-cube data.  In this document the term “image” refers to 
general multi-dimensional datasets and is synonymous with these other terms. 
An image may have an associated world coordinate system (WCS) associating physical 
coordinates with each measurement axis. The standard axis types for astronomical data 
are the physical attributes of an observable, i.e., spatial (including celestial projections), 
spectral (including redshift and velocity), time, and polarization. The ImageDM 
encompasses all such multidimensional, regularly sampled, array-valued data where 
the WCS describing the attributes of each data sample is separable from the data array.  
Support for sparse data is included.  Although regularly sampled, N-dimensional array-
valued data are emphasized, limited support for more fundamental multi-dimensional 
observational data including event and visibility data is included. 
The ImageDM is related to other IVOA Data models (Observation DM, ObsCore DM, 
Characterization DM, and Spectral DM), and is intended to serve as the basis for VO 
data access protocols such as SIA (Simple Image Access) and TAP/ObsTAP (table 
access, indexing of observational data products) when the latter is used to access 
image data.  Support is included for 2-D images and multidimensional cubes, as well as 
very large (Terabyte-sized) cube datasets. 
As with most of the VO Data Models, ImageDM makes use of other VO data models 
including FITS, STC, Utypes, Units and UCDs. ImageDM instances are serializable in a 
variety of data formats including but not limited to FITS (for n-D image dataset 
instances) and VOTable (primarily for discovery queries).  Additional data formats such 
as HDF5 and JPEG2000, and environment-specific formats such as CASA image tables 
and Starlink NDF are also considered, and can provide better performance for large 
cube datasets. 
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Link to IVOA Architecture 
The figure below shows where the Image DM fits within the IVOA architecture: 
 

 
 
The ImageDM depends upon the Characterization data model (CharDM), the Photometry data 
model (for specifying spectral bands), as well as the Utype mechanism and standard, the Space-
Time coordinate metadata (STC), and the UCD mechanism.  The ImageDM is also based upon 
the FITS image model with associated FITS WCS. 
 

Status of this Document 
The first release of this document was 2013 May 05. 

This document has been produced by the authors and the IVOA Data Model Working 
Group.  The current document is a working draft intended only to advance the design of 
the IVOA Image data model and support related prototyping.  It is not yet sufficiently 
developed and stable to support external review or usage. 

A list of current IVOA Recommendations and other technical documents can be found 
at http://www.ivoa.net/Documents/.  
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1 Introduction 
The concept of the astronomical image goes back decades, most notably to the introduction of 
the flexible image transport system (FITS) in the late 1970s by Wells and Greisen.  Later papers 
by Greisen, Calabretta, and others added the capability to define a world coordinate system 
(WCS) that can be associated with an image to define the physical coordinates in an M-
dimensional space of each data sample (observable) in the N-dimensional array comprising the 
data segment of the image.  Other metadata elements (FITS keywords) are defined to describe 
the origins and content of the particular image dataset.  The astronomical multi-dimensional 
image concept is a type of data hypercube, and is related to the volumetric cubes used in medical 
and geological applications, and to commercial technologies such as the OLAP cube, which 
projects a RDBMS relation onto the axes of a hypercube. 

A key aspect of the astronomical image is separation of metadata such as the WCS from the data 
array, which is a simple N-dimensional array of numerical data values.  Representing the data 
portion as a simple N-dimensional numerical array is important for computational efficiency as 
well as for storage optimization and flexibility.  Representing the data as a simple 
multidimensional numeric array allows generic software tools to be used for computation, e.g., 
the array processing capabilities of various scientific languages, or related tools such as NumPy 
in Python.  The N-d array (including cube data via various techniques) is relatively easy to 
render graphically. 
An important aspect of the astronomical image is abstraction.  The image model hides how the 
data are physically stored; this is especially important for large images or image cubes, which 
may be Gigabytes or Terabytes in size for a single dataset.  While logically the data portion of 
the image may be a simple N-d array, physically the data may be represented or stored in many 
different ways.  Large cubes may be physically stored in multiple smaller segments, or data may 
be stored in N-d blocks to provide uniform access along any dimension or axis of the image.  
Sparse cubes may be stored as multiple segments, each at a given location within the larger 
logical cube.  Data may be stored in a compressed form, or may be encoded, e.g., via a multi-
resolution technique such as a wavelet transform (JPEG2000).  Each such representation offers 
certain advantages and disadvantages; by separating the logical view of the data from the details 
of how it is physically represented, the optimum choice may be made for each application, 
transparently to higher-level analysis software. 

Information may be lost in the process of “imaging” an astronomical dataset but the advantages 
in terms of efficiency and the ability to use generic tools to process and visualize the data often 
outweigh the loss of information.   A multi-level approach can mitigate the problem, using an 
imaged version of the dataset for initial interaction with the data, with the ability to “drill-down” 
to the more fundamental data (e.g., event or visibility data) for more precise analysis. 

1.1 The Image Data Model and FITS 
Given that FITS is so widely used within astronomy for image data, one might reasonably ask 
why we need a VO Image data model; why not just use FITS instead?  FITS actually is used 
directly within VO; it has been adopted as a core VO technology, used mainly as an efficient 
binary representation for moderate sized image datasets as well as tables.  In the case of image 
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data, FITS is used mainly to represent image datasets returned by a VO service to a client 
application.  In terms of data models, FITS defines a general multi-dimensional image data 
model and associated WCS model, both of which have been widely adopted within astronomy. 
Separation of abstract data model from representation.  The main limitation of FITS in a VO 
context is the lack of separation of the abstract model (e.g., a WCS) from the representation (8 
character FITS keywords encoded as 80 character card images)).  In a typical VO scenario, a 
client application or user queries for a list of candidate image datasets matching some client-
specified criteria, then selects datasets of interest for retrieval.  The standard form for the query 
response is a VOTable (XML), whereas image datasets are most commonly returned as FITS 
images.  The same image metadata are needed in both cases although the representation is quite 
different.  More generally, the optimal choice of data format depends upon the application, and 
one may want to serialize image datasets in data formats other than FITS (HDF5, CASA image 
tables, JPEG, etc.), presenting the same logical data object in each case regardless of the 
serialization.   
Standard VO metadata.  VO metadata are richer than what is defined in the FITS standards 
(although FITS is often extended via (non) standard conventions to model more complex data 
objects).  This is necessary to support uniform data discovery as well as to model specific classes 
of data such as images, spectra, time series, SEDs, and so forth.  The data model for a specific 
class of data such as the N-d image addressed by the ImageDM inherits from the more generic 
VO data models such as Observation and Characterisation.  The data model for a specific class 
of data such as Image also needs to be extended to model the unique characteristics of the new 
class of data.  In the case of ImageDM, the WCS submodel is an example of such an extension 
required for N-d image data.  A convention for representing sparse data, particularly important 
for large higher-dimensional cubes, is another. 

Summary.  The strategy for developing the VO ImageDM is to capture the most important 
elements of the FITS image and WCS models, while also providing compatibility and re-use of 
the relevant VO data models and VO data modeling framework.  In particular it should be 
possible to describe an image dataset in the ImageDM and convert to and from the equivalent 
FITS image, meanwhile describing the image dataset in a VOTable-based discovery query.   
Further, it should be possible to serialize an ImageDM instance in other formats and encodings, 
making it possible to address new use cases such as very large cubes and VO data discovery and 
virtual data generation, while preserving the semantics of the major FITS models such as the N-d 
image and associated WCS, leveraging the large investment in FITS by both astronomical 
software and astronomical data archives. 

1.2 Use Cases 
A comprehensive analysis of use cases for the Image data model in the context of multi-
dimensional astronomical data is beyond the scope of this document, but is available in 
[reference to VAO use case analysis].  

To be added – summarize major use cases here.   These include: 
• Simple 2-D image, the most common astronomical image type. 
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• A single cube image is often sparse in either the spectral or spatial plane (likewise for the 
time axis when we eventually have time cubes.  The JCMT cubes are a good example of a 
spectral data cube that is sparse in the spatial plane. 

• Multiple-subarrays images are common for instrumental observations composed of 
multiple detectors, e.g., a spectral data cube with multiple spectral bands, or a CCD 
mosaic where the detectors may not be exactly aligned hence have different WCS 
calibrations (until dithered/combined to produce a higher level data product. 

• Very large cubes are increasingly common with modern instruments.  It becomes 
physically impossible to store these as a single cube dataset (file); large cubes must be 
stored as multiple files, often with sophisticated voxel encoding, compression, tiling, or 
other data representation algorithms.  The logical image abstraction needs to hide this 
complexity from client applications to simplify and unify data access. 

• A key use case for using image/cube data is interactive image visualization and analysis, 
particularly of very large cubes.  In this case the image dataset is initially rendered in 2-
D, greatly reduced in size, then the user interactively slices and dices the cube, computes 
2-D projections, extracts spectra, computes moments, etc., to interactively view the 
content of the cube.  For very large cubes this must be done via remote access to the cube 
data, which is staged to a parallel cluster providing the parallel computing capability 
required to quickly render the large cube, that may be tens to hundreds of GB in size or 
larger. 
 

