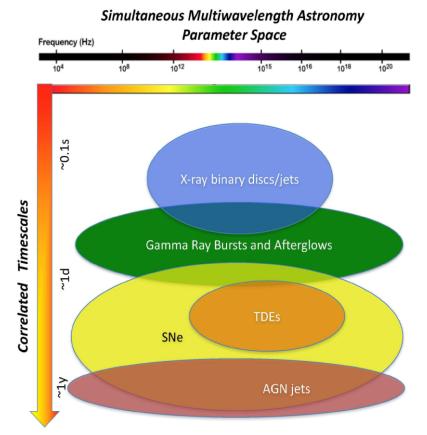


Visibility Service and Observation Locator: Planning future observations

Jesús Salgado¹ - ESAC Science Data Center (ESDC)


Aitor Ibarra¹, Richard Saxton², Jan-Uwe Ness⁴, Erik Kuulkers⁴, Carlos Gabriel⁴, Bruno Merin⁴, Peter Kretschmar⁴, Matthias Ehle⁴, Emilio Salazar³, Celia Sánchez³

1 Quasar for ESA 2 TPZ-VEGA for ESA 3 ATG for ESA 4 ESA

Scientists Require Coordinated Multi-wavelength Observations

- Increasing interest to simultaneously observe the same target at different wavelengths. Example use cases:
 - X-ray binary ToOs
 - Gaia transients
 - Optical & radio transients
 - TDEs, GRBs
 - GW & neutrino follow-up
- Some observatory numbers:
 - **NuSTAR**: 30% of the observations are coordinated with other observatories.
 - XMM-Newton: ~12% coordinated observations (NuSTAR, HST, Chandra, VLT, Swift).
 - INTEGRAL: ~10% of the observations are coordinated with other observatories.
 - **Chandra** has expanded the time available via joint programs.

J. Salgado - ESDC | Visibility and scheduled observations | 18/05/2018 | Slide $\ 2$

Middelton et al. 2017

Information is out there

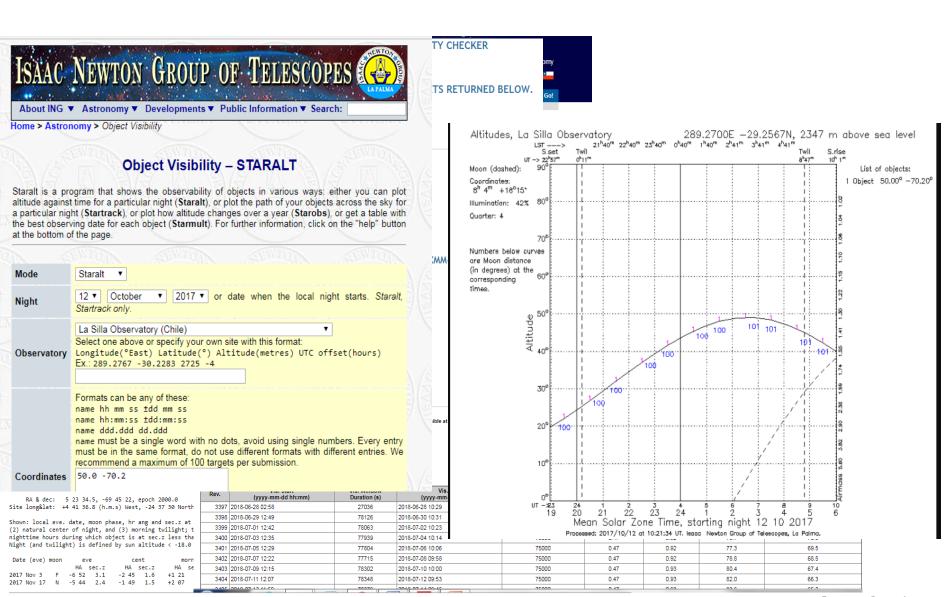
All information needed to plan an observation (via AO or ToO) is currently in facilities own web pages.

