
SAMP: Web Profile

Mark Taylor (GAVO/Bristol)

IVOA Interop Meeting

Naples

16 May 2011

$Id: websamp.tex,v 1.8 2011/05/15 09:52:08 mbt Exp $

Mark Taylor, IVOA Interop, Naples, 16 May 2011 1/20

Outline

SAMP for web applications

• The Problem (recap)

• Web Profile Solution

. General features

. Initial proposal details (apart from security)

◦ How it works
◦ Current status

. Security

◦ Existing approach
◦ Issues, questions, proposals, discussion

• Next steps

Mark Taylor, IVOA Interop, Naples, 16 May 2011 2/20

Target Capability

• SAMP works well for desktop clients

• Would like it to work for web clients (code running in a browser)

• In-browser technologies:

. JavaScript (a.k.a. JScript, ECMAScript)

. Adobe Flash

. MS Silverlight

. Java applet (if signed, works already)

• Example capabilities:

. Provide a button which sends a table/image/spectrum to a suitable desktop viewer

. Receive information from desktop clients, e.g. highlight catalogue rows

. Communicate with other web pages loaded in the same browser

• Many persuasive use cases!

Mark Taylor, IVOA Interop, Naples, 16 May 2011 3/20

Technical Barriers

Browsers impose security restrictions (“sandbox”) on web clients:

• can’t read local files

• can’t access URLs on localhost or external hosts (cross-domain restrictions)

• can’t run an HTTP server to receive callbacks

⇒ Untrusted web clients can’t exercise user privileges

© to damage the user’s system

§ to send/receive SAMP messages using the Standard Profile

Mark Taylor, IVOA Interop, Naples, 16 May 2011 4/20

Alternative Profile

• Alternative profiles explicitly permitted in SAMP

• SAMP = generic core + specific profile(s)

• Profile = hub discovery + RPC encoding/transport + callback arrangements

• Until now (SAMP v1.11/1.2), only Standard Profile defined

• Door left open for other possibilities

• Web Profile:

• Need something that will allow a sandboxed application to find and communicate with hub

Mark Taylor, IVOA Interop, Naples, 16 May 2011 5/20

Web Profile Details

Web Profile is like Standard Profile (uses XML-RPC), but:

• Hub Discovery:

. Hub server resides on well-known port (http://localhost:21012/)

◦ ⇒ only one instance per machine

• Hub Communications:

. Hub XML-RPC HTTP server uses one or more cross-domain workarounds

. These are configured to allow unrestricted access to server from sandboxed clients

• Callbacks:

. Reverse HTTP/“Long poll” pattern

◦ Client pulls callback instructions from hub, rather than hub pushing to client
◦ Client may make repeated periodic short-timeout polls,

or blocking long-timeout requests
◦ Hub response contains XML-RPC (<methodName>, <params>) pairs

• Data URL Dereferencing:

. Hub provides proxy service for external URLs

Mark Taylor, IVOA Interop, Naples, 16 May 2011 6/20

Cross-Domain Workarounds

Cross-domain access from within the browser sandbox

• Common requirement (Flickr, Twitter, YouTube, Amazon, . . .)

• HTTP server somehow declares sandboxed clients may access its resources

• Several client- and browser-specific options exist:

. CORS: implement Cross-Origin Resource Sharing standard

◦ Server reads/writes HTTP headers to signal cross-domain policy to browser

◦ W3C standard (http://www.w3.org/cors/)
◦ JavaScript support in XMLHttpRequest Level 2

(Firefox 3.5+, Chrome 2.0+, Safari 4.0+)

◦ JScript support in XDomainRequest (IE8+)

. Flash: serve /crossdomain.xml resource

◦ Server provides XML file(s) describing cross-domain policy to browser
◦ Introduced by Adobe Flash
◦ Flash support since version 7(?)

◦ MS Silverlight support in all(?) versions

◦ Java support for (unsigned) applets and JNLP in versions 1.6.0 10+

. Silverlight: serve /clientaccesspolicy.xml resource

◦ Works like crossdomain.xml
◦ MS Silverlight support (preferred alternative to crossdomain.xml)

Mark Taylor, IVOA Interop, Naples, 16 May 2011 7/20

http://www.w3.org/cors/
http://www.w3.org/TR/XMLHttpRequest2

Cross-Domain Workarounds

What workarounds work with what clients?

• CORS (Cross-Origin Resource Sharing)

. JavaScript in modern browsers (Firefox, Chrome, Safari, IE)

. More browsers in future?