1.3 Image Subtypes Derived from the Use Cases  
From a design point of view the primary use cases addressed by the ImageDM are the following: 

1. Simple image.  A single filled or mostly-filled n-D image array with associated 
VO, WCS, and other metadata. 

2. Single sparse image.  A single n-D image array as in case #1, however large 
portions of the image may be sparse (have no data samples). 

3. Multiple subarray image.  An image dataset containing multiple subarrays, i.e., 
n-D image data arrays within the coverage of the overall image dataset.  The 
subarrays may differ in size, resolution, coverage, or other characteristics.  The 
overall image dataset containing the subarrays may be sparse.  The overall 
image dataset does not have an explicit image geometry or sampling, only 
coverage.  There are two sub-cases here: 3a) the subarrays are all part of the 
same observation and share common metadata (for example a multi-band image 
observation), 3b) the subarrays may differ arbitrarily and the overall image 
dataset is essentially an aggregation of (possibly sparse) simple images as in 
case #1 or #2 (for example a complex image aggregating data from multiple 
observations). 

4. Large cube. Very large cubes may be represented by either the simple image or 
multi-subarray models.  The image data model abstraction does not in itself 
impose any size limitation.  The important thing is that the logical image model is 
separate from how data are actually stored on the back-end. 
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5. Wide-field survey. This is essentially the same as #3 except that no subarrays 
(no explicitly pixilated data) or individual image datasets may be externally visible.  
The survey has coverage but only automated virtual data generation techniques 
may be used to access the data, with subregions being computed on the fly and 
returned to the client.  Alternatively, a survey might expose a collection of 
discrete cubes in which case #1 or #3 may be used. 

Sparse data are an especially important use case for higher-dimensioned cubes, which are 
frequently sparse along one or more axes.  For example, a multi-band image has data at only a 
few given spectral coordinates (each actually corresponding to a spectral bandpass).  A spectral 
(or velocity) data cube may contain data for a number of widely spaced spectral bands, each of 
which may differ in the spectral resolution and number of channels.  A time cube likewise may 
contain data, either individual points or time series, arbitrarily spaced along the time axis with 
time regions where no data was taken.  A multi-object spectral data cube may be sparse in the 
spatial plane.  Event data can be considered a special case of image data (stretching the concept a 
bit), which are sparse in all measurement axes. 
 

2 Image Data Model 
The essential characteristic of an “image” dataset is the presence of a multi-dimensional, 
regularly sampled numerical array with associated metadata describing the dataset instance.  
While the concept of an image dataset as a multi-dimensional array is fully general, astronomical 
image datasets typically derive from observational data and hence have some combination of 
spatial, spectral (including velocity or redshift), time, and polarization measurement axes, with 
flux or some other derived value as the array element value.  The mapping of image axes to 
physical coordinates in measurement space is described by a World Coordinate System (WCS) 
sub-model, referred to herein as the Mapping model.  Real world image datasets are not limited 
to single n-D filled arrays, however the n-D numerical array is at the core of the Image data 
model (ImageDM). 

Unless dimensionality is otherwise indicated, the terms image, cube, and hypercube are 
interchangeable and refer to image (array-valued) data of arbitrary dimension.  Image is a 
specialized case of general hypercube or n-cube data where the value at a given point in the 
hypercube is restricted to a simple numerical value.  The data samples of an image are referred to 
as pixels (picture elements) or as voxels (volume elements), pixels being the preferred term for 
2D images. 

2.1 Relationship to other VO Data Models and Related Standards 
A simplified view of the role of the Image data model in the virtual observatory data model 
architecture is shown in Figure 1.   
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Image logically extends Observation, the common base model for VO top-level classes of data.  
Other classes of data such as an ObsTAP index table or a Spectrum also extend Observation; all 
share the same common generic dataset metadata. 
A more comprehensive view of ImageDM with respect to other VO data models and the related 
data access protocols is shown in Figure 2. 

 

Figure 1. Relationship of the Image data model within the overall VO 
data model architecture.  ImageDM uses the items highlighted in red. 
 

Figure 2.  The concepts relating the Image data model with Observation and the other 
derived data models, serialized instances of these, and the data access protocols used to 
discover and access data (figure courtesy M. Louys). 
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In this view, Observation is an abstract model that is made concrete in the more focused data 
models, i.e., ObsCore, Spectral, and Image.  These are in turn used to model the actual classes of 
astronomical data: Image, Spectrum, Observation (as used in ObsCore/ObsTAP), Image, and so 
forth.  Finally we have the VO data access protocols based upon these data models. 

ObsTAP is effectively an application of the Observation data model, specifying how a subset of 
Observation (ObsCore) is mapped to the fields of a table and thus how to query the resulting 
table via the Table Access Protocol (TAP).  To facilitate direct queries of the database table, 
ObsTAP fixes the column names, datatypes, coordinate frames, and units of the table columns 
used to store Observation data model metadata. 
The Image data model is used to describe or compose image datasets.  Observation is more 
general, and may be used to describe an astronomical observation that may or may not be 
represented in one or more datasets, all derived from the same observation.  In this document we 
are mainly concerned with the use of Observation to compose an individual image dataset, but as 
we shall see in the next section, multiple image instances may be aggregated to model more 
complex data objects, for example an observation represented as several individual image 
datasets. 
The key difference between the Image and Spectral data models is that, while the ImageDM is 
based upon a core model comprised of a regularly sampled n-D array with a separable WCS, the 
Spectral data model describes irregularly spaced spectrophotometric sequences where the world 
coordinates, bin size, errors, and so forth may be described independently for each sample in the 
sequence (Spectral does not use a separable WCS). The ImageDM is more efficient and easy to 
use for large data arrays, while the SpectralDM provides a more complete description of the 
samples in a spectrophotometric sequence.  The underlying physics of the observation is much 
the same in both cases. 

2.2 Image Data Model Architecture 
The Image data model architecture is illustrated in Figure 2. 

Image data may be modeled either as a single Image dataset (single Image instance) or as an 
aggregation of related Image instances. 

An aggregate image dataset consists of two or more Image instances that are related in some 
fashion (for example a set of 2-D images from a single multi-band observation).  Modeling 
complex image data as an aggregate of individual images allows the individual images to be 
exposed and accessed independently, and allows arbitrary image metadata to vary for each image 
in the aggregate set.   A disadvantage is that it may be harder to recognize and access the set of 
images, and common observational metadata may be redundantly replicated in each image 
instance in the set. 

A single Image instance consists of some standard metadata elements, possibly augmented by 
custom extension metadata, combined with zero or more Data elements.  The Data element 
contains the image data (n-D array of data samples) and any associated Data-specific metadata.   
A typical example would be a 2-D astronomical image or n-D data cube consisting of metadata 
describing the Image instance combined with a single Data element or pixel/voxel array. 
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Since Image extends Observation, most of the metadata required to describe an Image dataset is 
provided by the generic Observation data model including Characterisation.  Image adds some 
image-specific metadata to describe the overall Image dataset, including the number of image 
sub-arrays, and the dimensionality and geometry of the overall Image dataset (individual Data 
elements have their own dimensionality and geometry and this may differ from that of the 
overall image).  Image also adds a CoordSys element defining a uniform set of (default) 
coordinate frames and units for all Image metadata including Observation and Characterisation.  
The Data elements, in particular Mapping, are an exception.  Mapping defines the world 
coordinate system (WCS) for a Data array; each Data array has its own independent Mapping.  
Data element Mapping instances may differ from each other and from the uniform coordinate 
frames and units used for general Image dataset metadata.  The WCS of an image sub-array is 
normally preserved when captured in an ImageDM instance.  For generic dataset metadata such 
as Observation and Characterisation however, it is highly desirable to use standard, uniform 
units. 
 

Figure 2.  Image data model architecture.  Image extends Observation, which 
includes Characterisation, comprising the bulk of the standard dataset metadata.  
The Characterisation data model is illustrated separately below.  An additional 
optional class Derived (used only in special cases) is omitted for clarity. 
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2.3 Use Case Examples 
The following sections illustrate which elements of the ImageDM are used in each of the primary 
use cases, including those identified in section 1.2.  [FITS serialization examples are included 
below for illustration and to aid the design effort, but would not necessarily be included here in 
the final ImageDM specification.] 

2.3.1 Query Response 
In a query response (or any other case where an image dataset is referenced and described), we 
have a single Image instance with no Data element.  An Access element in the query response 
(not shown in Error! Reference source not found.) contains an access URL that may be used to 
retrieve the referenced image dataset.  Since the Mapping (WCS) element is part of the Data 
element it is normally excluded from the query response, but can be retrieved for a given image 
dataset by an additional query. 

[I think this will work fine for our data access use cases such as SIAV2.  A Mapping instance 
contains arrays that can be large, and is more detailed than needed for most discovery use cases, 
so retrieving Mapping with a separate query or access reference is reasonable.  In the case of 
multiple subarrays where there are multiple Data elements it would not be practical to include 
metadata from the Data elements directly in the query response in any case.  How metadata such 
as Mapping are to be retrieved from Data is part of the access protocol, not the ImageDM, but 
probably a simple access URL for this purpose, returning a table wherein each row describes a 
Data element, would suffice.] 