BUT

Instrument characteristics

Target Visibility Constraints

> Short-term schedule


Long-term schedule

Observations info

This information is usually shown in a web page statically and is only accessible trough forms that have to be manually filled in.

Visibility services

esa

European Space Agency

Planned Observations Services

esa

Contingencies of any type and

on can be viewed after clearing

2:00 UT (Current Rev = 3267)

Pete Boorman Fabio

Favata Fred Janse

XMM Newton MN Guido

Ricoliti

Nathan Patrick

Kavanagh Patrick D 44.0 42.8 Patrick Kavanagh 5 37.5 37.3 Guido

RGS2 OM

Dur. Dur Ks Ks

2 18.2 18.0

0 11.0 10.8

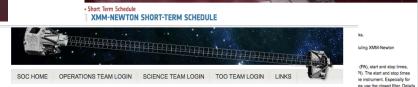
0 45.0 37.3

0 27.0 26.8

0 13.0 12.9

9 44.9 43.7

tually done.


Integral Target and Scheduling Information

Schedule: All executed Current revolution (1872) Future schedule Revolution 1872 to 1872 🧱 Show... show plot 🗹

Schedule for revolution 1872

(this list is also available in csv-format, click here to download)

Rev	Start time (UTC)	End time	(UTC)	Evo time	(e) Target		Da	(12000)	Dec	(12000) Pa	ttern Pl			Proposal Obs	ervation	N
1872	2017-10-10 13:29:15	09-Oct-201	7 18:48:29	Pro	liminary HS	T Obse	rving Time	line Rep	ort fo	r SMS: 172	88884			Page 1	01 / 00	22 F
1872	2017-10-10 17:13:34		SMS SI	tart: 2017.20	8:22:10:00 (15-007-	2017 22:10:	:00), End:	2017.2	96:00:00:00 (23-OCT-2017 0	10:00:00)			09 / 00	11
1872	2017-10-11 08:16:46														21 / 00	39
1872	2017-10-11 12:26:36	B	cheduling U: egin UT End	UT SU Id	Principal Investigat	Exp #	Target	Science Instrume	Mode	Apertures	Spectral Elements	Exposure Time(sec)			21 / 00	38
1872	2017-10-11 13:27:21	2017.288 2	3:00:00 23:3	5:07 148352	Lockwood	Z1-001	DARK	STIS/MA2	TIME-T	F28X50LP	MIRVIS	1300.00	Z1 01	01	21 / 004	40
1872	2017-10-11 15:00:12	2017.288 2 2017.288 2	3:14:45 06:30 3:14:45 06:30 3:14:45 06:30 3:14:45 06:30 3:14:45 06:30	0:55 147673 0:55 147673	5 Sing 5 Sing	35-002	WASP-69 WASP-69	COS/NUV COS/NUV	ACQ/PE ACQ/PE	PSA	G230L G230L	12.00	35 02 35 03	01	21 / 00-	40
1872	2017-10-11 18:41:00	2017.288 2	3:14:45 06:30 3:14:45 06:30	0:55 147673 0:55 147673	5 Sing 5 Sing	35-004 35-005	WASP-69 WASP-69 WASP-69	COS/FUV COS/FUV	TIME-T TIME-T	PSA PSA PSA PSA PSA	G130M G130M	1917.00 2706.00 2706.00	35 05 35 07	01	29 / 00	80
1872	2017-10-12 09:06:18	2017.288 2	3:14:45 06:30 3:14:45 06:30 3:14:45 06:30	147673	5 Sing 5 Sing	35-006	WASP-69 WASP-69 WASP-69	COS/FUV COS/FUV	TIME-T TIME-T	PSA	G130M G130M G130M	2706.00 2706.00 2706.00	35 09 35 0B	01	21 / 004	41
1872	2017-10-12 13:16:06	2017.289 0	0:00:00 00:20	3:32 14819J	Riley	JF-001	DARK	STIS/CCD	ACCUM	F28X50LP	MIRVIS		JF 01	01	21/00	42
		2017.289 0	0:00:00 00:20	3:32 14819J	Riley		DARK DARK-NM	STIS/CCD WFC3/UVI	ACCUM	F28X50LP	MIRVIS F373N	60.00	JF 01 3B 01	03		
		2017.289 0	0:00:00 00:4	5:10 1453331	Bourgue	3B-001	DARK-NM DARK	WFC3/UVI	ACCUM	UVIS F28X50LP	F373N MIRVIS	900.00	3B 02	01		
		2017.289 0	0:39:46 01:01	3:18 14819J	Riley	JG-001 JG-002	DARK			F28X50LP	MIRVIS	60.00	JG 01 JG 01	02		
		2017.289 0	0:39:46 01:00	8:18 148193	Riley	JG-003	DARK	STIS/CCD		F28X50LP	MIRVIS	60.00				
