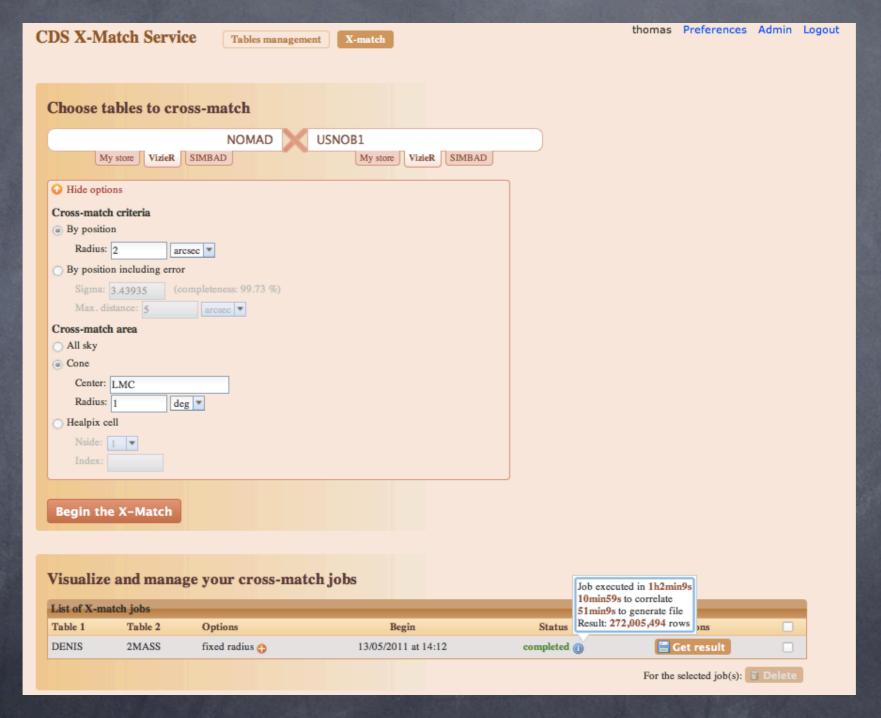
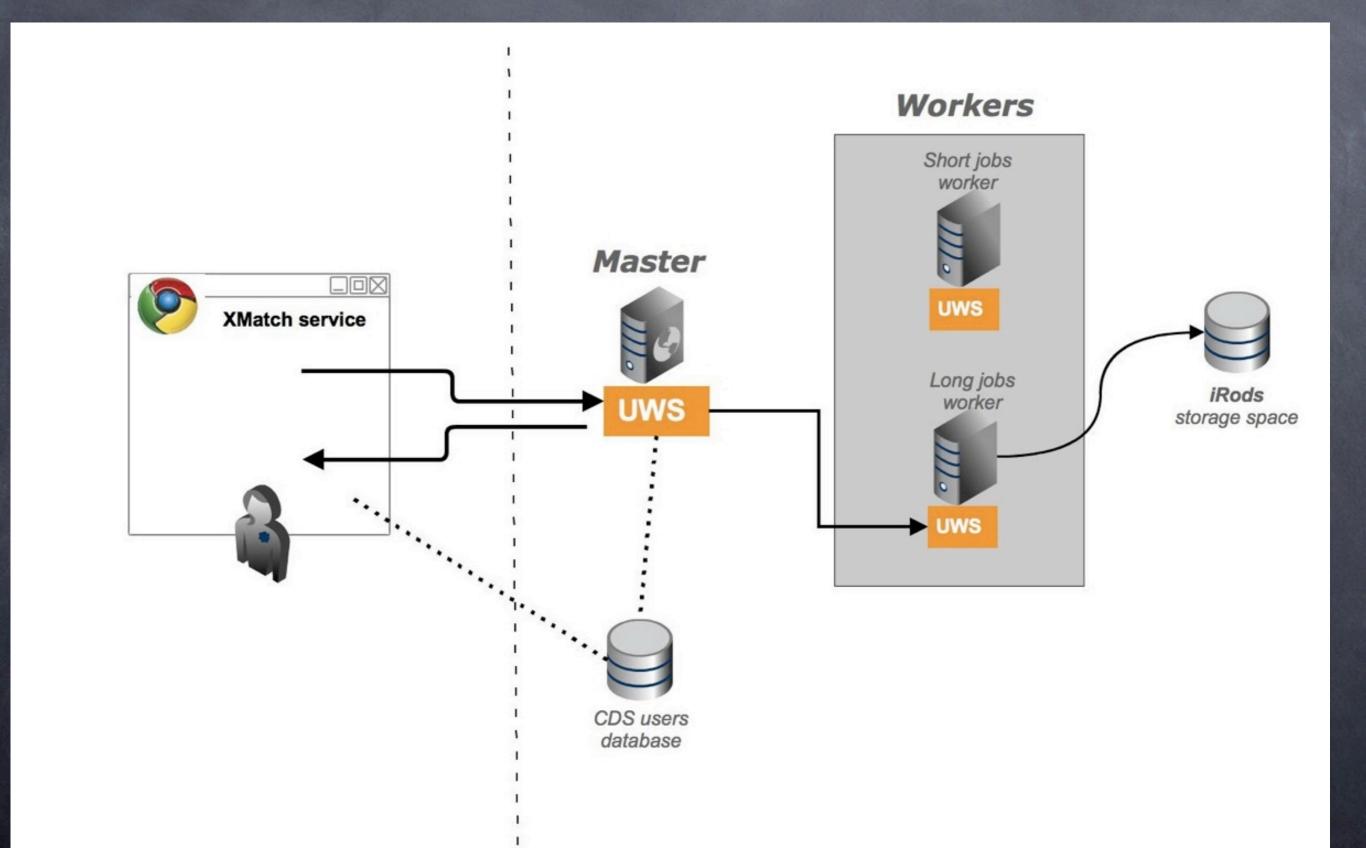
CDS xmatch service updates