Figure 3.  The Characterisation data model, used to physically characterize the 
attributes of an observation or dataset. 
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2.3.2 Simple Image 
The simple image has a single Image instance containing metadata and a single Data element.  
[The FITS serialization is a simple FITS image.] 

2.3.3 Single Sparse Image 
A single sparse image has a single Image instance containing metadata and a single Data 
element; the only difference from the simple image is in Mapping, which is used to describe the 
WCS attributes of the valid data samples.  [The FITS serialization is a FITS MEF consisting of 
an image plus a BINTABLE extension containing data for a TAB WCS.] 

2.3.4 Multiple Subarray Image 
Use case 3a consists of a single Image instance with multiple subarrays, each in a separate Data 
element.  The single Image instance contains metadata for the entire image dataset.  Each Data 
element contains an n-D image array with associated metadata including Mapping and ObsData, 
both of which are optional elements. [The FITS serialization is a FITS MEF consisting of a 
dataless primary header unit (PHU), followed by a series of FITS image extensions, one per 
Data element.  The image extensions need contain only minimal standard FITS metadata since 
most observational metadata is in the PHU.  If a Data element is sparse then an additional 
BINTABLE extension is needed to contain the TAB WCS for that element.] 
Use case 3b is an aggregation of related but otherwise independent Image instances.  This is a 
type of complex data aggregate wherein standard dataset instances are combined to model more 
complex data.  How the Image instances are related is defined by the application and is not part 
of the ImageDM.  The Image instances may be simple, sparse, or may contain multiple 
subarrays; any legal Image instance is permitted.  [The FITS serialization for this case would not 
normally be a single FITS file, but rather multiple separate files, however a MEF aggregate 
could be used.] 

2.4 Observational Data Pass-Through 
Any ImageDM Data element may optionally contain a reference (via the optional ObsData 
element) to the external observational or instrumental data used to create the described Image 
dataset.  Given a sufficiently advanced application, this could be used for example to do analysis 
on event data directly in the event domain, possibly doing multiwavelength analysis combining 
event data with image data from other domains (likewise for visibility data although this is less 
likely to be useful due to the complexity and data volumes associated with visibility data).  
Generic analysis applications would ignore the ObsData element and work only with the 
provided already-imaged view of the data. 
The ObsData element contains a subset of the ObsCoreDM (Observation core components data 
model), and is capable of describing any science data product, given defined values for fields 
such as the data product type, subtype (domain-specific), and format.  The values given should 
be the same as would be provided by an ObsTAP service describing the same data products. 

The image dataset described by an Image instance may be virtual data, generated on demand 
when accessed.  The data described by the corresponding ObsData instance may likewise be 
virtual data.  In particular, ideally the data returned by an ObsData access reference should be 
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filtered to correspond to the same multi-dimensional region of space as the described Image 
dataset.  If this is not possible, the observational data may be a superset of the data used to 
produce the Image instance. 

2.5 Sparse Data 
The strategies for dealing with sparse data have already been introduced in the sections above.  
Two techniques are provided to directly deal with sparse data via the ImageDM: a single sparse 
image, and an overall image dataset space containing multiple subarrays.  Both techniques may 
be combined within the same Image dataset. 
In the case of a single sparse image, the approach is to 1) include in the data array only the 
actual data samples (flux values or other derived quantities) for each image axis that is sparse, 
and 2) define a Mapping to associate, for each sparse axis, WCS values for each data sample 
provided.  The affected axes of the Image data array thus become a simple pixel list, or 
alternatively a list of regions where data has been sampled, as opposed to a fully populated n-D 
data array.  Implementing this requires that Mapping, for each Image axis which is sparse, be 
able to explicitly map data samples, or ranges of samples, to WCS values.  [The TAB coordinate 
type in FITS provides a standard mechanism for this and should be referenced here as the 
standard mechanism to do this.  Coordinate and index vectors are included in Mapping to 
implement this feature for the ImageDM.  Note that for the ImageDM, the TAB arrays can be 
included directly in Mapping (since the ImageDM can support embedded arrays), whereas FITS 
requires a separate BINTABLE extension to store the TAB coordinate and optionally index 
data.]  
A completely different approach to dealing with individual sparse images is to use image 
compression – with a good compression algorithm, unobserved or constant regions of a fully 
sampled image array should compress to essentially nothing.  Compression is a feature of the 
specific image serialization used, and not explicitly part of the ImageDM.  [We should say more 
about this, at least in the discussion of serializations later in the document.]  
The second approach to modeling sparse images is to compose the image using multiple 
subarrays.  Common examples where this is useful might be a wide-field multi-CCD detector 
with gaps between the CCDs (due to misalignment of the CCDs each may require a separate 
WCS), or a multi-band image wherein the images are spatially registered but coverage is widely 
spaced along the spectral axis (this case is frequently encountered for both O/IR and radio data). 

Multiple subarrays with shared dataset metadata are directly addressed by the ImageDM.  An 
Image instance may contain any number of subarrays, so long as they do not overlap in the full 
multi-dimensional space of the image (e.g., in the case of a spectral cube where the spectral axis 
is sparse, data for successive spectral bands do not overlap since they are distinct, non-
overlapping spectral bands, even though the bands may share the same spatial region). 

A possibly surprising aspect of multiple subarray data is that the overall Image instance, while it 
has well defined dimensionality and coverage, may not have an overall image geometry or WCS 
since the subarrays need not be co-aligned to the same pixel grid.  It is not an n-D image in the 
conventional sense, but nonetheless it is “image data” since it is composed of individual image 
subarrays (and can be represented by the ImageDM). 
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2.5.1 Modeling Event Data as Sparse Data 
While pass-through of event data via ObsData is probably the best way to expose the underlying 
event data used to image an event dataset (external non-VO standards already exist to represent 
event data), it is possible to use the single sparse image formalism to directly represent event 
data via the ImageDM. 
What the ImageDM fundamentally defines is an N-dimensional data array with an associated M-
dimensional WCS, where N and M do not need to be equal.  In particular, the WCS 
dimensionality M may exceed the data array dimensionality N.  Instrumental event data consist 
of a flux value (PHA or pulse height) at a given time and detector coordinate.  The instrumental 
flux measure (e.g. PHA) is typically calibrated and converted into energy, with the fundamental 
elements of an event list being the event time of detection, the detector coordinates of the event, 
the corresponding celestial coordinates, and the calibrated energy or instrumental PHA value. 
In terms of the ImageDM, all measureable physical attributes of an event are sparse: the two 
spatial coordinates, time, and (if calibrated) energy.  Hence an event list may be directly 
represented in the ImageDM, where the data array is a photon list with time and the two spatial 
coordinates as the independent variables (image dimensions), and PHA as the observable.  
Alternatively if PHA is calibrated and converted to energy, the event list may be completely 
represented as a 4-dimensional WCS consisting of time, the two spatial coordinates (e.g., RA, 
DEC), and energy, with the observable being a constant 1 count per event (hence the numerical 
data array can actually be eliminated).  Another way of thinking about this is that an event list is 
very similar to a sparse 4-D cube, with one photon per voxel. 
While representation of an event list as a sparse image is possible and is an interesting limiting 
case for the ImageDM, pass-through of event data in a standard format already widely adopted 
by the high energy community is likely to be the more practical approach. 

 

3 Data Model Classes 

3.1 Types of Metadata 
Metadata to describe an image instance are grouped into a number of component data models as 
summarized in the table below, and are explained in more detail in the sections that follow. 

Image Metadata 
Image Metadata specific to the Image dataset 
CoordSys Global default coordinate system frames 

 
Dataset and Observation Metadata 

Dataset Generic metadata describing the overall dataset 
DataID Dataset identification (creation) 
Curation Publisher metadata 
Target Observed target, if any 
Derived Derived attributes for target, if any 
Char Dataset characterization (as below) 
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Provenance Metadata 

Provenance Instrumental or software provenance 
 

Characterization Metadata 
Char.SpatialAxis Spatial measurement axis 
Char.SpectralAxis Spectral measurement axis, e.g., wavelength 
Char.TimeAxis Temporal measurement axis 
Char.Polarization Polarization Axis 
Char.FluxAxis Photometric band or bands 
Char.*.Coverage Coverage in any axis 
Char.*.Resolution Resolution on any axis 
Char.*.Sampling Sampling along an axis 
Char.*.Accuracy Accuracy and error in any axis 
 

Data Element Metadata 
General attributes, geometry, data Included at the root of the Data element 
Mapping World coordinate system for data array 
ObsData Reference to external observational data 

 
Image metadata contains high level, image-specific metadata used to describe the overall image 
dataset, e.g., the number of subarrays, image geometry, number of pixels on each axis, and so 
forth.  The CoordSys element specifies coordinate frames defined globally for the entire image.  
Dataset and Observation metadata is general metadata used to describe any type of VO dataset. 
Characterization metadata physically characterizes the dataset in terms of the spatial, spectral, 
temporal, and polarization measurement axes as well as the observable.  Characterization is also 
generic dataset metadata but is broken out separately in the table above to show the major 
elements of the characterization model.  Provenance describes the instrumental or processing 
history or origins of the dataset. 

