HiPS for the ASTRODEEP portal

IVOA Interop meeting Sydney, 30/10/2015

Sébastien Derriere

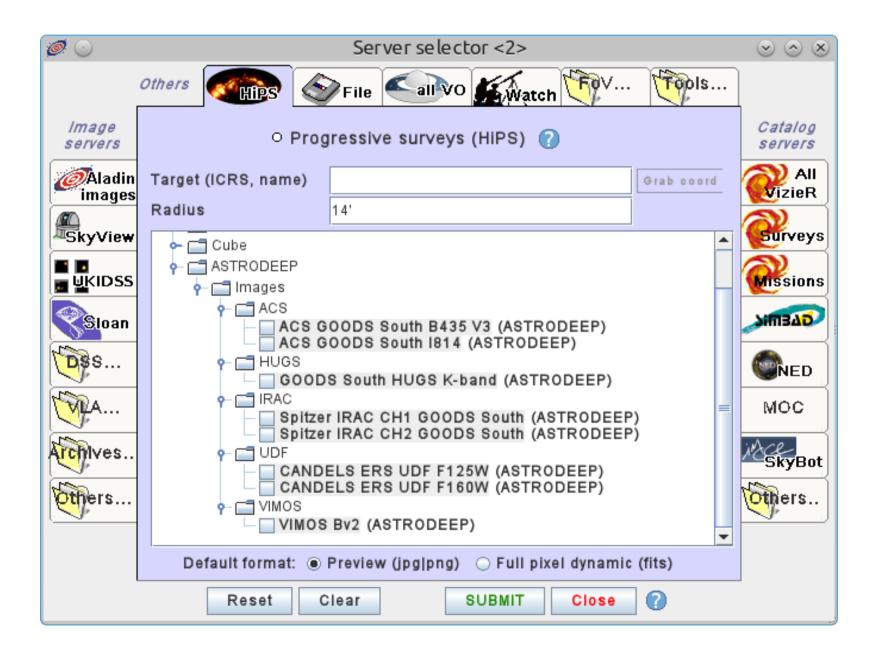
ASTRODEEP

European project

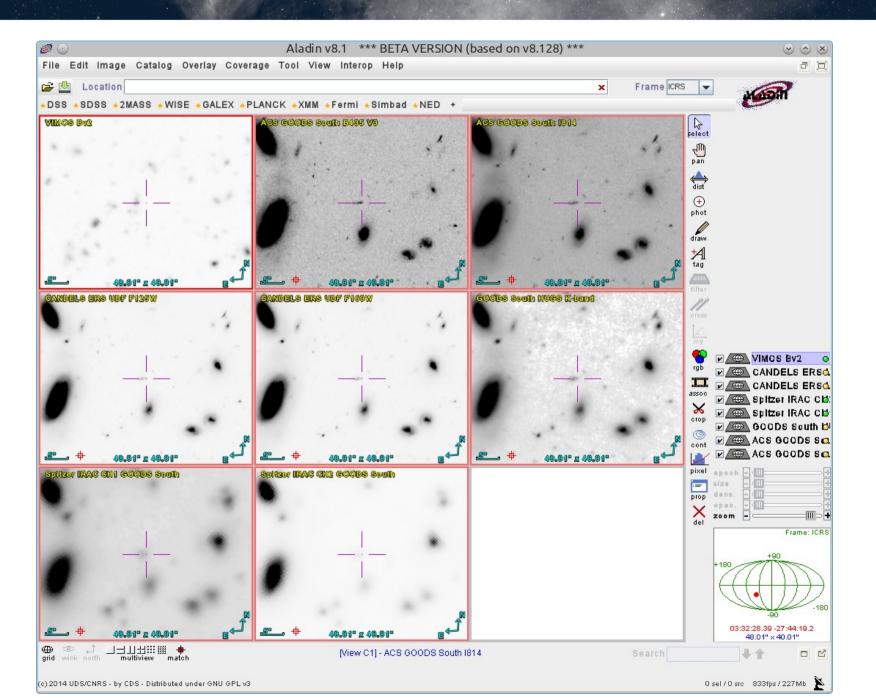
- Exploit the deepest multi-frequency astronomical survey data
 - Data validation
 - Analysis
 - Sharing