		2017.289 0	0:46:10 01:33	2:20 145333 2:20 145333	Bourgue Bourgue	30-001	DARK-NM DARK-NM	WFC3/UVI WFC3/UVI	ACCUM	UVIS	F467M F467M	900.00	3C 01 3C 02	01		
		2017.289 0	1:27:12 01:50	5:24 148219	J Riley	90-001	BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS	0.00	9U 01	01		
		2017.289 0	1:27:12 01:50	5:24 148219	J Riley	9U-001	BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS MIRVIS		9U 01 9U 01			
		2017.289 0	1:27:12 01:5	5:24 148219	J Riley	911-001	BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS		90 01			
		2017.289 0	1:27:12 01:50	5:24 1482191	J Riley	9U-001	BIAS BIAS BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS	0.00	9U 01	05		
		2017.289 0	1:27:12 01:5	5:24 148219	J Riley	90-001	BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS		9U 01 9U 01			
		2017.289 0	1:27:12 01:5	5:24 148219	J Riley	911-001	BTAS	STTS/CCD	ACCUM	F28X501.P	MIRVIS		90 01			
		2017.289 0	1:27:12 01:5	5:24 148219	J Riley	90-001	BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS	0.00	9U 01	09		
		2017.289 0	1:27:12 01:50	5:24 148219	J Riley	90-001	BIAS BIAS BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS	0.00	9U 01 9U 01	OA		
			1:27:12 01:5			911-001	BTAG	STTS/CCD	ACCUM	F28X50T.P	MIRVIS		90 01 90 01			
		2017.289 0	1:27:12 01:5	5:24 148219	J Riley	90-001	BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS		90 01			
			1:27:12 01:5			90-001	BIAS BIAS BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS		9U 01 9U 01			
		2017.289 0	1:27:12 01:5	5:24 148219	J Riley	90-002	BIAS	STIS/CCD	ACCUM	F28X50LP	MTRVTC		90 01			
		2017.289 0	1:27:12 01:5	5:24 148219	J Riley	90-002	BIAS	STIS/CCD	ACCUM	F28X50LP	MIRVIS		90 01			
		2017.289 0	1:27:12 01:50 1:27:12 01:50 1:27:12 01:50 1:40:00 02:00	9:22 14518F) Golimowski	F0-001	BIAS	ACS/WFC	ACCUM	WFC	F502N F660N		F0 01			
			1:40:00 02:0								F502N F660N					
			2:09:22 02:31					ACS/WFC			F502N F660N		F1 01			
		2017.289 0	2:09:22 02:31	3:56 14518F	Golimowski	F1-002	DARK	ACS/WFC	ACCUM	WFC	F502N F660N	1000.50	F1 01	02		
		09-Oct-201	7 18:48:29 SMS S	Pre tart: 2017.20	aliminary HS 88:22:10:00 (7 Obse 15-0C7-	erving Time 2017 22:10:	aline Rep 100), End:	ort fo 2017.2	r SMS: 172 96:00:00:00 (888A4 23-OCT-2017 0	00:00:00)		Page 2		
			cheduling Us egin UT End		Principal Investigat	Exp #	Target	Science Instrume	Mode	Apertures	Spectral Elements	Exposure Time(sec)	OB AL	EX		
			2:38:56 03:01					ACS/WFC		WFC	F502N		F2 01			
		2017.289 0	2:38:56 03:01	8:18 14518F	Golimowski	F2-002	DARK	ACS/WFC	ACCUM	WFC	F660N F502N	1000.50	F2 01	02		
		2017.289 0	3:10:31 03:40	0:05 14518F	Golimowski	F3-001	DARK	ACS/WFC	ACCUM	WFC	F660N F502N F660N	0.50	F3 01	01		
		2017.289 0	3:10:31 03:40	0:05 14518F	6 Golimowski	F3-002	DARK	ACS/WFC	ACCUM	WFC		1000.50	F3 01	02		
		2017.289 0	3:46:00 04:41	8:35 148352	Lockwood	Z2-001	DARK			F28X50LP	MIRVIS	1300.00				
		2017.289 0	3:49:34 05:0	145463	Shanahan Shanahar	39-001	TUNGSTEN	WFC3/UVI	ACCUM	UVIS1-M512-S UVIS	F645N F814W	60.00				
		2017.289 0	3:49:34 05:03	L:49 145463	Shanahan	39-003	TUNGSTEN	WFC3/UVI	ACCUM	UVIS	F438W	360.00	39 01	03		
	J. Salgado	2017.289 0	3:49:34 05:0								F438W	360.00	39 01	0.4	le !	5
	s. suigudo.	hbpix		•											10	