A Data Element includes metadata describing the data element itself as well as (optionally) the 
actual data array.  An Image instance may contain zero, one, or multiple Data elements.  Data 
element metadata optionally includes a Mapping Element defining the WCS for the specific 
Data element, as well as an optional ObsData Element referencing the observational data 
corresponding to the Data element data array (information may be lost when imaging a dataset, 
and the optional ObsData element can provide an alternate, more fundamental view of the data). 

Each of these types of query response metadata is discussed in more detail in the sections that 
follow. 

[In what follows, for this first draft of the ImageDM we merely summarize the data model 
classes, highlighting what is new. Most of the generic dataset metadata including 
characterisation is already described in other VO documents.  A later version of this document 
will more fully describe each data model class.] 
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3.2 Image Dataset Metadata 
The Image metadata package contains metadata components specific to an Image dataset. 

3.2.1 Image Metadata 
Image metadata describes image-specific aspects of the overall Image dataset. 

UTYPE Description Req Default 
Image.Nsubarrays Number of image subarrays MAN  
Image.Naxes Number of physical image axes MAN  
Image.Naxis Length of each image axis MAN  
Image.Pixtype Pixel datatype MAN  
Image.WCSAxes Enumeration of the WCS axes types MAN  
Image.DataRef Reference URL for Data element metadata OPT  

Nsubarrays specifies the number of image subarrays (Data elements) in the Image instance.  
This is zero in the case of a dataless (metadata only) Image instance, one for a simple image, and 
N for an image consisting of N subarrays. 

Naxes specifies the physical number of image axes, i.e., the image dimensionality; note that the 
WCS dimensionality may exceed that of the physical image.  In the case of an image with 
multiple subarrays, Naxes refers to the dimensionality of the overall image dataset, which may 
differ from (exceed) that of an individual Data element.  Naxis is a 2-dimensional array 
specifying the length (number of voxels) of each image axis of each subarray. Each row specifies 
the axis lengths for a single subarray.  Pixtype specifies the numeric pixel or voxel datatype as in 
VOTable [VOTable-XX]. 

Naxis example: 500 500 70 1 
WCSAxes is a string, wherein each successive element of the string specifies the world 
coordinate type (in FITS WCS notation) of the corresponding WCS axis.  The number of items 
in WCSAxes is the dimensionality of the WCS.   If WCSAxes is not specified or has zero length 
this indicates that the image has no associated WCS.  If the image has a WCS then WCSAxes 
must be provided, otherwise it may be omitted. 

WCSAxes example: RA---SIN DEC--SIN FREQ STOKES  
An image Data element may or may not be included in an instance of the ImageDM, e.g., when 
the ImageDM instance is used to describe an image dataset any Data elements are excluded.  In 
such a case a DataRef attribute may be provided to retrieve Data element metadata.  The value is 
a URL that is used to reference or retrieve data element metadata for all image subarrays.  What 
DataRef returns is a VOTable, wherein each table row contains the metadata (minus the 
Data.values attribute) for a single image subarray.  For a simple image there is only a single table 
row.  

3.2.2 Coordinate System Metadata 
Coordinate system metadata describes the coordinate system reference frames used within the 
ImageDM instance, including both Observation and Characterization. 

Utype Description REQ Default 
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CoordSys.ID ID string for coordinate system OPT  
CoordSys.SpaceFrame   

CoordSys.SpaceFrame.ID ID string for spatial frame OPT  
CoordSys.SpaceFrame.Name Spatial coordinate frame name OPT ICRS 
CoordSys.SpaceFrame.UCD Space frame UCD OPT  
CoordSys.SpaceFrame.RefPos Origin of SpaceFrame OPT UNKNOWN 
CoordSys.SpaceFrame.Equinox Equinox OPT 2000.0 

CoordSys.TimeFrame   
CoordSys.TimeFrame.ID ID string for time frame OPT  
CoordSys.TimeFrame.Name Timescale OPT TT 
CoordSys.TimeFrame.UCD Time frame UCD OPT  
CoordSys.TimeFrame.RefPos Location for times of photon 

arrival 
OPT TOPOCENTER 

CoordSys.TimeFrame.Zero Zero point of timescale in MJD OPT 0.0 
CoordSys.SpectralFrame   

CoordSys.SpectralFrame.ID ID string for spectral frame OPT  
CoordSys.SpectralFrame.Name Spectral frame name OPT  
CoordSys.SpectralFrame.UCD Spectral frame UCD OPT  
CoordSys.SpectralFrame.RefPos Spectral frame origin OPT TOPOCENTER 
CoordSys.SpectralFrame.Redshift Redshift value used if restframe 

corrected 
OPT 0.0 

CoordSys.RedshiftFrame   
CoordSys.RedshiftFrame.ID ID string for redshift frame OPT  
CoordSys.RedshiftFrame.Name Redshift frame name OPT  
CoordSys.RedshiftFrame.UCD Redshift frame UCD OPT  
CoordSys.RedshiftFrame.RefPos Redshift frame origin OPT UNKNOWN 
CoordSys.RedshiftFrame.DopplerDefinition Type of redshift OPT UNKNOWN 

CoordSys.FluxFrame   
CoordSys.FluxFrame.ID ID string for flux frame OPT  
CoordSys.FluxFrame.Name Name of photometric band OPT  
CoordSys.FluxFrame.UCD UCD for photometric 

calibration 
OPT phot.mag 

CoordSys.FluxFrame.refID URI for photometric calibration OPT  

These reference frames apply to all spatial, spectral, time, and photometric coordinates used in 
the ImageDM instance (including Characterization) unless otherwise specified.  An explicit 
polarization coordinate frame is omitted since polarization states are enumerated and no 
coordinate system is required.  Note that spatial coordinates are not limited to the celestial 
sphere; any spatial coordinate frame specified in the data model may be specified, including 
solar and planetary coordinate systems, although the default is ICRS. 

FluxFrame may be used to describe a photometric band (e.g., filter) in the case of a single or 
multiple-band image.  If a single image dataset contains data from multiple photometric bands, 
multiple instances of FluxFrame are permitted, one for each band.  FluxFrame is limited to the 
description of photometric bands (observed flux), unlike Char.ObservableAxis, which is able to 
characterize observables including but not limited to flux. 
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3.3 Dataset and Observation Metadata 
The following metadata components are generic elements shared with other VO data models 
such as ObsCore and the Spectral data model. 

3.3.1 Dataset Metadata 
General dataset metadata describes the overall dataset. In what follows, mandatory elements of 
the ImageDM are indicated as “MAN”, and optional elements as “OPT”, however an application 
that uses the ImageDM may redefine what is mandatory and optional, or may impose additional 
constraints on use of the data model. 

UTYPE Description Req Default 
Dataset.DataModel.Name Data model name and version MAN Image-2.0 
Dataset.DataModel.Prefix Data model prefix MAN im 
Dataset.DataModel.URL Reference URL for the data model OPT  
Dataset.Type Type of VO dataset MAN image 
Dataset.Subtype Type of data product (archive-specific) OPT  
Dataset.CalibLevel Calibration level MAN  
Dataset.Length Total number of voxels in image dataset MAN  
Dataset.Deleted Dataset has been deleted OPT  

 

Dataset.DataModel.Name is a string identifying the data model used for the current dataset 
instance.  For ImageDM-compliant data this should be the string "Image-2.0”.   For the 
ImageDM the data model prefix (e.g., for use to compose Utypes) is “im”.  The data model 
reference URL is not currently used, but is reserved for use with a future version of the data 
model mechanism, to reference a machine-readable definition of the data model. 
For an ImageDM instance, Dataset.Type must be "image”.   A subtype may optionally be given 
to specify the image data product type in terms of a specific archive or data collection 
(Dataset.Subtype is equivalent to Obs.DataProductSubtype in the ObsCoreDM [ObsTAP-XX], 
but is restricted to image datasets whereas ObsCore describes general data products or 
observations). 

Dataset.CalibLevel defines the calibration level [ObsTAP-XX] of the dataset.  Dataset.Length 
specifies the total number of voxels (data samples) in the full image dataset. If the image is 
sparse this may be less than is implied by the product of the image axis lengths.  Dataset.Deleted 
is used to flag datasets that have been deleted, before storage is purged.   Normally such datasets 
are invisible to client applications except in special cases, such a query for recent changes to an 
index of datasets in an archive. 

3.3.2 Dataset Identification Metadata 
Dataset identification metadata is used to describe the fundamental identity of a dataset, 
including the data collection it belongs to and how the dataset was created. 
 

