International
Virtual
Observatory

Alliance

Homogeneous Access to Tabular Data

IVOA Note 01-May-2007

Authors:
Aurélien Stébé, Kona Andrews, Guy Rixon, Ifiaki Ortiz

Abstract

This document describes a homogenized Protocol for accessing tabular data in
the Virtual Observatory realm. This note only describes the Protocol to access
the data, and not the query language nor any service-specific operations. These
are described in other documents (ADQL, a Xmatch-like service spec, VOSI ...).

Status of This Document
This is a Note. There are no prior released versions of this document.

This is an IVOA Note expressing suggestions from and opinions of the authors. It
is intended to share best practices, possible approaches, or other perspectives
on interoperability within the Virtual Observatory. It should not be referenced or
otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Contents

1 Introduction
2 Input Query Formats
2.1 Simple Access Query
2.1.1 Query method format
2.1.2 Generic PARAM types
2.1.2.1 The single value type
2.1.2.2 The list value type
2.1.2.3 The interval value type
2124 The interval PARAM type
2.1.3 Reserved PARAM names
2131 The POS & SIZE parameters
2.1.3.2 The BAND parameter
2.1.3.3 The TIME parameter
2.1.34 The FORMAT parameter
2.1.35 The VERB parameter
2.1.3.6 The TOP parameter
2.1.3.7 The TOKEN parameter
2.2 Complete Access Query
2.2.1 Query method format
2.2.2 The nativeADQL method
2.2.3 The uTypeADQL method
2.2.4 The directQuery method
2.3 Asynchronous Querying
2.3.1 The DEST parameter
2.3.2 Job management & UWS
3 Output Result Formats
3.1 VOTable output format
3.2 Other output formats
3.21 The CSV format
3.2.2 The XML format
4 Metadata Access Format
4.1 Metadata query methods
4.1.1 Simple query metadata
4.1.2 Complete query metadata
4.2 Metadata output formats
4.2.1 The “params” metadata
4.2.2 The “dataset” metadata
4.2.3 The “table” metadata
5 Error Responses
Compliance with DAL Services
References

O O OWWOWOWWOWMWOONNOODOOOTDNAWWW

1 Introduction

During the evolution of the IVOA and its activities, it has become clear that a
number of different technology layers are involved in the general question of data
access within the VO. The decision was taken to create a technical experts group
to deal with the disentangling of these different layers. Such a group was created
(VOQL Technical Experts Group, VOQL-TEG) on 01-Sep-2006.

The agreed structure for the different aspects of data access was deemed to
contain three basic layers:

e The Query Language (Astronomical Data Query Language, ADQL)
e The Access Protocol (Table Access Protocol, TAP)
e The Services (e.g. a Crossmatch service)

This document addresses exclusively the Table Access Protocol layer.

2 Input Query Formats

In this protocol specification, two input query methods are defined. The first is
intended to be easy to implement and to use, whereas the second is intended to
give complete access to the dataset. The second method provides both
synchronous and asynchronous access modes, the latter to support long-running
queries. Either or both of these methods may be implemented, and
asynchronous support is optional.

As may be seen below, these two methods do not individually define their output
formats or their error handling. These aspects of the protocol are common to
both query methods, and are defined in subsequent sections.

2.1 Simple Access Query

The Simple Access Query method is intended to be easy to implement both for
the server and the client. It gives access to a dataset using simple Key-Value
Pairs to filter the data to be returned, and allows only minimal control over the
guantity of data (rows / columns) to be returned.

This access method presents the dataset as a flat, single table structure and
effectively hides the dataset’s inner structure. Hence, usually only a subset of the
data may be accessed and clients/users quickly reach the limits of the interface.

Nevertheless, it is simple to implement, and may be very suitable for publishing
small and simple datasets. It can also provide immediate (if basic) access to
more complex datasets while a more complete interface is being implemented.