Observing schedules

Short Range Observatory Schedule Download

This is the confirmed schedule of NuSTAR observations. This sequence of observations has been uploaded to the spacecraft and will execute autonomously unless interrupted by a new schedule. Target of Opportunity, or instrument and spacecraft anomalies. This schedule will cover various time ranges depending on the exposure time goal of the observations, but will usually be for a period of at least one week

The times reported here are the start and end of the on-target period (day of year UTC). The estimated exposure time takes into account Earth occultation and the SAA passage time where detector background is increased. The end time of the observation is the start of the slew to the next target. Please examine the NuSTAR As-Flown Timeline (AFT) for the log of past observations

Table Header Explanations									
obs_start	obs_end	sequenceID	Name	J2000_RA	J2000_Dec	Exp	Notes		
2017:281:19:05:02	2017:283:00:30:00	90201021006	Kepler	262.671620	-21.491957	60.6	DDT		
2017:283:01:11:23	2017:283:02:40:00	90311211001	Sol_17282_AR2683_POS11	195.15715	-6.38520	3.4	ToO		
2017:283:02:40:32	2017:283:04:20:00	90311212001	Sol_17282_AR2683_POS12	195.21879	-6.41062	3.4	ToO		
2017:283:04:20:32	2017:283:05:50:00	90311213001	Sol_17282_AR2683_POS13	195.28046	-6.43604	3.4	ToO		
2017:283:06:55:11	2017:284:09:20:00	60376001002	2MASXJ19301380p3410495	292.557500	34.180500	55.3	Extragalactic Legacy Survey		
2017:284:09:45:09	2017:284:20:35:00	60360008002	SDSSJ152132d21p391206d9	230.3874232	39.2007671	22.0	Extragalactic Legacy Survey		
2017:284:21:10:03	2017:285:21:00:00	90301320002	NGC_6440	267.218083	-20.358944	49.5	ToO		
2017:285:21:20:06	2017:286:08:20:00	30302020004	GRS_1915p105	288.79813	10.94578	21.9	(2/4) coordinated with XMM and VLT		
2017:286:08:35:06	2017:286:19:30:00	60160701002	2MASXJ18560128p1538059	284.00210000	15.63200000	23.3	BAT AGN		
2017:286:20:05:11	2017:287:15:05:00	60376007002	UGC06728	176.316800	79.681500	61.4	Extragalactic Legacy Survey		
2017:287:15:50:11	2017:288:03:20:00	60368001002	NGC_1144	43.80083	-0.18361	22.0			
2017:288:04:05:09	2017:288:23:00:00	60301004002	ESO_103m35	279.58458	-65.4275	50.3			
2017:288:23:30:08	2017:290:05:45:00	30301026002	AX_J1841d0m0536	280.25179	-5.59625	59.7	phase constrained		
2017:290:06:00:04	2017:290:17:00:00	60160670002	2E1739d1m1210	265.47600000	-12.19700000	23.5	BAT AGN		
2017:290:17:15:01	2017:291:04:20:00	30363001002	GX_3p1	266.98333	-26.56361	21.8			