UTYPE Description Req Default 

DataID.Title Dataset title (brief description) MAN   
DataID.Creator Creator name (string) REC   
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DataID.Collection IVOA Identifier of collection REC   
DataID.DatasetID IVOA Dataset ID OPT  
DataID.CreatorDID Creator assigned dataset identifier OPT   
DataID.Date Data processing/creation date OPT   
DataID.Version Version of creator-produced dataset OPT   
DataID.CreationType Dataset creation type OPT archival 
DataID.Logo URL for creator logo OPT  
DataID.Contributor Contributor name OPT  

 

DataID.Title is a short, human-readable description of a dataset, and should be less than one line 
of text.  Information such as the instrument or survey name, observing mode or intent, filter, 
target name, etc., is typically included in a condensed form.  The contents of DataID.Title are up 
to the data provider.  DataID.Creator identifies the entity that created the dataset, and should be 
a short string consistent with the RSM specification, e.g., "NRAO".  DataID.Collection is the 
registered IVOA identifier of the data collection to which the dataset belongs, e.g., 
"ivo://nrao/vla". 
A dataset identifier is a URI used to uniquely identify a dataset within some well-defined context 
[REF].  DataID.DatasetID is some well-known, IVOA-recognized identifier for the dataset, for 
example an ADS dataset identifier.  CreatorDID is an IVOA dataset identifier (if any) assigned 
by the entity which created the dataset content, typically (but not always) an observatory or 
survey project.  If the dataset referred to is virtual data, CreatorDID refers to the parent dataset 
from which the virtual data will be created.  If a CreatorDID has been assigned to a dataset it 
should be provided, otherwise it should be omitted.  DataID.Date, specified in ISO time format, 
specifies the date when the dataset was created or last modified by the DataID.Creator entity.  If 
a dataset is modified or replaced without changing its CreatorDID, DataID.Date and 
DataID.Version should be updated accordingly.  DataID.CreationType describes how the 
dataset returned by the service was or will be created from the original data. 

3.3.3 Curation Metadata 
Curation metadata describes who curates the dataset and how it is published to the VO. 

UTYPE Description Req Default 
Curation.Publisher Publisher REC  
Curation.PublisherID URI for publishing entity OPT  
Curation.PublisherDID Publisher's ID for the dataset REC  
Curation.ReleaseDate Date curated dataset last modified OPT  
Curation.Version Publisher’s version of the dataset OPT  
Curation.Rights Restrictions if any on data access OPT  
Curation.Reference URL or Bibcode for documentation OPT  
Curation.Contact.Name Contact name OPT  
Curation.Contact.Email Contact email OPT  

Curation.Publisher is a short string naming the publisher of the data, e.g., a data archive or data 
center, or an indexing service such as the ADS.  Curation.PublisherID is the URI of the 
publisher as registered within the VO.  Curation.PublisherDID is the IVOA dataset identifier 
(URI) assigned by the publisher to identify the dataset within its holdings.  
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Curation.ReleaseDate is the date (ISO format) when the dataset was or will be publically 
released (hence metadata for proprietary datasets can be available prior to the release of the 
actual dataset).  Curation.Version indicates the publisher’s version of the dataset, and should be 
updated if the publisher modifies a dataset. Curation.ReleaseDate and Curation.Version refer to 
the dataset as curated by the publisher, hence can differ from the same values given in DataID, 
which refer to the content of the dataset as generated by the dataset Creator. 

Curation.Reference is a forward link to publications that reference the dataset; multiple 
instances are permitted. Curation.Rights specifies whether the dataset is "public" or 
"proprietary".  Proprietary data requires authentication and authorization by the data provider to 
access, and once downloaded should be protected from subsequent access on the client side.  
Curation.Contact.Email and Curation.Contact.Name indicate the person or group responsible 
for curating the data. 

3.3.4 Astronomical Target Metadata 
Target metadata describes the astronomical target observed, if any.  The attributes given are 
typically known apriori, and are not derived from the data. Image datasets that do not reflect the 
analysis of a single target should omit most of this metadata, with the exception of Target.Name 
in the case of a pointed observation of a specific target. 

UTYPE Description Req Default 
Target.Name Target name REC  

Target.Description Target description. OPT  

Target.Class Target or object class OPT  

Target.SpectralClass Target or object spectral class OPT  

Target.Pos Target position OPT  

Target.Redshift Target redshift OPT  

Target.VarAmpl Target variability amplitude, typical OPT  

Target.Name is a short string identifying the observed astronomical object, suitable for input to a 
name resolver.  Target.Description should provide a brief description of the target object.  
Target.Class is the object class if known, e.g., star, galaxy, agn, qso, and so on [at present we do 
not know of any controlled vocabulary that can be referenced here].  Target.SpectralClass and 
Target.Redshift record the spectral class and redshift of the target if known.  Target.VarAmpl 
specifies the variability of the target as a value in the range 0.0 to 1.0. 

3.3.5 Derived Metadata 
Derived metadata is metadata pertaining to the observed target that is derived by analysis of the 
current dataset.   

UTYPE Description Req Default 
Derived.SNR Signal-to-noise of observed target OPT  

Derived.Redshift.Value Measured redshift for target OPT  

Derived.Redshift.StatError Statistical error for measured redshift OPT  

Derived.Redshift.Confidence Confidence value for redshift OPT  

Derived.VarAmpl Variability amplitude as fraction of mean OPT  
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For many image datasets derived metadata is not relevant and may be omitted, but if a central 
target is analyzed derived attributes may be specified.  For example, a cutout or high-resolution 
spectral or time cube with a specific target might have derived attributes for the target such as 
redshift or variability amplitude. 

3.4 Provenance Metadata 
Provenance metadata are used to provide information on the scientific origin of the dataset, from 
either the observing or the processing point of view.  At the time of this writing the VO 
Provenance data model was still under development.  What is presented here reproduces the 
Provenance element from ObsCore [ObsTAP-XX]. 

UTYPE Description Req Default 

Provenance.ObsConfig.Facility.name Facility name REC  
Provenance.ObsConfig.Instrument.name Instrument name REC   
Provenance.ObsConfig.Bandpass Bandpass name, e.g., filter OPT   
Provenance.ObsConfig.DataSource Original source of data REC survey 
Provenance.Proposal.Identifier ID of associated proposal if any OPT  

 

Provenance.ObsConfig.Facility.name is the name of the facility, e.g., observatory or survey 
program, that created the dataset. Provenance.ObsConfig.Instrument.name is a short string 
identifying the instrument used to create the data (instrument may be an actual telescope 
instrument or something else, e.g., a program in the case of theory data).  
Provenance.ObsConfig.Bandpass is a short string specifying the bandpass name if any, e.g., a 
filter name or an instrumental bandpass such as K, Q, and so forth.  Values specified with 
Provenance.ObsConfig.Bandpass may be used as input to a parameter such as BAND in a data 
access protocol to refine a query (if this feature is supported by the service). 

Provenance.ObsConfig.DataSource describes the original source of the data. Valid values 
include “survey”, “pointed”, “custom”, “theory”, and “artificial” [need to expand upon this; 
these values date from SSA and Spectrum].   
Provenance.Proposal.Identifier specifies the proposal ID of the proposal (if any) associated 
with the dataset.  This might be used for example, to associate observed and derived data 
products within an archive, that are all connected to the same observing program. 

3.5 Characterization Metadata 
The Characterization data model [REF] provides a standard, generic data model to describe the 
characteristics of a dataset.  The coverage, sampling, and data quality of the dataset are 
uniformly characterized for the spatial, spectral, time, and polarization measurement axes, as 
well as for the observable. 
The Characterization data model (CharDM, Char) is directly incorporated into the ImageDM.  
We do not attempt to fully describe the elements of the CharDM in this document.  The subset of 
the CharDM used by the ImageDM is briefly summarized, and any usage specific to image data 
is noted.  The CharDM [REF] and ObsTAP (ObsCoreDM) [REF] documents should be referred 
to for the details. 
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The CoordSys element of the ImageDM defines the coordinate systems used in Char as well as 
elsewhere within Image.   While the full CharDM includes its own coordinate system definition, 
for simplicity coordinate systems are required to be uniform throughout the ImageDM metadata 
including Char (the Data element including Mapping is handled differently as we will see in 
section 3.6). 
Additional elements of the CharDM are permissible but are not required, and clients should not 
assume any additional metadata beyond the mandatory elements is provided. 

3.5.1 Spatial Axis Characterization 
The element Char.SpatialAxis is used to characterize the spatial axis of the dataset. 