2.1.1 Query method format

The Simple Access Query method is invoked via a standard HTTP/1.1 GET
request to a URL endpoint. The URL endpoint takes the following general form:

http://service.endpoint.sag{?,&}PARAM=value[&..]

The different elements constituting the URL endpoint are:

e The HTTP protocol designation => http://
e The specific service endpoint => service.endpoint.saq
e The endpoint/parameters separator => {?,&}
e Alist of query parameters formed by:
0 A parameter name => PARAM
0 A parameter name/value equal sign separator
0 A parameter value => value
0 A parameter list ampersand sign separator

Note that the specific service endpoint may include login information (e.qg.
“user:pass@”), port number (e.g. “28080") and an arbitrarily long path. Anchor
pointers (e.g. “#anchor”) may be present in the URL endpoint, but they have no
specific meaning in this protocol specification for the service.

The endpoint/parameters separator may be either a question mark or an
ampersand depending on the presence or not of a question mark in the specific
service endpoint.

Parameter names should avoid using unsafe characters, but if they do, they must
be URL encoded. Parameter values must be correctly URL encoded. The
comma and the slash characters have special meaning in this query method.
They must be URL encoded to escape that meaning.

The HTTP request is then:

GET /path{?,&}PARAM=value[&.] HTTP/1.1
Host: service.endpoint.url

If no parameters are provided, the service may return all of its data (within its
maximum returned rows limit, if this exists) and providing its default set of
columns. The service may also return some standard introduction document
instead. This allows the user to be presented with some documentation and/or an
HTML web form when first accessing the service using a browser for example.

If one or more parameters are provided, they shall act on the data as a
successive set of filters. The order in which the filters will be applied is undefined;
it does not have to match the order in which the filter parameters are specified in
the URL endpoint. Only data that satisfies all of the supported filters shall be
returned.

If a parameter is unsupported by the service, it may be reported as an error or
silently ignored. Parameters noted as compulsory in the protocol specification
shall not be silently ignored; failing to support any of them will render the service
non-compliant with the specification.

Parameter names are usually defined and written in uppercase, but they shall be
treated in a case-insensitive manner by the service. A good habit followed by
most services is to write protocol defined parameters in uppercase and service-
specific ones in lowercase.

The parameters should not modify the output format of the service (see point 4
for this); they may only limit the quantity of data (how many rows), the type of
data (specific values filtered) and the quantity of information (how many
columns).

The service may also support this query method using the HTTP POST verb, but
this should not be considered standard behaviour by clients. The other HTTP
verbs (PUT, DELETE, OPTIONS, HEAD ...) are undefined for this query method.

2.1.2 Generic PARAM types

Here we define the generic PARAM types that can be used to filter the data.
These types describe families of possible parameters, where service
implementers define the actual supported parameter names; this should allow
server and client implementers to write generic code for handling input
parameters.

Additionally, we specify a few reserved PARAM names, for which additional logic
might be needed. Services or protocols that expand on this specification may
define additional PARAMSs, but they should be based on the following generic

types.

2.1.2.1 The single value type

This is the simplest PARAM type. The parameter name points to a single data
type (one column) and it must be compared to the value specified using an equal
sign operator. The input looks like this:

PARAM_NAME=value

The value can be either a numerical type or a character string type. Hence, for
numerical types it would result in the following interpretation in an SQL-like
language:

PARAM_collumn = value
... and for character string types:

PARAM_column = *“value”

The definition of the parameter may specify that it shall be treated as an upper or
lower limit. This is only valid if used with a numerical type value. Hence, for upper
limit parameters the interpretation would be:

PARAM_collumn > value
... and for lower limit parameters:

PARAM_collumn < value

2.1.2.2 The list value type

The parameter name also points to a single data type (one column), but the
value specified is actually a comma separated list of values. The input looks like
this:

PARAM_NAME=valuel,value2,value3

The value can be either a numerical type or a character string type. Hence, for
numerical types it would result in the following interpretation in an SQL-like
language:

PARAM_collumn IN (valuel,value2,value3d)
... and for character string types:

PARAM_column IN (“valuel”,”value2”,”value3™)

For character string types, the list may begin or end with a comma, and/or have
two consecutive commas. This shall be interpreted as the empty string value and
must be included in the list of values.