Long Range Observatory Schedule Download

This is the latest NuSTAR long-term schedule. Observations have been sorted into one-week intervals, taking into account Sun, Moon, required exposure time, and other constraints. So the date is the Monday of the week in which the observation is scheduled to begin.

E.g. An observation with a date 2017-12-18 in this table is scheduled to have the observation starting sometime between 2017-12-18 0000Z and 2017-12-25 0000Z.

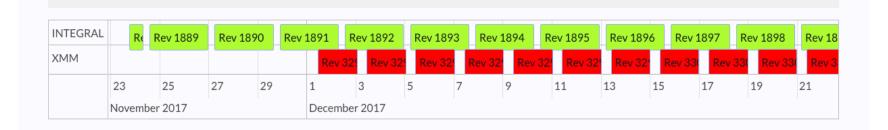
Currently the schedule is driven by the large number of observations coordinated with other observatories and the need to complete the NuSTAR Guest Observer programs. The exposure goal for targets allotted within one week may appear to fill more then the available NuSTAR exposure time in that week (average is 330 ks per week) but many observations start in one week and complete in the following week.

Targets of opportunity and any instrument or spacecraft anomalies may also cause the observing times of targets to shift. This long-term schedule is our present estimate of the future order of observations. Please be aware of the uncertainties.

ToO = Target of Opportunity DDT = Directors Discretionary Time NO3 = NuSTAR GO cycle-3 I15 = INTEGRAL GO cycle-15 X16 = XMM-Newton GO cycle-16 C18 = Chandra GO cycle-18 ELS/GLS = Extragalactic/Galactic legacy surveys

Use Case: XMM-Newton – Integral

XMM-Newton


http://xmm.esac.esa.int/XMMVisCheck? **startDate**=11-10-2017& **minduration**=12.000& **coordinates**=equatorial& **ra**=192.063458& **dec**=17.77394

INTEGRAL

http://integral.esac.esa.int//IntegralVisCheck? startDate=11-10-2017& minduration=12.000& coordinates=equatorial& ra=192.063458& dec=17.77394

🗧 🔶 🤁 🗋 xmm.esac.esa.int/XMMVisCheck?ra=321&dec=34&minDuration=5000&startdate=20-Dec-2017&enddate=20-Dec-2018&coordinates=equatorial