Utype Description REQ Def 
Char.SpatialAxis.Name Name for spatial axis OPT  
Char.SpatialAxis.UCD UCD for spatial coord OPT  
Char.SpatialAxis.Unit Unit for spatial coord OPT  
Char.SpatialAxis.Coverage.Location.Coord.Position2D.
Value2.C1 

First coordinate (e.g., RA) of spatial 
Position 

MAN  

Char.SpatialAxis.Coverage.Location.Coord.Position2D.
Value2.C2 

Second coordinate (e.g., DEC) of 
spatial Position 

MAN  

Char.SpatialAxis.Coverage.Bounds.Extent.Diameter Aperture angular size (field of 
view) 

MAN  

Char.SpatialAxis.Coverage.Bounds.Limits.LoLimit2Vec.C1 Lower bounds of image spatial 
coordinates 

OPT  

Char.SpatialAxis.Coverage.Bounds.Limits.LoLimit2Vec.C2 Lower bounds of image spatial 
coordinates 

OPT  

Char.SpatialAxis.Coverage.Bounds.Limits.HiLimit2Vec.C1 Higher bounds of image spatial 
coordinates 

OPT  

Char.SpatialAxis.Coverage.Bounds.Limits.HiLimit2Vec.C2 Higher bounds of image spatial 
coordinates 

OPT  

Char.SpatialAxis.Coverage.Support.Area Aperture region (STC-S region) OPT  
Char.SpatialAxis.Coverage.Support.Extent Filled area of aperture region OPT  
Char.SpatialAxis.Sampling.SampleExtent Spatial bin size OPT  
Char.SpatialAxis.Sampling.RefVal.FillFactor Spatial sampling filling factor REC  
Char.SpatialAxis.Accuracy.StatError.Refval.value Astrometric statistical error OPT  
Char.SpatialAxis.Accuracy.SysError.Refval.value Astrometric systematic error OPT  
Char.SpatialAxis.CalibrationStatus Type of spatial coord calibration REC  
Char.SpatialAxis.Resolution.RefVal.value Spatial resolution of data REC  
Char.SpatialAxis.Resolution.Bounds.Limits.LoLimit Lower limit of spatial resolution OPT  
Char.SpatialAxis.Resolution.Bounds.Limits.HiLimit Lower limit of spatial resolution OPT  

The central coordinates (Location) and field of view are mandatory metadata, except for data 
where spatial location is not applicable, e.g., theory or artificial data.  If possible the filling factor 
and spatial resolution should also be characterized.  The filling factor is the fraction (0.0 to 1.0) 
of the spatial image footprint that has valid data samples.  Images that are spatially sparse will 
have a spatial filling factor less than 1.0, and the filled portion of the aperture (Support.Extent) 
will be less than the aperture region (Support.Area).  Additional metadata should be provided 
where possible.  The presence of a spatial calibration (WCS) should also be indicated. 



Image Data Model 

 25 

3.5.2 Spectral Axis Characterization 
The element Char.SpectralAxis is used to characterize the spectral axis of the dataset. 

Utype Description REQ Def 
Char.SpectralAxis.Name Name for spectral axis OPT  
Char.SpectralAxis.UCD UCD for spectral coordinate REC  
Char.SpectralAxis.Unit Unit for spectral coordinate OPT  
Char.SpectralAxis.Coverage.Location.Coord Spectral coordinate value OPT  
Char.SpectralAxis.Coverage.Bounds.Extent Width of spectral coverage OPT  
Char.SpectralAxis.Coverage.Bounds.Limits.LoLimit Start in spectral coordinate MAN  
Char.SpectralAxis.Coverage.Bounds.Limits.HiLimit Stop in spectral coordinate MAN  
Char.SpectralAxis.Coverage.Support.Extent Effective width of spectrum OPT  
Char.SpectralAxis.Sampling.SampleExtent Wavelength bin size OPT  
Char.SpectralAxis.Sampling.RefVal.FillFactor Spectral sampling filling 

factor 
OPT  

Char.SpectralAxis.Accuracy.StatError.Refval.value Spectral coord statistical error OPT  
Char.SpectralAxis.Accuracy.SysError.Refval.value Spectral coord systematic 

error 
OPT  

Char.SpectralAxis.CalibrationStatus Type of spectral coord 
calibration 

OPT  

Char.SpectralAxis.Resolution.RefVal.value Spectral resolution FWHM REC  
Char.SpectralAxis.ResolutionResolPower.RefVal Spectral resolving power REC  
Char.SpectralAxis.Resolution.Resolower.LoLimit Low limit of resolving power OPT  
Char.SpectralAxis.Resolution.Resolower.HiLimit High limit of resolving power OPT  

The bounds of the spectral coverage of the dataset (Bounds.Limits) are mandatory metadata to 
specify the spectral coverage of the dataset.  If possible the UCD for the spectral coordinate 
(specifying the physical type of spectral coordinate), and the spectral resolution and resolving 
power should also be specified.   Additional metadata should be provided where possible. 

3.5.3 Time Axis Characterization 
The element Char.TimeAxis is used to characterize the time axis of the dataset. 
   

Utype Description REQ Def 
Char.TimeAxis.Name Name for time axis OPT  
Char.TimeAxis.UCD UCD for time OPT  
Char.TimeAxis.Unit Unit for time OPT  
Char.TimeAxis.Coverage.Location.Coord Midpoint of exposure on MJD scale OPT  
Char.TimeAxis.Coverage.Bounds.Extent Total exposure time OPT  
Char.TimeAxis.Coverage.Bounds.Limits.StartTime Start time MAN  
Char.TimeAxis.Coverage.Bounds.Limits.StopTime Stop time MAN  
Char.TimeAxis.Coverage.Support.Extent Effective exposure time OPT  
Char.TimeAxis.Sampling.SampleExtent Time bin size OPT  
Char.TimeAxis.Sampling.RefVal.FillFactor Time sampling filling factor OPT  
Char.TimeAxis.Accuracy.StatError.Refval.value Time coord statistical error OPT  
Char.TimeAxis.Accuracy.SysError.Refval.value Time coord systematic error OPT  
Char.TimeAxis.CalibrationStatus Type of coord calibration OPT  
Char.TimeAxis.Resolution.RefVal.value Time resolution FWHM OPT  
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Specification of the bounds of the time coverage of the dataset (Bounds.Limits) is mandatory.  
Additional metadata should be specified if possible, especially if time coverage is an important 
attribute of the dataset. 

3.5.4 Polarization Axis Characterization 
The element Char.PolAxis is used to characterize the polarization axis of the dataset. 

Utype Description REQ Default 
Char.PolAxis.Name Name for polarization axis OPT  
Char.PolAxis.UCD UCD for polarization type OPT  
Char.PolAxis.StateList List of polarization states present REC  

Characterization of the polarization axis is optional, unless the dataset measures polarization, in 
which case it is mandatory.  At a minimum the type of polarization measured (PolAxis.UCD) and 
a listing of the polarization states measured (PolAxis.StateList) should be provided for datasets 
that measure polarization. 

The following names are reserved for the Stokes parameters, and for left and right-handed 
circular polarization: 

POL Value Description 
I Stokes I (total intensity).   

Q, U Stokes Q and U (linear polarization). 
V Stokes V (circular polarization). 

L, R Left- and right-handed circular polarization. 

 

3.5.5 Observable Axis Characterization 
The element Char.ObservableAxis is used to characterize the observable axis of the dataset.  A 
typical observable for an astronomical image is flux, however other types of observable 
(independent variable) are possible. 
   

Utype Description REQ Default 
Char.ObservableAxis.Name Name for Observable axis OPT  
Char.ObservableAxis.UCD UCD for Observable MAN  
Char.ObservableAxis.Unit Unit for Observable REC  
Char.ObservableAxis.Accuracy.StatError.Refval.value Observable statistical error OPT  
Char.ObservableAxis.Accuracy.SysError.Refval.value Observable systematic error OPT  
Char.ObservableAxis.CalibrationStatus Type of Observable calibration REC  

Specification of the UCD for Observable values is mandatory to indicate the physical type of 
Observable measure provided.  The Observable unit and calibration status should also be 
indicated.  In particular the Observable calibration status is important to indicate for applications 
such as SED generation that may require absolute flux calibration. 
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3.6 Data Element 
Data element metadata describes a Data element of the image.  In the case of an Image dataset 
instance the data values are included as well. 

UTYPE Description REQ Default 
Data.ID Unique identifier for the Data element OPT  
Data.Naxes Number of image axes MAN  
Data.Naxis Length of each axis in pixels MAN  
Data.Pixtype Pixel / voxel datatype MAN  
Data.Encoding Encoding used for the array data OPT “FITS” 
Data.Length Array length in voxels (actual count if sparse) MAN  
Data.Size Data array element size in bytes MAN  
Data.Values Array data OPT  
Data.Mapping.* World coordinate system OPT  
Data.ObsData.* Reference to original observational data OPT  

Data.ID should be provided to uniquely identify a Data element if the image contains multiple 
Data elements.  Data.Naxes and Data.Naxis specify the image geometry.  Data.Pixtype 
specifies the pixel datatype as in VOTable [should elaborate this.]. Data.Encoding specifies the 
encoding of the array data, for example, the order of rows and columns of data in the array, or 
whether data is stored in n-D blocks (often this will be specified by the serialization, but not in 
all cases).  Data.Length specifies the number of voxels (data samples) in the full image dataset; 
for a sparse image this may be less than the product of the image axis lengths.  Data.Size 
specifies the size in bytes of the image data array.  For an actual image dataset, Data.Values 
contains the actual array data. 

The optional Data.Mapping and Data.ObsData elements are described separately below.  
Data.Mapping defines the mapping of the image axes to a world coordinate system.  
Data.ObsData optionally may be used to reference the more fundamental observational data 
used to create the image (the image array is essentially a standard “view” of this more 
fundamental data).   