For numerical types, if the list begins or ends with a comma, and/or has two
consecutive commas, this shall not be interpreted as the zero value and may be
reported as an error by the service or silently ignored.

2.1.2.3 The interval value type

Here the parameter name still points to a single data type (one column), but the
value specified is actually a slash separated interval. The input looks like this:
PARAM_NAME=valueMIN/valueMAX

The value may only be a numerical type. The interval may be open at one end
(PARAM_NAME=/valueMAX or PARAM_NAME=valueMIN/), but it has of course
no meaning to open at both ends (this is equal to not filtering on this value). This
kind of input (PARAM_NAME=/) may be reported as an error by the service or
silently ignored.

Hence, the resulting interpretations in an SQL-like language might be, as
appropriate:

PARAM_column BETWEEN valueMIN AND valueMAX

PARAM _collumn > valueMIN (open upper limit interval)

PARAM _collumn < valueMAX (open lower limit interval)

2.1.2.4 The interval PARAM type

In this case, the parameter name points to an interval of values (two columns).
The definition of the parameter shall specify this, as no indication in the
parameter name is given. Also, this parameter type may only be used with
numerical type values.

If the value is of the single type, then the filter consist of checking the value is
inside the interval. The resulting interpretation in an SQL-like language is:
PARAM_columnMIN < value AND PARAM_columnMAX > value

If the value is of the interval type, then the filter consists of checking the two
intervals cover each other. The resulting interpretations might be, as appropriate:
PARAM_columnMIN < valueMAX AND PARAM_columnMAX > valueMIN

PARAM_collumnMAX > valueMIN (open upper limit interval)
PARAM_columnMIN < valueMAX (open lower limit interval)

2.1.3 Reserved PARAM names

The following list of parameters is by no mean compulsory for services
supporting the Simple Access Query method, but if they are needed (or rendered
compulsory by a service or protocol definition that expands on this one), then
they must comply with the following definitions.

These PARAM names are reserved and may not be used for other purposes;
additionally, the functionality associated with any of these reserved PARAM
names should not be provided using any other PARAM name.

2.1.3.1 The POS & SIZE parameters

TODO (see the definition in the SSAP specification for the moment)

2.1.3.2 The BAND parameter

TODO (see the definition in the SSAP specification for the moment)

2.1.3.3 The TIME parameter

TODO (see the definition in the SSAP specification for the moment)

2.1.3.4 The FORMAT parameter

TODO (see the definition in the SSAP specification for the moment)
Note: this parameter does not indicate the desired output format of the query
results. It has the same meaning as in the SSAP specification (filtering on the

dataset format). To avoid confusion, this document will use the OUTPUT
parameter, as described below, to select the output format for the time being.

2.1.3.5 The VERB parameter

TODO (see the definition in the SSAP specification for the moment)

2.1.3.6 The TOP parameter

TODO (see the definition in the SSAP specification for the moment)

2.1.3.7 The TOKEN parameter

TODO (see the definition in the SSAP specification for the moment)

2.2 Complete Access Query

The Complete Access Query method is intended to give total access and control
over the dataset to the client. It uses a full query language (defined in other
specifications) to access the data, which offers much more control than the
Simple Access Query method.

This access method makes the dataset’s inner structure available to the client.
Hence, any and/or all columns of the data may in principle be returned, but the
clients/users become responsible for data-level considerations such as table
joins, order-by constraints or output column selection.