[{"SolarA": "89.3", "Rev": "3293", "VisStar": "2017-12-01 10:19", "AstroA": "241.2", "VisEnd": "2017-12-03 01:12", "StarPh": 0.12", "Round": "130000", "VisDur": "139962", "EndPh": "0.93"}, ("SolarA": "86.5", "Rev": "3295", "VisStar": "2017-12-03 10:11", "AstroA": "238.2", "VisEnd": "2017-12-05 00:54", "StarPh": "0.12", "Round": "130000", "VisDur": "139962", "EndPh": "0.93"}, ("SolarA": "86.5", "Rev": "3295", "VisStar": "2017-12-03 10:05", "AstroA": "238.2", "VisEnd": "2017-12-00 00:39", "StarPh": "0.12", "Round": "130000", "VisDur": "139918", "EndPh": "0.93"}, ("SolarA": "85.1", "Rev": "3296", "VisStar": "2017-12-07 09:55", "AstroA": "238.2", "VisEnd": "2017-12-09 00:39", "StarPh": "0.12", "Round": "130000", "VisDur": "139918", "EndPh": "0.93"}, ("SolarA": "85.3", "Rev": "3296", "VisStar": "2017-12-07 09:55", "AstroA": "238.8", "VisEnd": "2017-12-10 00:39", "StarPh": "0.12", "Round": "130000", "VisDur": "139918", "EndPh": "0.93"}, ("SolarA": "80.3", "Rev": "3299", "VisStar": "2017-12-11 09:45", "AstroA": "233.8", "VisEnd": "2017-12-13 00:12", "StarPh": "0.12", "Round": "130000", "VisDur": "139345", "EndPh": "0.92"}, ("SolarA": "80.9", "Rev": "3299", "VisStar": "2017-12-13 09:39", "AstroA": "233.8", "VisEnd": "2017-12-15 00:03", "StarPh": "0.12", "Round": "130000", "VisDur": "138278", "EndPh": "0.92"}, ("SolarA": "75.5", "Rev": "3300", "VisStar": "2017-12-17 09:31", "AstroA": "223.2", "VisEnd": "2017-12-18 23:55", "StarPh": "0.12", "Round": "130000", "VisDur": "138278", "EndPh": "0.92"}, ("SolarA": "76.7", "Rev": "3301", "VisStar": "2017-12-17 09:31", "AstroA": "223.2", "VisEnd": "2017-12-18 23:55", "StarPh": "0.12", "Round": "130000", "VisDur": "138278", "EndPh": "0.92"}, ("SolarA": "76.4", "Rev": "3302", "VisStar": "2017-12-19 09:11", "AstroA": "222.2", "VisEnd": "2017-12-20 23:29", "StarPh": "0.12", "Round": "130000", "VisDur": "138228", "EndPh": "0.92"}, ("SolarA": "76.4", "Rev": "3300", "VisStar": "2017-12-20 09:10", "AstroA": "222.1", "VisEnd": "2017-12-20 23:29", "StarPh": "0.12", "Round": "130000",

J. Salgado - ESDC | Visibility and scheduled observations | 18/05/2018 | Slide 6

ESA UNCLASSIFIED - Releasable to the Public

Two protocols

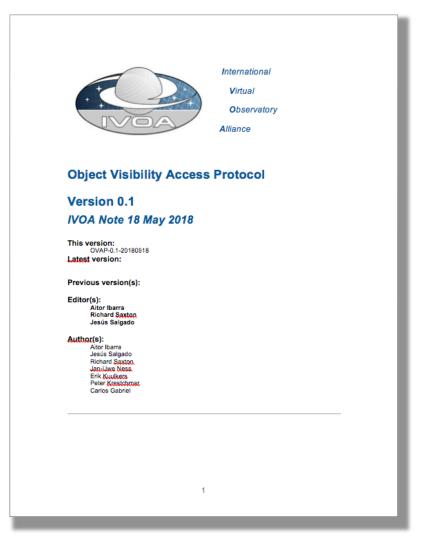
International	International
Virtual	Virtual
Observatory	Observatory
Alliance	Alliance
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Observation Locator Access Protocol Arsian 0.1 Arca for 0.8 May 2018 Dis warsion: Device version: Dire version:

OVAP IVOA Note

SOVAP (?)

J. Salgado - ESDC | Visibility and scheduled observations | 18/05/2018 | Slide 7

ESA UNCLASSIFIED - Releasable to the Public


OLAP IVOA Note

PlanObsTAP (?)