. Other HTML5-friendly technology?

• Flash (/crossdomain.xml)

. Flash clients

. JavaScript in older browsers (JS can use Flash for HTTP)

. Silverlight

. Unsigned Java applets

Mark Taylor, IVOA Interop, Naples, 16 May 2011 8/20

Status: Implementation
• Hubs:

• JSAMP hub (v1.2) (tested and working)

• SAMPy hub (v1.2.1) (tested and working)

• In-browser clients:

• JavaScript (tested, works with most browsers)

. Client library http://www.star.bris.ac.uk/∼mbt/websamp/

. Uses CORS for browsers that support it, Flash for others

. Tested with several non-ancient browsers; believed to work on most except Opera

. Currently undocumented and scrappy

• Flash (indirectly tested, working)

• Silverlight (not tested)

. Expected to work

• Unsigned Java applet/Unsigned JNLP (so far, not working)

. Not clear what the problem is

• Desktop Clients (useful for testing only):

• Java client library in JSAMP (tested, working)

Mark Taylor, IVOA Interop, Naples, 16 May 2011 9/20

http://www.star.bris.ac.uk/~mbt/websamp/

Status: Standardisation

Standardisation desirable

• Decided in Nara to adopt Web Profile as a standard

• Either new Recommendation-track document, or part of SAMP standard

• . . . subject to further consideration of security issues

Progress towards acceptance in SAMP:

• At least 2 interoperating implementations V
. Hubs: Java, Python

. Clients: JavaScript, JavaScript/Flash, Java application

• Validation tool V
. JSAMP test suite (tests client-hub interaction, but not from a browser and does not

test cross-domain capabilities)

. A JavaScript test suite would be a good idea

• Documented in Working Draft

. WD-SAMP-1.3-20110512 just published

. New section 5. Web Profile; otherwise, almost the same as REC-SAMP-1.2

. Needs further internal/external scrutiny

. Some security issues TBD . . .

Mark Taylor, IVOA Interop, Naples, 16 May 2011 10/20

Security

Is subverting browser security measures such a good idea . . . ?

• Cross-domain workarounds (try to) remove all restrictions to web apps contacting Hub

HTTP server

• What can hostile web apps do by contacting the Hub HTTP Server?

. Register with SAMP — dangerous!

◦ SAMP clients can get full access to user resources (e.g. filesystem I/O)

. Anything else — harmless

◦ hub offers no useful/dangerous services to unregistered applications
◦ denial of service attacks are possible — but web pages can mount those

anyway

• So, security needs to be applied only at registration time

. Only allow trusted clients to register

. But . . . what’s a trusted client?

Mark Taylor, IVOA Interop, Naples, 16 May 2011 11/20

Security

How to determine if a registering client is trustworthy?

1. Only accept clients from local host — Yes

2. Require explicit consent of user — Yes

3. Attempt secure authentication — ???

Mark Taylor, IVOA Interop, Naples, 16 May 2011 12/20

Registration Control: Local Clients Only

HTTP connections from remote hosts rejected

• Web browser assumed to run on same host as SAMP hub

• Remote host requests can’t come from browser, must be bogus

• The only registrations allowed by this criterion are:

. Web apps in hub-owner’s browser

◦ OK — intended)

. Non browser-based processes of hub-owner

◦ OK — not intended but have user privileges anyway, so no extra risk

. Processes of other users on the local host

◦ possibly problematic, but hostile local users rare, and mitigated by Explicit
User Consent

Mark Taylor, IVOA Interop, Naples, 16 May 2011 13/20

Registration Control: Explicit User Consent

• Popup dialogue asks user if application may register

• If not explicitly allowed, registration is denied

Mark Taylor, IVOA Interop, Naples, 16 May 2011 14/20

Registration Control: Explicit User Consent

• Popup dialogue asks user if application may register

• If not explicitly allowed, registration is denied

• But how does the user know which application is asking?

• Application Name

. Always present

. Supplied by application with reg request — unrestricted client-chosen string

• Application Origin (e.g. http://example.com:8080, identifies server)

. Only present if CORS is in use (not Flash/Silverlight)

. HTTP header inserted by browser, cannot be faked by CORS client

. Can it be faked by Flash/Silverlight client? Not sure

• Timing of dialogue appearance

. Only popped up immediately following a user action in the browser

. User accepts iff he trusts the web page just interacted with

. Intuitive and familiar way of doing things (signed applet, signed WebStart)

. Possibility of simultaneous legitimate and hostile requests — but unlikely

. Vulnerable to phishing attacks — astro/VO phishing sites not currently known?

