
Kristin Riebe

GAVO, AIP

UWS validation

1 / 12

UWS service at AIP

"Daiquiri" web service for data publication
(catalogues)
SQL queries on database tables
with UWS interface (not full TAP)
UWS = universal worker service, for asynchronous, job-
oriented web services

user creates job, job waits in queue until executed

results not returned immediately

UWS was recently updated to version 1.1

2 / 12

UWS 1.1 features

latest version at volute-repository
example url for job list:

https://gaia.aip.de/uws/query

new job list filtering: append keywords:
by phase: ?PHASE=EXECUTING&PHASE=COMPLETED

latest jobs: ?LAST=100

latest with phase: ?LAST=100&PHASE=EXECUTING

jobs created a�er given date: ?AFTER=2016-01-01

wait-blocking behaviour for jobs:
just wait: ?WAIT=100

with phase: ?WAIT=100&PHASE=QUEUED

many combinations possible, a lot of options to test

3 / 12

http://volute.g-vo.org/svn/trunk/projects/grid/uws/doc/

UWS tests

created external, stand-alone test suite, using python
uses behave : python module for functional tests

called from the command line:

behave <options> <feature-file>

define test cases with Gherkin syntax for human-readable

text descriptions (features and scenarios, similar to

Cucumber), e.g.:

Scenario: Ensure user can access UWS endpoint

When I make a GET request to base URL

Then the response status should be "200"

even allows looping over parameters

4 / 12

UWS tests – loop example
 Scenario Outline: PHASE filter

 When I make a GET request to "?PHASE=<phase>"

 Then the response status should be "200"

 And all UWS elements "phase" should be "<phase>"

 Examples: Valid phases

 | phase |

 | PENDING |

 | QUEUED |

 | EXECUTING |

 | COMPLETED |

 | ERROR |

 | ABORTED |

 | ARCHIVED |

 | HELD |

 | SUSPENDED |

 | UNKNOWN |

5 / 12

UWS tests (continued)

behave python module
allows using tags for filtering tests for di�erent uses, e.g.:

use tags for UWS1.1, slow jobs, etc. for being able to exclude them

takes care of collecting error messages

=> only needed to define test cases and implement the
steps:

uws-validator
https://github.com/kristinriebe/uws-validator

6 / 12

https://github.com/kristinriebe/uws-validator

UWS tests – user configuration

parameters added via command line or config file
parameters are:

server's url, e.g. https://gaia.aip.de

base URL for UWS service: uws/query

user credentials for authentication

job details for jobs of di�erent (estimated) duration:

veryshort: finishes immediately

short: < 30 seconds

long: a couple of minutes

error: a job that will return with an error

7 / 12

Examples: testing uws

Check basic access and authentication:
behave -D configfile="userconfig-gaia.json"

features/account.feature

Test job list, creating veryshort job:
behave [...] --tags=basics

For UWS 1.0, exclude all 1.1 tests:
behave [...] --tags=-uws1_1

Do fast tests first (exclude slow and neverending jobs):
behave [...] --tags=-slow --tags=-neverending

8 / 12

Screenshot

9 / 12

Discussion I

Some decisions needed to be made
Job list checks:

Only use existing job list?

But then cannot test anything if no previous jobs

Use "fresh" test account with no previous jobs?

But no guarantee that jobs finish soon (time in queue uncertain)

Reuse previously created jobs?
Would save time for some tests

But then tests depend on each other

So: rather create new jobs each time I need them and clean

up a�erwards

10 / 12

Discussion II

WAIT checks:
useful for jobs in active phases (PENDING, QUEUED,

EXECUTING)

but time until phase changes is uncertain (e.g. if WAIT=10

really waits 10 seconds is di�icult to check for QUEUED jobs)

only PENDING phase change is controlled by user

server may return anytime sooner (allowed by standard)

11 / 12

Discussion III

Divide into di�erent use cases?
1. "own" services, where I have full control:

need complete feature tests for services (can use short

jobs, influence time in queue)

2. validation of external services:
only check required features (job list)

no reliable possibility to check WAIT,

unless further information is given, like:

"returned early because server is busy"

"server max. wait time exceeded"

should print out validation report with features that
could/could not be tested

12 / 12