Object Visibility Access Protocol

- 1. Simple Access Protocol
- 2. Easy to implement for the different observatories
- 3. Already available in a nonstandard way in many cases
- Based on "parameter=value" approach
- 5. VOTable response
- Analyzed to be done as a TAP protocol but it was not so easy to implement

Compulsory:

- **1. RA:** Right Ascension
- **2. DEC**: Declination
- **3. START_TIME**: Time period start time
- **4. END_TIME**: Time period end time

- Equatorial J2000
- Equatorial J2000
- UTC Time (IVOA format) or MJD
- UTC Time (IVOA format) or MJD

http://xmmvischeck.esac.esa.int/ovap/vischek? RA=10.68&DEC=41.27& START_TIME=2018-02-22T23:00:00.0Z& END_TIME=2018-03-20T23:00:00.0Z

Optional:

- **1. MIN_VIS**: Minimum visibility check Double between 0-1 (min/max)
- **2. MAX_VIS**: Maximum visibility check Double between 0-1 (min/max)

J. Salgado - ESDC | Visibility and scheduled observations | 18/05/2018 | Slide 9

ESA UNCLASSIFIED - Releasable to the Public

OVAP protocol: Output

1. Visibility period start:

UTC Time (IVOA format) or MJD (utype="ovdm:Visibility.startVisibility.value")

1. Visibility period end:

UTC Time (IVOA format) or MJD (utype="ovdm:Visibility.endVisibility.value")

1. Visibility period duration:

seconds

(utype="ovdm:Visibility.duration.value")

k?xml version="1.0" encoding="UTF-8"?>
</VOTABLE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xmlns:http://www.ivoa.net/xml/\OTable\/\OTable-1.1.xsd"
xmlns:ssldm ="http://www.ivoa.net/xml/Object\/isibilityDM-v1.0.xsd"
version="1.0">
</RESOURCE type="results">
</RESOURCE type="results"
</RESOURCE type="results"
</RESOURCE type="results"
</RESOURCE type="results"
</RESOURCE type="

<TABLE>

<FIELD ucd="ovdm.startVisibility" name="START_VISIBILITY" utype="ovdm.visibility.startVisibility.value" datatype="char" arraysize="*"/> <FIELD ucd="ovdm.endVisibility" name="END_VISIBILITY" utype="ovdm.visibility.endVisibility.value" datatype="char" arraysize="*"/> <FIELD ucd="ovdm.duration" name="DURATION" utype="ovdm:visibility.duration.value" datatype="double"/> <DATA> <TABLEDATA>

<TR> <TD>2018-06-28T02:58:00.0Z</TD> <TD>2018-06-28T10:29:00.0Z</TD> <TD>2018-06-28T10:29:00.0Z</TD> <TD>27036</TD> </TR>

<TR> <TD>2018-06-29T12:49:00.0Z</TD> <TD>2018-06-30T10:31:00.0Z</TD> <TD>78126</TD> </TR>

..... more lines data.....

</TABLEDATA> </DATA> </TABLE> </RESOURCE> </VOTABLE>

OLAP – Observation Locator Access Protocol

- 1. Retrieve information of planned observations
- 2. Protocol based on TAP
- 3. Allow the discovery of planned observations
- Based on discovery of planned observation periods (not in data discovery)
- Non-applicable ObsDataSet elements have been removed as there is not data associated yet
- 6. Some new fields added to support planning and to make the distinction between performed and scheduled
- 7. Some metadata is private for some observatories but it is important to reserve these time blocks into the schedule
- Compulsory metadata should be, only, the start and end times (in this case of the scheduled time)