Deep image surveys

			GOODS North	EGS CANDELS	UDS	UDS CANDELS	COSMOS	COSMOS CANDELS	GOODS South	HUDFs	Frontier Fields	
		Area Wave.	1 50' 2	150'2	102	150'2	102	150'2	150'2	15'2		
-3	ALMA	1.3 mm			l		1			0.15mJy		223
	GOODS North	EGS CANDELS		UDS	200 C	UDS CANDELS		COSMOS		MOS	GOODS South	HUDFs
Area	1 50' 2	150'2		102		.50'2	1 º ²		150'2		150'2	15'2
	Spitzer	70 μm 70 μm	2.4 mJy	3.5 mJy	18 m]y	18 mJy	10 mJy	10 mJy	3.1 mJy	3.1 mJy		
	-1	24 µm	21 m/y	50 m/y	230 m]y	230 mJy	60 mJy	60 mJy	20 m]y	20 m]y		
		16 µm	32 mJy						52 m]y	52 mJy		
		8 µm	1.7 mJy	4.8 mJy	10.2 mJy	10.2 mJy	17.3 mJy	17.3 mJy	1.7 тЈу	1.7 mJy		
		5.8 μm	1.4 mJy	3.9 mJy	8.3 mJy	8.3 m/y	13.4 mJy	13.4 mJy	1.4 mJy	1.4 mJy		
		4.5 μm	0.2 mJy	0.6 mJy	1.2 mJy	1.2 m/y	2.0 mJy	2.0 mJy	0.2 mJy		26mag	
		3.6 µm	0.1 mJy	0.3 mJy	0.6 mJy	0.6 m/y	1.1 mJy	1.1 mJy	0.1 mJy	0.1 mJy	26.6 mag	
	VLT/VISTA/ UKIDSS	2µm(K)	25.6	23.8	25.0	26.0	25.0	26.0	26.8	27.2		
	HST-WFC3	1.6	27.8	26.7		26.7		26.7	27.8	29.9		
		1.4 (JW)								29.9	28.8	
		1.2 µm(])	27.8	26.7		26.7		26.7	27.8	29.9	28.8	
		1 µm(Y)	28.0						28.0	30.0	28.8	
	VLT/VISTA	1µm(Y)			24.6	26.5	26.7	26.7	26.7	26.7		
	HST-ACS	0.85µm(27.6						27.6	29.4	28.8	
		0.75	28.7	27.8		27.8	27.2	27.8	28.7	29.9		
		0.6	28.2	27.9		27.9	27.2	27.9	28.2	30.1	28.9	
		0.45µm(B)	28.2						28.2	29.7	28.9	
	CFHT/VLT LBT	0.36µm(U)	28.2	27.0	27.5	27.5	27.7	27.7	28.0	28.0		
	XMM	2-10 keV	1.5x10-15		3x10-15	3x10-15	3x10-15	3x10-15	4x10-16	4x10-16		
	XMM	5-10 keV	4x10.15		1x10-14	1x10-14	1x10-14	1x10-14	7x10-16	7x10-16		
	Chandra	0.5-2 keV	2x10 ⁻¹⁷	5x10 ⁻¹⁷ erg cm ² s ⁻¹			2x10-16	2x10 ⁻¹⁶	1x10-17	1x10-17		


Image data

- Very deep !
- Small mosaics
 - covering a few fields in very different directions across the entire sky
- Several wavebands
 - with very different spatial resolution
- Not really Big Data


Conversion to HiPS

- Fast and easy to create within Aladin
- First application to 8 image bands in GOODS South
- Norder 10 to 13
- Allows to easily browse, pan, zoom, compare

Custom dictionary for Aladin

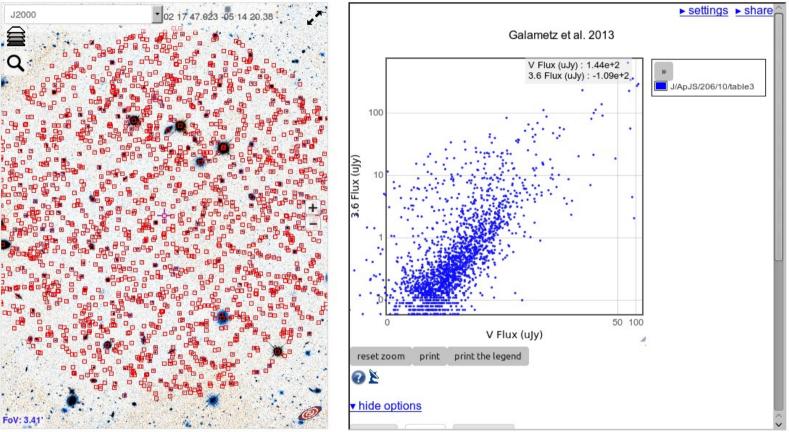
View in Aladin

Access in AladinLite

Aladin Lite view

Images of the GOODS South field in 8 different bands have been computed in HiPS, you can click the stack icon in the upper left to change the image base layer. Other surveys are also available for comparison. Higher resolution images are retrieved as you zoom in. Such AladinLite view can be easily embedded in any web page.