— Can we do better?

Mark Taylor, IVOA Interop, Naples, 16 May 2011 14/20

Registration Control: Client Authentication

• Would like to authenticate clients seeking to register

• User could see this information to decide whether to trust or not

• Problem: don’t have much reliable information about registering client

• In particular don’t have URL/content of web application

• May have Origin (location of server)

. Guaranteed reliable for CORS, not present for Flash/Silverlight

• Possibilities:

. If origin is uses HTTPS:

◦ Hub contacts any resource at origin server (e.g. root resource,
https://example.com/), examines HTTPS certificate

. Client provides [URL of] signed resource:

◦ Signed content is origin string (e.g. “http://example.com”)
◦ Hub checks that signed content matches origin, and examines signing

certificate

• These don’t authenticate authorship of web app, but do authenticate ownership of server

it was downloaded from — probably good enough

Mark Taylor, IVOA Interop, Naples, 16 May 2011 15/20

Authentication Usefulness

Even if clients can be authenticated, is this useful?

• Authentication infrastructure is still required

. Need available [list of] Certificate Authorities for web app providers and users to
agree to trust

• If introduced now, trusted signatures wouldn’t be used

. Web app authors would self-sign certificates

. Web app users would see the warnings and (usually) click “OK”

. This is what happens now

◦ e.g. TOPCAT JNLP, Aladin JNLP, SAI Open Clusters applet, . . .

• Maybe in the future this will change?

Mark Taylor, IVOA Interop, Naples, 16 May 2011 16/20

Web Profile vs. Self-Signed App

Compare Web Profile with self-signed Java applet/JNLP:

(Though note: Origin may be missing)

• Most (all?) existing astro/VO signed applets/apps are self-signed

. Authentication mechanism present but unused — self-signing = no authentication

. In this case Web Profile has similar security to “signed” applet/app — already in use

◦ but in absence of CORS, Origin info may be missing

• Apps signed by a suitable Certificate Authority would be more secure

. What suitable CAs are available for VO providers? (eScience? others?)

. Few(?) astro users have browsers set up to trust such suitable CAs

Mark Taylor, IVOA Interop, Naples, 16 May 2011 17/20

Mitigation Options

Possible ways to reduce security exposure (in standard or software):

• Only allow CORS, not Flash/Silverlight cross-domain workarounds

. Guarantees reliable Origin visible to user, and possibly available for authentication

. Allows JavaScript on modern browsers; excludes Flash, Silverlight

• Add authentication capabilities to the standard based on Origin

. Only possible with CORS, not Flash/Silverlight cross-domain workarounds

. Still vulnerable to hostile users on the local host (not common?)

. Still requires authentication framework (e.g. VO-blessed CA list)

. Authentication options:

◦ HTTPS — requires web apps to be served using HTTPS
◦ Signed resource on server — significant hub implementation work required?
◦ Other ideas?

• Is there any other way to do authentication?

. Self-signed applets/apps will still do the same job, insecurely

• Turn off Web Profile in hubs by default, only use it if user explicitly turns it on

. In practice will mostly restrict use to SAMP experts

. Experimental implementations (JSAMP, SAMPy) currently do this

• Throw away the Web Profile as irredeemably insecure

Mark Taylor, IVOA Interop, Naples, 16 May 2011 18/20

Summary

• Security summary:

• Cross-origin work arounds not in themselves dangerous

• Danger is only when client registers

• Existing solution (implemented in JSAMP & SAMPy):

• Registration controlled by user consent (popup dialogue)

. User decides based on informal trust of website

. User knows which website is trying to register by:

◦ CORS: dialogue displays identity of website
◦ Flash: user infers identity of website from preceding browser activity

• My opinion: low-tech, but in practice reliable

• Adding secure authentication

• May be possible to do with some effort

• Probably necesary to restrict to CORS (outlaw Flash, Silverlight)

• My opinion: doesn’t buy you much with current security infrastructure

Mark Taylor, IVOA Interop, Naples, 16 May 2011 19/20

Next Steps

• Do we:

• Keep Web Profile as it is?

• Mandate/recomment/implement authentication?

. Restrict to CORS-only to make this reliable?

• Deem Web Profile insecure and

. make sure it’s switched off by default in hubs implementations?

. ditch it?

Mark Taylor, IVOA Interop, Naples, 16 May 2011 20/20