Observation Locator Data Model

Column Name	Unit	Туре	Description
t_planning	d	double	Planning time in MJD
target_name	unitless	String	Astronomical object observed,
			if any
obs_id	unitless	String	Observation ID
obs_collection	unitless	String	Name of the data collection
s_ra	deg	double	Central right ascension, ICRS
s_dec	deg	double	Central declination, ICRS
s_fov	deg	double	Diameter (bounds) of the
			covered region
s_resolution	arcsec	double	Spatial resolution of data as
			FWHM
t_min	d	double	Start time in MJD
t_max	d	double	Stop time in MJD
t_exptime	S	double	Total exposure time
t_resolution	S	double	Temporal resolution FWHM
em_min	m	double	Start in spectral coordinates
em_max	m	double	Stop in spectral coordinates
em_res_power	unitless	double	Spectral resolving power
o_ucd	unitless	String	UCD of observable (e.g.
			phot.flux.density, phot.count,
			etc.)
pol_states	unitless	String	List of polarization states or
			NULL if not applicable
pol_xel	unitless	integer	Number of polarization
			samples
facility_name	unitless	String	Name of the facility used for
			this observation
instrument_name	unitless	String	Name of the instrument used
			for this observation
obs_release_date	unitless	date	Observation release date (ISO
			8601)
t_plan_exptime	S	double	Planned exposure time
category	unitless	String	Observation category (fixed,
/is			coordinated, etc)
priority	unitless	enum integer	Priority level {0, 1, 2}

J. Salgado - ESDC | Vis

ESA UNCLASSIFIED - R

European Space Agency

- **1.t_planning** time when the plan has been generated (to support more optimal queries to the system)
- 2.obs_release_date Time when this observation has entered into the plan
- **3.t_plan_exptime** Planned time and executed time can be different due to different reasons (e.g. problems with the observation or instrumental configuration overheads)
- **4. Category** Values are "fixed" or "coordinated" (can be reused from other IVOA DMs?)
- **5. Priority** Value are 0, 1, 2. It helps to understand the priority of the planned observation providing also the possible chance of changing

Discovery of observations planned for a certain observatory

- 1. The observatory receives observatory proposals by the scientists
- 2. Proposals are ranked
- 3. Proposals are inserted into the observation planning system
- 4. Observation planners schedule short-medium plan trying to maximize the relevance of a certain observation period (e.g. per night or orbit revolution) and taking into account the constrains of the observatory (e.g. visibility of the object, geometrical constrains like the Sun or the Earth for space based observatories, etc)
- 5. In case of unexpected events like, e.g. targets of opportunity, scheduled plan could be replaced by another one modifying the short or medium plans.

SELECT * FROM ivoa.ObsCore WHERE t_min < 58700 AND t_max > 58500

Follow-up of Target of Opportunities

- **1**. Two types of ToOs in astronomy:
 - a. Unpredictable ToOs: Astronomical events that require immediate or almost immediate observations and that, generally, require also coordination between different observatories.
 - b. Predictable ToOs: These astronomical events are related (not always) to known transient phenomena or due to coordinated observations of targets special interest.
- 2. For the first type, short-term plan can be affected in a very short time scale as per triggering of follow-up observations of a certain astronomical event.

SELECT * FROM ivoa.ObsCore WHERE	
t_planning > <saved_copy_time></saved_copy_time>	AND
t_max < <maximum_time_requested></maximum_time_requested>	AND
1=INTERSECTS(s_fov,	
CIRCLE('ICRS', < <u>T</u> OO_ra> , <too_dec>, <i< td=""><td>RADIUS>))</td></i<></too_dec>	RADIUS>))

Looking for partners

1. ESA groups already involved

- a. XMM-Newton Science Operations Centre
- b. INTEGRAL Science Operations Centre
- c. ESDC ESAC Science Data Centre
- 2. Teams Contacted
 - a. NuStar (Caltech)
 - b. CfA (Chandra)
 - c. ESO
 - d. Astron (ASTERICS)
- 3. Plan to create a multi-project prototype as a reference implementation (XMM-Newton, INTEGRAL, others (?))

1. Two technical notes in process

- a. Visibility protocol
- b. Planned observation access
- 2. Interest from observatories on this kind of services
- 3. Some relevant use cases already identified
- 4. Not existing standards for this.
 - a. IVOA will help on that
- 5. XMM-SOC members in contact with other institutions to produce prototypes
- 6. Working prototype for next ADASS/Interop

Thanks!