
Serializing Time
Domain Data

A(Simplified)VO-DML Approach

Time Domain Use Cases

● Purpose of the exercise
○ Science driven
○ Investigating different ways to serialize time domain data

■ No prerequisite nor on the choice of the model neither on the annotation scheme

● Sticking to Real Data
○ A few datasets proposed to test different annotations methods

■ Data distributed in multiple tables
■ Multiple light curves

VO-DML Mapping

Ta
bl

e
1 <PARAMS>

<FIELDS>

Ta
bl

e
2 <PARAMS>

<FIELDS>

Same/similar VO-DML
Mapping

Ta
bl

e
1 <PARAMS>

<FIELDS>

Ta
bl

e
2 <PARAMS>

<FIELDS>

Ta
bl

e
3 <PARAMS>

<FIELDS>

VO-DML Aware Client
● Only sees the mapping block
● No need to search annotations within tables
● The model knowledge is sufficient to process any table instance

○ Model knowledge means a generic piece of code

VO
-D

M
L

re
pr

es
en

ta
tio

n
of

 th
e

m
od

el
(s

)

VO-DML Mapping Strengths (DM1 session)

● It works
○ Self-consistent framework
○ Allows the reusability of models
○ Client code available
○ Available mapping tools and mapping helpers

● Independant from the <TABLE> Blocks
○ Can be inserted in existing VOTables without other modifications
○ No need to modify the VOTable schema

■ Just insert a sub-schema

○ <VODML> annotations easy to locate for the client
○ Ability to Retrieve Elements in Different Tables

■ Logical links between references

Some Issues However

1. A disadvantage: The size of the mapping block

2. Something more Basic: The generation of the
mapping blocks

The Size of the Mapping Block

● Example: BetaLyr_Vizier_ts.xml (on Volute
time_domain)
○ A time series with 5 filters mapped on theSimpeTimeSeries model

needs 775/1040 XML lines
■ Scientific quantities: 26 fields + some literals

The Size of the Mapping Block

● Is that Size an Issue?
○ Document size

■ Generation / storage / transfert
○ Reliability

■ Mapping data is a complex process which needs to be
checked: difficult here

■ Interoperability requires comprehensive messages

● Why is it so Long?
○ Model is complex

■ STC + DataSet + CubeDM
■ Lots of abstractions and references

○ Chatty mapping (personal point of view)
■ The mapping is a direct instantiation of the model
■ Some <ELEMENT> useless to extract data

It may be worth to consider a shorter syntax

Mapping Generation: The Vizier or TAP Cases

● Broad Variety of Data (See Sebastien’s talk Shanghai)
○ 14000 catalogues

■ Time data can have various formats and various locations in the VOTables

○ Dynamically generated data
■ TS generated from multiple source catalogues`
■ TAP reponses

● Data Annotation Process Must be Adapted to Such
Data Collections
○ Not overloading the documentalist tasks
○ As much scriptable as possible.
○ Easy parsing for light weight clients

■ E.g. plotter embedded in a web interface

This question must have a clear answer before to adopt
any solution
Crowd science is not a valid answer :=)

Is a Simpler Mapping Possible?

● Not Reinventing the Wheel:
○ Keeping the Actual VO-DML workflow
○ Starting from the vodml.xml model representation
○ Keeping the mapping structure

■ <VODML><MODELS/><GLOBALS/><TEMPLATES/></VODML>

○ Keeping the class hierarchies in <TEMPLATES/> dedicated each to one
<TABLE>

● Simplifying the Data Binding
○ Only expose the model features necessary for the clients
○ Hidden model features can be retrieved in the vodml.xml files

referenced
○ Mostly be derived from the syntax of the VO-DML mapping proposal

Attributes

Simpler References to Instances

● Using XML element @attribute
○ Facilitate the usage of templates

■ Easier to change attribute values than XML nodes

● One Tag to Grab Values
○ The same <VALUE> tag can be used to point on either <FIELD>, <PARAM>

or literals

Toward Templates

Mapping Block Template

● Unresolved References
to Data Replaced with
String Patterns
○ Easy to process

● One single
<TEMPLATES>
○ the mapping template must be

adapted by hand or by script

● A (little) step toward
automatic annotation
○ Template easy to process
○ To be validated

What I Did

● Snippet Tests
○ Tested mapping features out of any model context

● Test on Time Domain Data
○ Ad Hoc mapping of a shadow model
○ Based on a simple model developed for that purpose (lm_timeseries)
○ Based on SimpleTimeSeries (MCD)

■ Rose a couple of issues

● Python Client Consuming Annotated Data
○ Python code enable to data plotting

● A Python Mapping Generator
○ Convert the vo-dml.xml model into a mapping block template
○ Warrants the compliance with the VO-DML spec.

Basic Time Series (Vizier SDSS)

time flux

Meta data

Multiple Light Curves (Vizier BetaLyr)

J H K

Meta data

@filter: Mixed Light Curves (Gaia)

G

RP

G

RP

G

time flux filter

Meta data

Conclusions

● What Worked Out
○ TDIG data challenge passed
○ Generation of mapping block templates tested on various models
○ Easy to gather data distributed in different tables
○ Any piece of information can be retrieved
○ VO-DML concepts not broken
○ Mapping more compact (about 3x) and more readable

● Still to Do
○ Cross-reference mechanism to improve
○ Foreign keys just prototyped
○ <COLLECTION> usage to be refined
○ XML schema to write

● What is the Price for It
○ Client code generation a bit less straightforward

One Question and One Sketch

Model

Mapping

Code data

+/- Easy

Easy Tricky

Model

Mapping

Code data

Easier

Easier

+/- Easy

Current WD My target

The question of the mapping generation process must
have a clear answer before to adopt any solution