3.6.1 Mapping Metadata 
The Mapping model specifies the physical image matrix and the transformation from image 
pixel coordinates to the specified world coordinate system (WCS).  Images with any combination 
of spatial, spectral, time, polarization, or generalized linear axes are supported. 

The Mapping model is compatible with FITS WCS, with some extensions to provide more 
generalized support for a WCS time axis, and for polarization.  In most cases the elements of a 
FITS WCS may be directly converted to or from the Mapping representation.  Conversion to and 
from a STC representation is also possible for most analytical projections.  A Mapping instance 
is a fully encapsulated object and may be re-used in different contexts. 

UTYPE Description REQ Default 
Image Axis to Intermediate Coordinate Transform   

 Mapping.WCSNaxes  Number of WCS axes   
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 Mapping.WCSName  Name of the overall WCS   
 Mapping.RefPixel  Reference pixel   
 Mapping.RefValue  WCS value at reference pixel   
 Mapping.CDMatrix  Coord definition matrix   
 Mapping.PCMatrix  Coord definition matrix   
 Mapping.CDelt  World coord delta per pixel   
 Mapping.AxisMap  Image-to-WCS axis mapping   
    

World Coordinate Transform   
Mapping.Axis   

Mapping.Axis.CoordType Coordinate type   
Mapping.Axis.Unit Coordinate unit   
Mapping.Axis.Name Axis name   
Mapping.Axis.CoordValue Table of explicit coordinate values   
Mapping.Axis.CoordIndex Index into CoordValue   

Mapping.SpatialAxis   
Mapping.SpatialAxis.CoordType Coordinate type as  in FITS   
Mapping.SpatialAxis.Algorithm Celestial projection   
Mapping.SpatialAxis.CoordFrame Spatial coordinate frame   
Mapping.SpatialAxis.CoordEquinox Coordinate equinox (if used)   
Mapping.SpatialAxis.Unit Unit for coordinate value   
Mapping.SpatialAxis.Name Axis name (optional)   
Mapping.SpatialAxis.PV Optional parameters for transform   
Mapping.SpatialAxis.PS Optional parameters for transform   
Mapping.SpatialAxis.LonPole Native longitude of the celestial pole   
Mapping.SpatialAxis.LatPole Native latitude of the celestial pole   
Mapping.SpatialAxis.CoordValue Coordinate values   
Mapping.SpatialAxis.CoordIndex1 Coordinate index for first axis   
Mapping.SpatialAxis.CoordIndex2 Coordinate index for second axis   

Mapping.SpectralAxis   
Mapping.SpectralAxis.CoordType Coordinate type as in FITS   
Mapping.SpectralAxis.Algorithm Algorithm type as in FITS    
Mapping.SpectralAxis.RestFreq Rest frequency of spectral line   
Mapping.SpectralAxis.RestWave Rest wavelength of spectral line   
Mapping.SpectralAxis.CoordUnit Unit for spectral coordinate value   
Mapping.SpectralAxis.CoordName Axis name (optional)   
Mapping.SpectralAxis.PV Optional parameters for transform   
Mapping.SpectralAxis.PS Optional parameters for transform   
Mapping.SpectralAxis.CoordValue Table of explicit spectral coord values   
Mapping.SpectralAxis.CoordIndex Index into coordinate array   

Mapping.TimeAxis   
Mapping.TimeAxis.CoordType Time scale   
Mapping.TimeAxis.RefPosition Time reference position   
Mapping.TimeAxis.RefDirection Time reference direction   
Mapping.TimeAxis.MJDRef MJD time zero (for time offsets)   
Mapping.TimeAxis.CoordUnit Time unit   
Mapping.TimeAxis.CoordName Time axis name    
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Mapping.TimeAxis.CoordValue Table of explicit time coordinate values   
Mapping.TimeAxis.CoordIndex Index into coordinate array   

Mapping.PolAxis   
Mapping.PolAxis.CoordType Coordinate type as in FITS   
Mapping.PolAxis.CoordName Polarization axis name   
Mapping.PolAxis.CoordValue Polarization state at pixel index   

The WCS transformation consists of a general linear transformation of the input image pixel 
coordinates (with the transform represented either as the CD matrix or as the PC matrix plus 
CDELT), followed optionally by a nonlinear transformation to produce the final world 
coordinates.  To apply the linear transformation one first subtracts the coordinates of the 
reference pixel, then applies the transformation matrix, and finally adds the world coordinates at 
the reference pixel to establish the zero point.  The result is a linear transformation of the input 
pixel coordinates to “intermediate” (linear) world coordinates.  An optional nonlinear transform 
may then be applied to get to the final world coordinates. 

In the FITS representation the CTYPE keyword is used to specify both the coordinate type and 
the nonlinear algorithm if any to be applied to the axis.  In Mapping these are broken out into 
separate CoordType and Algorithm attributes.  Mapping uses array-valued attributes to represent 
arrays, whereas FITS uses multiple keywords, one for each array element.  If multiple WCS 
instances are required for an image, this can be expressed by merely having multiple instances of 
Mapping, hence there is no need for the “a” suffix used in FITS WCS to express multiple 
coordinate systems. 

In Mapping the AxisMap attribute is used to map the axes of the intermediate world coordinates 
(i.e., after the CD or PC transform, which may transpose or rotate the image axes) to the axes of 
the final world coordinate system.  The spatial, spectral, time, or polarization transforms may 
then be applied independently to the associated intermediate world coordinate values without any 
further concern with image axes.  A generalized linear transform Mapping.Axis is also provided 
to allow any type of linear transform to be applied to an axis. 

A nonlinear coordinate system may be represented either as a continuous function consisting of a 
well-known projection or algorithm of some sort (e.g., TAN, F2V, etc.), or as a lookup table (via 
the optional CoordValue and CoordIndex arrays) wherein each pixel index on the axis is directly 
assigned a world coordinate.  [This is the TAB coordinate type mechanism used to represent 
sparse data.].  

[More needs to be added here to fully specify this metadata, in particular the vector 
representation, allowable units, and allowable coordinate types and algorithms, following the 
FITS model, but this should suffice to demonstrate the approach.] 

3.6.2 ObsData Metadata 
The optional ObsData element provides a pass-through mechanism to retrieve the more 
fundamental observational data corresponding to an image dataset. 

UTYPE Description REQ Default 
ObsData.DataProductType Primary generic data product type  OPT  
ObsData.DataProductSubtype Data product collection-specific type OPT  
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ObsData.CalibLevel Calibration level OPT  
ObsData.Reference URL used to access the dataset OPT  
ObsData.Format Content format of the dataset OPT  
ObsData.Size Estimated dataset size OPT  

When multi-dimensional observational data is imaged, information may be lost.  This is 
especially true for event and visibility data.  Advanced client software that has the capability to 
deal directly with the event or visibility data corresponding to an image can use the ObsData 
reference for a Data element (if provided) to retrieve the observational data (the already imaged 
data array is available as well).  Ideally the observational data will have been filtered to include 
only data samples directly contributing to the image area.  The explicit connection of the 
ObsData element to a particular Data element makes such filtering possible, transparently to a 
client application. 
ObsData.DataProductType and ObsData.DataProductSubtype are the dataproduct type and 
subtype as in the ObsCoreDM [ObsTAP-XX].  Typical values of DataProductType include 
“event” (for a reference to event data) and “visibility” (for a reference to interferometry data). 
DataProductSubtype specifies the type of data product as defined within the context of a specific 
archive or instrumental data collection.  ObsData.CalibLevel defines the calibration level of the 
referenced data product as defined in ObsCore, e.g., 1 for instrumental data in a standard format, 
and 2 for calibrated, science ready data with the instrument signature removed. 
The ObsData mechanism is intended mainly for images generated from event and visibility data, 
especially event data, for which analysis is typically done on the event domain, and the data 
volume tends to be manageable.  ObsData can however be used for any type of observational 
data.   

3.7 Additional Service-Defined Metadata 
A given service may return additional query response metadata not defined by the ImageDM.  
This additional metadata may take the form of additional table columns, or additional 
RESOURCE elements in the query response VOTable. 
Service-defined output metadata should use service-defined Utypes and UCDs as long as they do 
not clash - and can be easily distinguished - from mandatory and reserved ImageDM output 
columns.  Extension metadata must conform to the rules for extension metadata as defined in the 
next section. 

3.8 Metadata Extension Mechanism 
The metadata extension mechanism allows a data provider to add additional custom metadata to 
the query response to describe collection-specific details of the data. .  [Add description of 
metadata extension mechanism, compatible with SpectralDM]. 

 

4 Data Access Model 
[The following is copied from SIAV2 working draft and has not yet been fully integrated.  The 
idea is to define the access model in terms of the ImageDM, i.e., the capabilities provided and 
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how they map back to the Image model, but leaving how the access operation is formulated up to 
the specific, separately-defined data access protocol.] 

