A
Leibniz-Institut fiir
AIP Astrophysik Potsdam

UWS validation

Kristin Riebe

GAVO, AIP

1/12

UWS service at AIP

e "Daiquiri" web service for data publication
(catalogues)

e SQL queries on database tables

e with UWS interface (not full TAP)

e UWS =universal worker service, for asynchronous, job-
oriented web services

o user creates job, job waits in queue until executed
o results not returned immediately

o UWS was recently updated to version 1.1

s

UWS 1.1 features

e latest version at volute-repository

e example url forjob list:
o https://gaia.aip.de/uws/query
e new job list filtering: append keywords:
o by phase: ?PHASE=EXECUTING&PHASE=COMPLETED
o latest jobs: ?LAST=100
o latest with phase: ?LAST=100&8PHASE=EXECUTING
o jobs created after given date: ?AFTER=2016-01-01
e wait-blocking behaviour for jobs:
o just wait: ?WAIT=100
o with phase: ?WAIT=100&PHASE=QUEUED

e many combinations—W
’/-

http://volute.g-vo.org/svn/trunk/projects/grid/uws/doc/

UWS tests

e created external, stand-alone test suite, using python
e uses behave : python module for functional tests
o called from the command line:
behave <options> <feature-file>
o define test cases with Gherkin syntax for human-readable
text descriptions (features and scenarios, similar to

Cucumber), e.g.:

Scenario: Ensure user can access UWS endpoint
When I make a GET request to base URL
Then the response status should be "200"

o even allows looping over parameters

o /

UWS tests - loop example

Scenario Outline: PHASE filter
When I make a GET request to "7?PHASE=<phase>"
Then the response status should be "200"
And all UWS elements "phase” should be "<phase>"

Examples: Valid phases
| phase |
| PENDING |
| QUEUED |
| EXECUTING |
| COMPLETED |
| ERROR |
| ABORTED |
| ARCHIVED |
| HELD |

| SUSPENDED |

| UNKNOWN |

/

UWS tests (continued)

e behave python module
o allows using tags for filtering tests for different uses, e.g.:
m use tags for UNS1.1, slow jobs, etc. for being able to exclude them

o takes care of collecting error messages

e =>only needed to define test cases and implement the
steps:

uws-validator
https://github.com/kristinriebe/uws-validator

S J

https://github.com/kristinriebe/uws-validator

UWS tests — user configuration

e parameters added via command line or config file
e parameters are:

o server'surl,e.g. https://gaia.aip.de

o base URL for UNS service: uws/query

o user credentials for authentication

o job details for jobs of different (estimated) duration:

veryshort: finishes immediately

short: <30 seconds

long: a couple of minutes

error: a job that will return with an error

S J

Examples: testing uws

e Check basic access and authentication:

o behave -D configfile="userconfig-gaia.json”
features/account. feature
e Testjob list, creating veryshort job:
o behave [...] --tags=basics
e For UWS 1.0, exclude all 1.1 tests:
o behave [...] —--tags=-uws1_]1

e Do fast tests first (exclude slow and neverending jobs):

o behave [...] --tags=-slow --tags=-neverending

J
—_—— —————— §

Screenshot

When I create and start a user-defined " " job # features/steps/steps_jobs.py:20 0.249s
Then the response status should be " " # features/steps/steps_http.py:62 0.000s
And the UWS element “ " should be one of " " # features/steps/steps_xml.py:57 0.000s
@slow
Scenario: Create a job with error # features/job_basics.feature:63
Given I set base URL to user-defined value # features/steps/steps_http.py:81 0.001s
And I set BasicAuth username and password to user-defined values # features/steps/steps http.py:77 0.0800s
When I create a user-defined “"error" job # features/steps/steps jobs.py:41

POST request to URL: https://gaia.aip.de/uws/query

When I create a user-defined " " job # features/steps/steps_jobs.py:41 0.188s
And I send PHASE="RUN" to the phase of the same job # features/steps/steps_jobs.py:89
POST request to URL: https://gaia.aip.de/uws/query/1462794362458386135/phase
And I send PHASE=" " to the phase of the same job # features/steps/steps_jobs.py:89 8.251s
And I check the same job every "2" seconds until it is in a final state # features/steps/steps_jobs.py:131 4.314s
Then the UWS element " * should be " " # features/steps/steps_xml. py 64 0.000s
And the UWS element “ " should exist # features/steps/steps_xml.py:36 0.000s
And the UWS element " " should exist # features/steps/steps_xml.py:36 0.0080s
@slow @longjob @queue
Scenario: Create a long job and abort # features/job_basics.feature:80
Given I set base URL to user-defined value # features/steps/steps_http.py:81 8.000s
And I set BasicAuth username and password to user-defined values # features/steps/steps_http.py:77 0.000s
When I create a user-defined “long" job # features/steps/steps_jobs.py:41
POST request to URL: https://gaia.aip.de/uws/query
When I create a user-defined " " job # features/steps/steps jobs.py:41 8.183s
And I send PHASE="RUN" to the phase of the same job # features/steps/steps_jobs.py:89

POST request to URL: https://gaia.aip.de/uws/query/1462794367216545838/phase

And I send PHASE=" " to the phase of the same job # features/steps/steps_jobs.py:89 0.255s
And I check the same job every “2" seconds until it starts or is aborted/deleted # features/steps/steps_jobs.py:99 4.201s
And I send PHASE="ABORT" to the phase of the same job # features/steps/steps_jobs.py:89
POST request to URL: https://gaia.aip.de/uws/query/1462794367216545838/phase

And I send PHASE=" " to the phase of the same job # features/steps/steps_jobs.py:89 0.199s
And I wait for "1" seconds # features/steps/steps_jobs.py:268 1.001s
Then the UWS element “ " should be " " # features/steps/steps_xml.py:64 0.000s
And the UWS element “ " should exist # features/steps/steps_xml.py:36 0.000s

Clean-up: removing the created test jobs

The removed jobIds are: ['1462794360553334385', '1462794360744323057', '1462794360922912618', '1462794361424657893', '14627943617
82996351', '1462794362198905356', '1462794362458386135', '1462794367216545838"']

1 feature passed, 0 failed, 0 skipped

8 scenarios passed, 0 failed, 0 skipped

56 steps passed, O failed, @ skipped, O undefined

Took Gml2.5808s

kristin@dorado:~/E-Science/Daiquiri/test-uws/uws-validators i

Discussion |

e Some decisions needed to be made
e Job list checks:
o Only use existing job list?
m But then cannot test anything if no previous jobs
o Use "fresh" test account with no previous jobs?
= But no guarantee that jobs finish soon (time in queue uncertain)

e Reuse previously created jobs?

o Would save time for some tests
o Butthen tests depend on each other

o So: rather create new jobs each time | need them and clean

up afterwards

//
—_—— — ————— W

Discussion Il

o WAIT checks:
o useful for jobs in active phases (PENDING, QUEUED,

EXECUTING)
o but time until phase changes is uncertain (e.g. if WAIT=10
really waits 10 seconds is difficult to check for QUEUED jobs)
o only PENDING phase change is controlled by user

o server may return anytime sooner (allowed by standard)

Discussion Il

e Divide into different use cases?
1. "own" services, where | have full control:

= need complete feature tests for services (can use short
jobs, influence time in queue)
2. validation of external services:
= only check required features (job list)
= no reliable possibility to check WAIT,
unless further information is given, like:
m "returned early because server is busy"

m "server max. wait time exceeded"

e should print out validation report with features that

could/could notft_eititl‘______________
) ’_/.