2.2.1 Query method format

The Complete Access Query method is invoked via a standard HTTP/1.1 POST
request to a URL endpoint. The URL endpoint takes the following general form:

http://service.endpoint.caq

The different elements constituting the URL endpoint are:

e The HTTP protocol designation => http://
e The specific service endpoint => service.endpoint.caq

Note that the specific service endpoint may include login information (e.qg.
“user :pass@”), port number (e.g. “28080") and an arbitrary long path. Anchor
pointers (e.g. “#anchor”) may be present in the URL endpoint, but they have no
specific meaning in this protocol specification for the service.

The actual parameter is passed in the message body in the following form:

queryType=queryString

The different elements constituting the message body are:

e The query type name value => queryType
e The parameter name/value equal sign separator
e The actual query string value => queryString

The query string must be URL encoded as it would be if sent from an HTML form
with the “enctype” set to “appl ication/x-www-form-urlencoded”.

The HTTP request is then:

POST /path HTTP/1.1

Host: service.endpoint.url
.. (additional headers) ..
CRLF
queryType=queryString

If no parameters are provided, the service may return an error or empty output.
The service may also return some standard introduction document instead. This
allows the user to be presented with some documentation and/or an HTML web
form when first accessing the service using a browser for example.

Note that it is an error, and it must be reported as such, to pass any other
parameter in the message body than the ones defined hereafter or to specify
more than one parameter.

The service may support any number of the following query types. Trying to
make a query using an unsupported query type shall result in an error output.
Parameter names are usually written as defined hereafter, but they shall be
treated in a case-insensitive manner by the service.

The service may also support this query method using the HTTP GET verb, but
this should not be considered standard behaviour by clients. Moreover, clients
should be aware that problems may arise due to the URL string length limitations
of some network equipments. The other HTTP verbs (PUT, DELETE, OPTIONS,
HEAD ...) are undefined for this query method.

Note: the assumption is being made here that the service provides read-only
access to the data, so that queries can have no side-effects. It seems likely that
the next version of ADQL will guaranty this. The absence of side-effects might
not be guarantied for the directQuery method discussed below.

2.2.2 The nativeADQL method

This method takes an ADQL string-formatted parameter in the form:

nativeADQL=SELECT * FROM table WHERE ..

The ADQL specification, defined by the VOQL-TEG, can be found here (ref. [1]).

2.2.3 The uTypeADQL method

This method takes an ADQL string-formatted parameter in the form:

uTypeADQL=SELECT * WHERE ..

The ADQL specification, defined by the VOQL-TEG, can be found here (ref. [1]).

This method differs from the nativeADQL method in that the query is assumed to
be written against a formal data model, rather than against the service’s
published table and column names. The service must make the mapping from
the formal data model to its actual table and column names before performing
the query.

2.2.4 The directQuery method

Note: Alex Szalay (member of the VOQL-TEG) proposed to add a directQuery
method. This method would take a standard SQL parameter or even vendor
specific definition of SQL. This method should be understood as a pass-through
to the database and should be implemented and used with extreme caution. It
would be, in any case, up to the service provider to implement and activate this
method or not. Some other members of the VOQL-TEG expressed their concern
regarding security issues by allowing such a method.

Such a method might additionally be useful for services wishing to expose non-
ADQL querying capabilities for specialized services using non-SQL query
languages (e.g. XQuery, SPARQL ...).

2.3 Asynchronous Querying

By default, the “simple” and “complete” queries are both synchronous: the client
makes a single HTTP request and receives in response the query results. These
modes require the client and service to stay connected, without network
interruption, HTTP time-out or client down-time, for the entire length of the query.
Very-long-running queries work more reliably if the client submits the query,
disconnects, and calls back later to fetch the results (asynchronous operation).

The Asynchronous Query method is invoked via a standard HTTP/1.1 POST
request to an URL endpoint. This endpoint must be distinct from the endpoints
providing the simple-access query and (default, synchronous) complete-access
guery. Any request that may be posted to the complete-access endpoint may be
sent instead to the asynchronous-query endpoint. The request format, and
especially the query language, are identical with the exception that the
asynchronous-query endpoint supports an additional parameter DEST.