12000		
J2000 v 03 32 34.186 -27 47 19.74		R. N
X		
Base image layer		
GOODS South HUGS K-IV		
SDSS9 colored		
Mellinger colored		
2MASS colored		
AllWISE color		
IRIS colored		
GLIMPSE360		
IRAC color 11,12,14 - (GLIMPSE, SAGE, SAGE-SMC, SINGS)		
AKARI Color (WideL-WideS-N60)		
Halpha		
ACS GOODS South B435 V3		+
ACS GOODS South 1814		-
GOODS South HUGS K-band		
Spitzer IRAC CH1 GOODS South		
Spitzer IRAC CH2 GOODS South		
CANDELS ERS UDF F125W		
CANDELS ERS UDF F160W		
VIMOS Bv2		
VTSS-Ha		
XMM-Newton stacked EPIC images (no phot. normalization	n) 📙	
XMM PN colored		
V: 3.43'		e


Re-use in SAADA

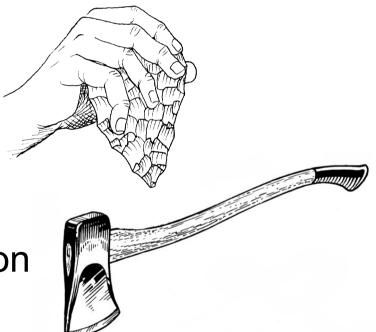
Create thumbnails centered on catalogue sources

workingDB GOODS_South>ENTRY>candels_3dhstEntry

GOODS_South	Show 10 v ent	ries 🔽 🗮 🖴	Showing 1 to 10 of 160 entries									
- 🛺 candels_3dhst	Position	Error (arcsec)	Name	Rel : ToThumbnail	Rel : ToSED	Rel : ToPZ	Rel : ToSpectr					
- Match_GS - Match_VUDS_GS - ENTRY - SPECTRUM	03:32:24.41-27:57:30.4 (s)	Not Set	GOODS_South-candels_3dhstEntry03 32 24.4-27 57 30	1	1 links 🎟	No index!!	4 links 🕮					
in III MISC	03:32:19.70-27:57:13.2 (s)	Not Set	GOODS_South-candels_3dhstEntry03 32 19.7-27 57 13		1 links 🎟	No index!!	4 links 🕮					
	03:32:17.87-27:56:58.3 (s)	Not Set	GOODS_South-candels_3dhstEntry03 32 17.9-27 56 58		1 links 🎟	No index!!	4 links 🕮					
	03:32:20.57-27:56:56.3 (s)	Not Set	GOODS_South-candels_3dhstEntry03 32 20.6-27 56 56		No link	No index!!	4 links 📟					
<	03:32:29.28-27:56:19.4 (s)	Not Set	GOODS_South-candels_3dhstEntry03 32 29.3-27 56 19		No link	No index!!	4 links 🕮 🗘					
	<		·]		<>					

Build web portal with widgets

Various image surveys can be displayed as HIPS surveys. Higher resolution details get downloaded as we zoom in on the view.

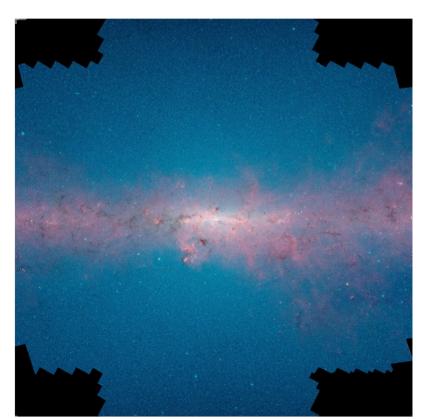

Full	_r	_RAJ2000	_DEJ2000	recno	Seq	RAJ2000	DEJ2000	Hlim	Q	CStar	SED	uFlux	e_	BFlux	e_	VIÂ
	arcmin	deg	deg			deg	deg	mag				uJy	uJy	uJy	uJy	
✓ 1	0.0180	034.445931	-05.237783	6762	6762	034.4459305	-05.2377832	28.2217	0	0.070	SED	0.1082	0.0076	0.1232	0.0040	0.1:
✓2	0.0802	034.445896	-05.238835	6652	6652	034.4458960	-05.2388351	28.3169	0	0.000	SED	0.3953	0.0077	0.5218	0.0040	0.56
✓3	0.0878	034.444457	-05.238012	6684	6684	034.4444573	-05.2380124	28.3090	0	0.370	SED	0.0025	0.0066	0.0486	0.0033	0.0
✓4	0.1022	034.446013	-05.235807	7112	7112	034.4460129	-05.2358069	28.0995	0	0.880	SED	0.0118	0.0066	0.0208	0.0035	0.0:
✓5	0.1184	034.444349	-05.236194	29497	29497	034.4443489	-05.2361940	28.0896	0	0.110	SED	0.0173	0.0068	0.0364	0.0034	0.04
	0.1259	034.447940	-05.237492	29411	29411	034.4479398	-05.2374915	28.1403	0	0.570	SED	0.0131	0.0068	0.0254	0.0035	0.02
<₽7	0.1327	034.447116	-05.235694	29520	29520	034.4471156	-05.2356944	28.1068	0	0.200	SED	0.0504	0.0066	0.0473	0.0034	0.0!
✓8	0.1353	034.447360	-05.239166	6745	6745	034.4473598	-05.2391663	28.1528	0	0.030	SED	1.1860	0.0083	1.7875	0.0045	3.14
√9	0.1595	034.448387	-05.238274	6641	6641	034.4483869	-05.2382744	28.2387	0	0.070	SED	0.0323	0.0068	0.0605	0.0037	0.0!