The accessData operation provides advanced capabilities for precise, client directed access to a 
specific image or image collection.  Unlike queryData, accessData is not a query but rather a 
command to the service to generate a single image, and the output is not a table of candidate 
datasets but the actual requested image (or an error response if an error occurs).  Use of 
accessData will generally require a prior call to queryData to get metadata describing the image 
or image collection to be accessed in order to plan subsequent access requests.  AccessData is 
ideal for cases where an image with a specific orientation and scale is required, or for cases 
where the same image or image collection is to be repeatedly accessed, for example to generate 
multiple small image cutouts from an image, or to interactively view subsets of a large image 
cube. 

4.1.1 Logical Access Model 
The accessData operation is used to generate an image upon demand as directed by the client 
application.  Upon successful execution the output is an image the parameters of which are what 
was specified by the client.  The input may be an archive image, some other form of archive 
dataset (e.g., radio visibility or event data from which an image is to be generated), or a uniform 
data collection consisting of multiple data products from which the service automatically selects 
data to generate the output image. 
In producing an output image from the input dataset accessData defines a number of 
transformations which it can perform.  All are optional; in the simplest case the input dataset is 
an archival image which is merely delivered unchanged as the output image with no 
transformations having been performed.  Another common case is to apply only a single 
transformation such as an image section or a general WCS-based projection.  In the most 
complex case more than one transformation may be applied in sequence. 
Starting from the input dataset of whatever type, the following transformations are available to 
generate the output image: 

• Per-axis input filter.  The spatial, spectral, temporal or polarization axis (if any) can be 
filtered to select only the data of interest.  Filters are defined as a range-list of acceptable 
ranges of values using the BAND, TIME, and POL parameters as specified later in this 
section, for the spectral, temporal, and polarization axes respectively.  POS and SIZE are 
specified as for queryData except that the default coordinate frame matches that of the 
data being accessed (more on this below).  Often the 1D BAND, TIME, and POL axes 
consist of a discrete set of samples in which case the filter merely selects the samples to 
be output, and the axis in question gets shorter (for example selecting a single band of a 
multiband image or a single polarization from a polarization cube).  In the case of axis 
reduction where an axis is “scrunched”, possibly collapsing the entire axis to a single  
pixel, the filter can also be used to exclude data from the computation.  Data which is 
excluded by a filter is not used for any subsequent computations as the output image is 
computed. 

• WCS-based projection.  This step defines as output a pixellated image with the given 
image geometry (number of axes and length of each axis) and world coordinate system 
(WCS).  Since the input dataset has a well-defined sampling and world coordinate system 
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the operation is fully defined.  If the input dataset is a pixellated image the image is 
reprojected as defined by the new WCS.  If the input dataset is something more 
fundamental such as radio visibility or event data then the input data is sampled or 
imaged to produce the output image.  Distortion, scale changes, rotation, cutting out, axis 
reduction, and dimensional reduction are all possible by correctly defining the output 
image geometry and WCS. 

• Image section.  The image section provides a way to select a subset of a pixellated image 
by the simple expedient of specifying the pixel coordinates in the input image of the 
subset of data to be extracted (in our case here pixel coordinates would be specified 
relative to the image resulting from the application of steps 1 and 2 above).  Axis 
flipping, dimensional reduction, and axis reduction (scrunching of an axis, combining a 
block of pixels into one pixel) can also be specified using an image section.  Dimensional 
reduction, reducing the dimensionality of the image, occurs if an axis is reduced to a 
single value.  The image section can provide a convenient technique for cutting out 
sections of images for applications that find it more natural to work in pixel than world 
coordinates. For example the section “[*,*,3]” applied to a cube would produce a 2D 
X-Y image as output, extracting the image plane at Z=3.  Dimensional reduction affects 
only the dimensionality of the image pixel matrix; the WCS retains its original 
dimensionality. 

• Function.  More complex transformations can be performed by applying an optional 
transformation function to an axis (typically the Z axis of a cube).  For example the 
spectral index could be computed from a spectral data cube by computing the slope of the 
spectral distribution along the Z axis at each point [x,y,z] in the output image. 

• These processing stages define a logical set of transformations which can optionally be 
applied, in the order specifed, to the input dataset to compute the output image.  Defining 
a logical order for application of the transformations is necessary in order for the overall 
operation to be well defined, as the output of each stage of the  transformation defines the 
input to the following stage. 

In terms of implementation the service is free to perform the computation in any way it wants so 
long as the result agrees with what is defined by the logical sequence of transformations.  It is 
possible for example, for each pixel in the final output image, to trace backwards through the 
sequence of logical transformations to determine the signal from the input dataset contributing to 
that pixel.  Any actual computation which reproduces the overall transformation is permitted. 
In practice it may be possible to apply all the transformations at once in a single computation, or 
the actual computation may include additional finer-grained processing steps specific to the 
particular type of data being accessed and the sofware available for processing.  The AccessData 
model specifies the final output image to be generated, but it is up to the service to determine the 
best way to produce this image given the data being accessed and the software available.  The 
actual processing performed may vary greatly depending upon what type of data is accessed. [We 
need to add some use cases to illustrate in concrete terms how this works.]. 
Since accessData tells the service what to do rather than asking it what it can do, it is easy for 
the client to pose an invalid request which cannot be evaluated.  In the event of an error the 
service should simply return an error status to the client indicating the nature of the error which 
occurred. 
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5 Serializations 
[The following is copied from the ImageDM section of the Cube whitepaper and has not yet been 
fully integrated.] 
Utype strings defined by the data model specification uniquely identify the elements of the 
Image data model, as in other VO data models.  Aliases may also be defined for particular 
serializations, e.g., eight character FITS keywords, mapped one-to-one to data model Utypes, are 
defined to serialize an Image instance in FITS.  Utypes and their aliases merely identify the 
fields of a data model instance.  The semantics, usage, and meaning of the data model itself are 
defined separately from an instance, e.g., in the data model specification or in a schema of some 
sort. 
The exact same Image instance may be represented in any number of forms by this technique 
without any loss of information (excepting possibly instance extensions not part of the formal 
data model).  Instances may be converted from one serialization to another without loss of 
information.  
Standard or optional Image serializations include the following: 

• FITS.  The primary standard for efficient binary representation of astronomical image 
data including multidimensional data cubes.  Individual images may be represented in a 
single FITS file.  Multiple images, e.g., Image sub-arrays as defined above, may be 
represented either as multiple distinct FITS images, as FITS image extensions in a multi-
extension FITS file, or as the rows of a binary table.  FITS WCS supports cube data 
including spatial, spectral, and polarization axes; full support for time is just now being 
standardized.  The TAB WCS coordinate type supports sparse data axes.  Image 
compression is supported. 

• VOTable.  VOTable is primarily used to represent “dataless” instances of the Image 
model, e.g., in data discovery queries where a dataless Image instance is used to describe 
and point to a remote dataset.  VOTable could also be used to serialize images that 
include a data element; while not as storage or access efficient as FITS this could be 
useful for small image use cases, e.g., embedded preview images. 

• HDF5.  HDF5 is essentially a generic hierarchical container for data, similar to a 
hierarchical file system but with richer metadata, allowing large logically related 
collections of data objects to be efficiently stored as a single file.  An Image instance can 
be represented as a single object in HDF5, or as a set of related objects, e.g., if the Image 
instance has multiple sub-arrays.  Within astronomy, LOFAR is using HDF5 for image 
(and other data) storage but supports FITS, CASA image tables, and other data formats 
for data export as well. 

• JPEG.  Graphics formats like JPEG are obviously important for graphical applications 
and are widely supported by a wealth of generic software outside astronomy.  JPEG (and 
various other graphics formats) have the capability to embed arbitrary metadata directly 
in the image instance, hence this can be considered a form of Image serialization, 
although it is limited to 2-D images used for graphical use cases such as visualization. 
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• Binary.  A special case of an Image serialization is the data segment of the Image 
instance with no associated header metadata, except possibly metadata defining the 
format (shape, depth, ordering, etc.) of the data array.  This would be useful in 
applications where the Image instance metadata is known by other means.  For example 
in a SIAV2 accessData operation, the client fully specifies the image data to be returned 
and there may be little need to return header metadata that would be redundant and 
probably ignored.  This image format could improve performance in applications such as 
real time visualization and analysis. 

In addition the following environment-specific formats are of interest: 
• CASA Image Table.  CASA (the radio data processing package used by ALMA and 

other projects) defines an image table format, in addition to FITS that is also supported.  
The image table format provides some flexibility in how the data element is organized.  
Unlike FITS that has a fixed, FORTRAN-array like ordering of image pixels or voxels, 
the CASA image table format supports additional options for ordering pixels, such as a 
blocked ordering which provides uniform time to access for any image axis. 

• Starlink NDF.  [Add description here.] 
Other serializations may be defined, for example to support additional environments or tools.  
This list is intended only to describe some of the major image serializations, and the range of 
such serializations possible to support a wide range of applications. 

 

6 Revision History 
 

WD-1.0 Rev 16 Aug 2013 

Initial draft of this document. 
WD-1.0 Rev 15Nov 

Updated to reflect initial reviewer comments.  Architecture section extensively revised in 
response to discussion.  Data model classes extensively revised to provide compatibility 
with ObsCore/Observation and Char2.
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Appendix A: Data Model Summary 
 

Appendix B: Data Model Serializations 
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