2.3.1 The DEST parameter

When a query is submitted asynchronously, the results of that query do not
return directly to the client and instead must be stored somewhere on behalf of
that client, for later synchronous retrieval.

The location where the data is to be stored is controlled by the DEST parameter,
which may take one of two forms. The first form uses the fixed keyword LOCAL.:

DEST=LOCAL

This form indicates that the data should be staged at the service, for later
collection by the client (“local delivery”).

The second form allows a destination URL to be specified, so for example:

DEST=http://my.server/~john/out.vot (an HTTP URL)
DEST=ftp://my.server/~john/out.vot (an FTP URL)
DEST=vos://my.server !vospace/john/out.vot (a VOSpace URL)

This form indicates that the service should deliver the data to the specified
remote URL, using an appropriate method (“remote delivery”). If the service is
supplied with a destination URL that involves an unsupported protocol, it should
be reported as an error. Ideally the supported protocols will be published in the
service registration.

Support for both local and remote delivery is optional; however, at least one of
the two delivery methods must be supported by the asynchronous query
endpoint.

2.3.2 Job management & UWS

The web resource at the asynchronous-query endpoint is a Job List object as
defined by the Universal Worker Service (UWS) standard; this document uses
v0.3 of the UWS standard (ref. [7]). Therefore, successfully posting a query here
creates a UWS job. That job is represented as a set of separate web-resources
following the UWS standard. The client may poll these new resources to monitor
and control the execution of the query.

When the query completes, it produces a table of results exactly as if the query
had been executed at the complete-access-query endpoint. The table of results
is stored on the server and is made available for downloading as a web resource.
The table is the formal, UWS result named “table” and this allows the client to
discover its URI via the UWS interface. The service may store the table inside its
web application, or it may store it on an external web server or FTP server.

UWS allows a job to be destroyed either by command of the client or by timing
out. Destroying a job running a query involves, in addition to the normal UWS
requirements, aborting the query on the underlying DBMS.

All other aspects of job control work here as detailed in the UWS standard.

3 Output Result Formats

Hereafter, we briefly discuss a new idea for output result formats handling. The
advantage of this solution is that the mechanism remains consistent across
different input query methods. The disadvantage is that the output format
requested must be a MIME type format, and that the method itself is not
universally applicable (for example, it may not work in the asynchronous case).

In addition to this new method, a more traditional approach is supported using an
OUTPUT parameter to control the output format selection. NOTE: this OUTPUT
parameter is not equivalent to the FORMAT parameter used in S*AP protocols.

A similar comment could be made in this specification concerning compression
using the standard Accept-Encoding and Content-Encoding headers of HTTP.

A similar, but lesser, comment could be made in this specification concerning
charset encoding using the standard Accept-Charset header of HTTP.

The results of a query may take various formats, and the format does not depend
on the input query method used to call the service. The standard format, which
must be supported by all services, is the VOTable-vl.1 format as described
below. In addition, services may support any number of other formats (e.g. CSV
or TSV, XML ...).

The output format desired by the client shall be indicated using the standard

HTTP mechanism and MIME types. As such, the client uses the “Accept:”
HTTP header to indicate a list of preferred MIME types for the output.

For example:

Accept: application/x-votable+xml, text/csv, */*

It might not always be possible to control the output format in this way (for
example, when using the asynchronous query method, or when using a web
browser to construct and submit query URLs manually).

In such cases, an OUTPUT parameter may be used to force the output format
selection. This parameter may be used with all forms of query method, and if
present always overrides the “Accept:” HTTP header value.

The service must respond to a valid query, that does not generate any error, with
a “200 OK” status code and the “Content-Type:” HTTP header indicating the
MIME type of the actual output. (NB: if this conflicts with the UWS specification in
the asynchronous case, the behaviour should conform to the UWS specification).

For example:

HTTP/1.1 200 OK
Content-Type: application/x-votable+xml

If both the OUTPUT parameter and the “Accept:” HTTP header are missing
from the client call, the default output format is the VOTable-vl.1 format as
described below. The “Content-Type:” HTTP header shall still be present.