Side-project : create large posters !

- « Do you know where I can find very large astronomical images to make large prints for outreach ? »
- Could HiPS help do that ?
 - The astronomer's approach

- The computer scientist's solution

- The guru's solution


Brute force

- Create a web page with HUGE AladinLite instance
- Wait for all the tiles to load
- Make screenshot of the browser contents

```
<html>
<body>
<!-- include Aladin Lite CSS file in the head section of your page -->
<link rel="stylesheet" href="http://aladin.u-strasbg.fr/AladinLite/api/v2/latest/aladin.min.css" />
<!-- you can skip the following line if your page already integrates the jQuery library -->
<script type="text/javascript" src="http://code.jquery.com/jquery-1.9.1.min.js" charset="utf-8"></script>
<!-- insert this snippet where you want Aladin Lite viewer to appear and after the loading of jQuery -->
<div id="aladin-lite-div" style="width:8000px;height:8000px;"></div>
<script type="text/javascript" src="http://aladin.u-strasbg.fr/AladinLite/api/v2/latest/aladin.min.js" charset="utf-8"></script>
<script type="text/javascript" src="http://aladin.u-strasbg.fr/AladinLite/api/v2/latest/aladin.min.js" charset="utf-8"></script>
<script type="text/javascript" src="http://aladin.u-strasbg.fr/AladinLite/api/v2/latest/aladin.min.js" charset="utf-8"></script>
<script type="text/javascript" src="http://aladin.u-strasbg.fr/AladinLite/api/v2/latest/aladin.min.js" charset="utf-8"></script>
</script type="text/javascript" src="http://aladin.u-strasbg.fr/AladinLite/api/v2/latest/aladin.min.js" charset="utf-8"></script>
</script type="text/javascript" src="http://aladin.u-strasbg.fr/AladinLite/api/v2/latest/aladin.min.js" charset="utf-8"></script>
</script>
</sc
```

Brute force result

- It works (surprisingly) !
- Generate 8000 pixel * 8000 pixel image in a few minutes
- Makes 2m * 2m 100dpi print

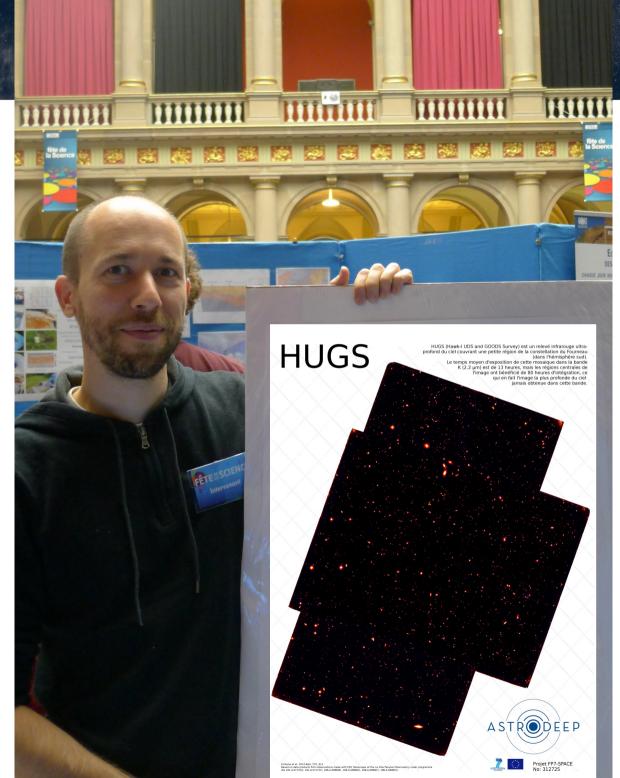
Smarter way

Create JS script and load it with

- PhantomJS is a headless WebKit
- Wait for the data to load
- Make screenshot of AladinLite canvas

Better way

 Have a dedicated jar access the HiPS and build the image directly


 \rightarrow ask Pierre Fernique !

- 5min to generate 12k x 12k PNG image (including data transfer)
- Without data transfer : 26s to generate 15k x 15k JPG image (but you need enough RAM !)

Application

Fête de la science
 2015