Thomas Boch François-Xavier Pineau Sébastien Derrière

Service presentation


- Purpose
 - Positional cross-identification of sources in 2 tables among:
 - VizieR tables (including very large surveys)
 - SIMBAD
 - User-uploaded tables
- Focus on large-scale cross-match
- Ul : web application on top of UWS service

Demo



IVOA Interop@Naples T. Boch, CDS

Architecture

Updates

- Since Nara Interop:
 - cross-match jobs dispatched on 2 machines (one for short jobs, one for long jobs)
 - inclusion of VizieR tables > IOM rows (USNOBI, 2MASS, SDSS7, NOMAD, PPMXL, GLIMPSE, ...)
 - cross-match on all-sky or in a cone (position or object name + radius) or for a given HEALPix cell
 - choice of position+errors metadata (for user-uploaded tables)
 - faster HDDs (15,000 rpm)
 - faster output generation

Service performances

Cross-match at 5 arcsec:

Table I	Table 2	Computation time	Result generation	Result size	Total time
SDSS 357M rows	2MASS 470M rows	7 min	I2 min	I3 GB	19 min
DENIS 355M	2MASS 470M	II min	51 min	58 GB	I hour 2 min
GLIMPSE 104M	NOMAD 1.1 billion	6 min	17 min	I9 GB	23 min
SIMBAD 5M	USNOBI I billion	3 min	I min	I GB	4 min
SIMBAD 5M	PPMX 18M	20 seconds	20 seconds	440 MB	40 sec

I/O limitations

- When computing the associations:
 - Reading input catalogues is the main limiting factor
- When generating the result file:
 - Performance mainly limited by the **network**bandwidth between workers and iRods

 (~12Mbyte/s)
- When the user downloads the result :
 - Downloading SDSS-2MASS result at IMbyte/s takes 3.7 hours

Hardware

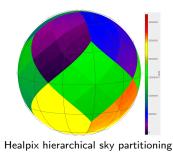
- Worker I:
 - 2x Quad Core 2.27 GHz ——— 16 threads
 - RAM: 24GB @1333MHz
- Worker 2:
 - 2x Six Core 2.27 GHz ——> 24 threads
 - RAM:32GB@1333MHz
- 6TB RAID5 array with 15,000 rpm disks
 - Read: 570 MB/s
 - Write: I30 MB/s

CDS XMatch service updates: the engine

François-Xavier Pineau¹, Thomas Boch¹ and Sebastien Derrière¹

¹CDS, Observatoire Astronomique de Strasbourg

Interop Napoli, 17 May 2011



08/11/2010

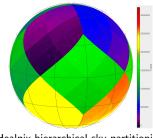
The xmatch engine: 2 main components

A catalog file format (CatFile)

- Binary data
- Compressed data
- Sources sorted and indexed by Healpix cell numbering
- 2 formats: by rows (.rcf), by blocks (.bcf)

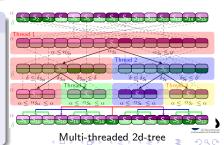
A correlation engine

- Multi-threaded special kd-trees (ra, dec)
- Healpix partitioning (for large catalogs)
- CatFile (for large catalogs)
 - for the correlation (.bcf
 - to build the output (.rcf)
- STIL to read VOTable. FITS. ..