Here we briefly discuss a new idea for empty output results handling. The
advantages of this solution are that the mechanism remains consistent
regardless of the requested result format, and that server/client processing power
is spared and bandwidth usage is reduced. The disadvantage is that current
clients may not check for this status code. An alternative approach is to return an
empty VOTable (or equivalent for other output formats), as is the case in the
SSAP specification.

If the client query produces no result data, the server should respond with a “204
No Content” status code and no message body. This behaviour is preferred to
returning an empty VOTable (or equivalent empty file for other output formats).
Note that this is not an error status code; rather, it indicates that the query was
valid, and ran to completion without error, but produced no data.

3.1 VOTable output format

This output format is requested using:
OUTPUT=VOTABLE

Results returned in this output format must comply with the VOTable-v1.1
specification and validate against the official VOTable-vl.1 XSD schema. The
MIME type for this format is: application/x-votable+xml

The VOTABLE must contain a single RESOURCE element identified by the attribute
type=*‘results”, containing a single TABLE element with the resulting data.

This specification does not enforce any type of information to be returned, but for
each one (each column), the FIELD element must have one “name” and one
“‘datatype” attribute with valid values. Furthermore, it is strongly recommended
to fill out the “ucd”, “utype”, “unit’” and “arraysize” attributes with valid
values whenever possible. A short DESCRIPTION element may also prove to be
very useful to clients.

3.2 Other output formats

The following list of output formats is by no mean compulsory for services to be
compliant, but if they are needed (or rendered compulsory by a service or
protocol definition that expands on this one) they must comply with the following
definitions. It is strongly discouraged to implement a similar output format with
any other MIME type.

3.2.1 The CSV format

This output format is requested using:
OUTPUT=CSV

Results returned in this output format must comply with the RFC 4180, which can
be found here (ref. [6]). The MIME type for this format is: text/csv

This format can be useful as it is very simple and easily supported by clients.

3.2.2 The XML format

This output format is requested using:
OUTPUT=XML

Results returned in this output format must be compliant XML 1.0 documents.
The MIME type for this format is: text/xml

This format can be useful as it allows complex data structures.

4 Metadata Access Format

Metadata is accessed directly from the service endpoint and should contain all
the information needed to construct simple or complete queries. The metadata
guery methods for an input query method must be supported if the input query
method is supported by the service.

Note: Metadata handling is still a very active topic within the IVOA. The notes in
this section may be superseded by the VOSI specification, which covers the
standard interfaces (including metadata access methods) that should be
supported by a VO-compliant service. The metadata access methods to be
supported by this protocol should be either pure VOSI or a superset of VOSI.

4.1 Metadata query methods

The Metadata Query methods are invoked via a standard HTTP/1.1 GET request
to a URL endpoint. The URL endpoint takes the following general form:

http://metadata.endpoint.{s,c}aq
[{?.,&}table=table_name]

The different elements constituting the URL endpoint are:

e The HTTP protocol designation => http://

e The specific metadata endpoint => metadata.endpoint.{s,c}aq
e The endpoint/parameters separator => {?,&}

e The optional table name designator => table=table_name

Note that the specific service endpoint may include login information (e.qg.
“user:pass@”), port number (e.g. “28080") and an arbitrary long path. Anchor
pointers (e.g. “#anchor”) may be present in the URL endpoint, but they have no
specific meaning in this protocol specification for the service.

The endpoint/parameters separator may be either a question mark or an
ampersand depending on the presence or not of a question mark in the specific
metadata endpoint.

The optional “table_name” parameter value must be URL encoded as it would
be if sent from an HTML form with the “enctype” set to “application/x-
www-Form-urlencoded”.

The HTTP request is then:

GET /path[{?,&}table=table name] HTTP/1.1
Host: metadata.endpoint.url

The other HTTP verbs (POST, PUT, DELETE, OPTIONS, HEAD ...) are
undefined for this query method.

4.1.1 Simple query metadata

Accessing a Simple Query method metadata is done via two unique endpoints.

http://metadata.endpoint.saq

This shall return the information on input parameters that can be used for this
service, encoded in the XML “params” structure described hereafter.

http://metadata.endpoint.saqg{?,&}table=results

This shall return the information on the data returned by this service, encoded in
the XML “table” structure described hereafter.

4.1.2 Complete query metadata

Accessing a Complete Query method metadata is done via two unique
endpoints. The second endpoint has a variable part informed by a call to the first
one.

http://metadata.endpoint.caq

This shall return the information on the database structure of this service,
encoded in the XML “dataset” structure described hereafter.

http://metadata.endpoint.caq{?,&}table=table _name

This shall return the information on the particular structure of the table
“table_name” of this service, encoded in the XML “table” structure described
hereafter.

If the table “table_name” does not exist for this service, the server shall return
an error code “400 Bad Request” or “404 Not Found”.

4.2 Metadata output formats

All metadata output shall conform to the following formats and validate against its
respective XSD schema.

4.2.1 The “params” metadata

TODO (to be worked out in coordination with the Registry WG)

4.2.2 The “dataset” metadata

TODO (to be worked out in coordination with the Registry WG)

4.2.3 The “table” metadata

TODO (to be worked out in coordination with the Registry WG)

5 Error Responses

Hereafter, we briefly discuss a new idea for error handling. The advantage of this
solution is that the same format of error response is used, regardless of the
requested output format. The disadvantage is that the list of error codes cannot
be extended. An alternative approach is to return a VOTable-based error output,
as is the case in the SSAP specification.

Error output shall be supported using the standard error codes from the HTTP
protocol. Here is a list of correspondences, and explanations of the different
codes.

Here are the client error codes:

400 Bad Request — used for malformed or erroneous input query
401 Unauthorized — reserved for error accessing proprietary data
403 Forbidden — reserved for blocked access to proprietary data
404 Not Found — used for queries to an unsupported method

Here are the server error codes:

500 Internal Server Error — general miscellaneous server error
501 Not Implemented — unimplemented optional behaviour/parameter
502 Bad Gateway — backend error (database, store, external service)
503 Service Unavailable — temporary problem with server or backend
504 Gateway Timeout — backend not responding or timing out

It is strongly encouraged to use the message body to return a textual explanation
of the error for the client/user. The description should be plain UTF-8 encoded
English text, without any formatting tags, destined for a human reader.

Compliance with DAL Services

Following this protocol paradigm, any DAL protocol could be defined as an n-step
protocol made up of:

- aninitial step using the above described protocol spec for the queryData

- asecond step (e.g. SIAP, SSAP, ...) making use of the getData capability
of the service

- possible further n-steps (to follow eventually from here if required in future)

Further considerations on these types of protocol are deferred to an eventual
discussion within the DAL Working Group.

References

[1] VOQL-TEG, Astronomical Data Query Language (ADQL),
http://www.ivoa.net/Documents/latest/ ADOL.html

[2] ISO, Database Language SQL,
http://www.contrib.andrew.cmu.edu/~shadow/sqgl/sql1992.txt

[3] D. Tody et al., Simple Image Access Protocol (SIAP),
http://www.ivoa.net/Documents/latest/SIA.html

[4] D. Tody et al., Simple Spectral Access Protocol (SSAP),
http://www.aoc.nrao.edu/~dtody/ssa/ssa-v097.pdf

[5] F. Ochsenbein et al., VOTable Format Definition,
http://www.ivoa.net/Documents/latest/VOT .html

[6] Y. Shafranovich, Comma-Separated Values Files (rfc4180),
http://www.ietf.org/rfc/rfc4180.txt

[7] G. Rixon, Universal Worker Service (UWS),
http://www.ivoa.net/internal/[VOA/lvoaGridAndWebServices/UWS-0.3.pdf