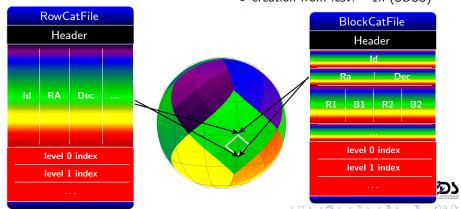
The xmatch engine: 2 main components

A catalog file format (CatFile)


- Binary data
- Compressed data
- Sources sorted and indexed by Healpix cell numbering
- 2 formats: by rows (.rcf), by blocks (.bcf)

Healpix hierarchical sky partitioning

A correlation engine


- Multi-threaded special kd-trees (ra, dec)
- Healpix partitioning (for large catalogs)
- CatFile (for large catalogs)
 - for the correlation (.bcf)
 - to build the output (.rcf)
- STIL to read VOTable, FITS, ...

CatFile catalog file format

- (compressed) data stored by rows
 - as few random access as possible
- (compressed) data stored by blocks
 - read as few bytes as possible

- data close on file / sources closed on sky
- Healpix indexed
 - ▶ ~→ direct acces to a pixel data
- creation from .csv: \sim 1h (SDSS)

Correlation modes

3 catalog sizes (arbitrary)

small: $< 150\,000$ sources

medium: $< 20.10^6$ sources

large: $> 20.10^6$ sources

correlation modes

small vs medium, medium vs medium

brute-force (1 kd-tree)

small vs large

medium vs large, large vs large

Results (xmatch only)

- medium vs medium
 - (18.10^6) : 20s
- small vs large
 - Downes (1830) vs 2MASS
 - (470.10). 10s, <1s (dish
- medium vs large
- a large ve large
- large vs large

4 / 5

Correlation modes

3 catalog sizes (arbitrary)

small: $< 150\,000$ sources medium: $< 20.10^6$ sources large: $> 20.10^6$ sources

- correlation modes
 - small vs medium, medium vs mediumbrute-force (1 kd-tree)

small vs large

compute Healpix touched cells brute-force (1 kd-tree)

medium vs large, large vs large

Results (xmatch only)

- medium vs medium
 - SIMBAD (5.10⁶) vs PPMX (18.10⁶): 20s
- small vs large
 - (470.10^6) : 10s, <1s (disk
 - medium vs large

large vs large

4 / 5

Correlation modes

3 catalog sizes (arbitrary)

small: $< 150\,000$ sources medium: $< 20.10^6$ sources large: $> 20.10^6$ sources

- correlation modes
 - small vs medium, medium vs mediumbrute-force (1 kd-tree)
 - small vs large
 - compute Healpix touched cells
 - brute-force (1 kd-tree)
 - medium vs large, large vs large

Results (xmatch only)

- medium vs medium
 - SIMBAD (5.10⁶) vs PPMX (18.10⁶): 20s
- small vs large
 - Downes (1830) vs 2MASS (470.10⁶): 10s, <1s (disk cache)
- medium vs large
 - (470.10^6) : 2min
- large vs large

Correlation modes

3 catalog sizes (arbitrary)

small: $< 150\,000$ sources medium: $< 20.10^6$ sources large: $> 20.10^6$ sources

- correlation modes
 - small vs medium, medium vs mediumbrute-force (1 kd-tree)
 - small vs large
 - * compute Healpix touched cells
 - brute-force (1 kd-tree)
 - medium vs large, large vs large
 - * cell by cell (192 Healpix cells)
 - * compute Healpix touched sub-cells?
 - brute-force (1 kd-tree by cell)

Results (xmatch only)

- medium vs medium
 - SIMBAD (5.10⁶) vs PPMX (18.10⁶): 20s
- small vs large
 - Downes (1830) vs 2MASS (470.10⁶): 10s, <1s (disk cache)
- medium vs large
 - Tycho2 (2.10⁶) vs 2MASS (470.10⁶): 2min
- large vs large
 - SDSS7 (350.10⁶) vs 2MASS (470.10⁶): 4min
 - 2MASS (470.10⁶) vs USNOB1 (1.10⁹): 20min

What's next?

Service

- Beta testing phase in June
 - interested in testing the service: thomas.boch@astro.unistra.fr
- First release in summer

Future developments

- Service:
 - to take into account proper motions
 - identification probabilites
 - add constraints on both catalogs and the result (colors, magnitudes, ...)
- CatFile:
 - add a proper motions block
 - add support for constraints on catalog columns

What's next?

Service

- Beta testing phase in June
 - interested in testing the service: thomas.boch@astro.unistra.fr
- First release in summer

Future developments

- Service:
 - to take into account proper motions
 - identification probabilites
 - add constraints on both catalogs and the result (colors, magnitudes, ...)
- CatFile:
 - add a proper motions block
 - add support for constraints on catalog columns

08/11/2010