
FHA: Institut für Informatik

Implementation Notes of the Security Specs for IVO

Carlo U. Nicola April, 26th 2005

1 Signing on to the IVO

Each user is a member of a community (on its de�nition and size see [1]). The user signs
on by sending a user ID (IVOID) and a password to a local program that acts as proxy
for the user (AgU where: U = IV OID). The program generates (RSA, DSA-algorithm) an
asymmetric key pair KU

S ,KU
Pu. and then passes KU

Pu (the public key) and the user ID to the
SO (Sign On) program of the community server. The server generates a X509 certi�cate,
signs it with its CA and sends the certi�cate back to AgU , encrypted symmetrically with the
password of the user. Of course the last step hinders not only that the password wanders
(perhaps in clear!) on the community's network but more important that only the legitimate
user can extract the certi�cate.

It is important to remember that the SO program should maintain a complete list of all the
session certi�cates that are currently in use. A line in this list consists of: KU

Pu, IVOID,
certU . A timeout mechanism or better an expiration time for certi�cates assures that older
certi�cates not in use anymore are purged from the list.

The software agent AgU can be either a program running on the user's computer or a servlet
embedded in a web portal.

2 Authenticating to the service

Each time the user requests a service, AgU interacts with that speci�c service with a new
set of keys and a new certi�cate on behalf of the user. The actual authentication's steps are
(verbatim from the proposal of Guy Rixon [1]):

1. The service establishes that the request comes from an entity holding a certain private
key.

2. The service determines the individual account to which the private key is bound.

3. The service determines the community that de�nes the individual account.

4. The service determines the group or groups associated with the individual account.

1



3 Delegation of credentials

In this protocol the secret key KU
S must be sent to the service through a secure channel

(TLS). Since KU
S should never leave the main store of the user's computer, I would implement

the �rst step in the authentication, as follows:

1. The software proxy of the IVO user (AgU ) sends on an unsecure channel to the service
(Srv):

eKU
S
(nonce,Hash(nonce)) + certU −→ Srv

The reason why the nonce and the hash of the nonce are sent both encrypted, lies in the
construction of the nonce. Even if we assume the nonce is a random number (probably
produced by SecureRandom.getInstance("SHA1PRNG")) it is better to hide this fact
to prevent future attacks (most random number series produced by such algorithms
are quite predictable . . . ). In our case a simple random number will not do: the nonce
should contain a minimal information about the user and the community he is coming
from, therefore the case for encryption is more stringent. The decoding process is not
too di�cult if one keeps in mind that in all practical hash functions the hash values
have a constant byte size.

2. The service veri�es the user's credentials and message integrity by decrypting the
message with KPu (extracted from the cert);

3. The service gets the DN of the user's community and the address of the attribute
server of that community from the cert.

4. The service looks up the group attributes of the IVO user from the attribute server
(shibboleth SOAP service)

The clear advantages of this protocol are:

1. All information with the exception of that in the last step, �ows securely on unsecured
channels;

2. Only one copy of KU
S is present at any given time in the system, namely on the local

user's (or web portal) machine.

3 Delegation of credentials

Sometimes a service can only be get at through subsidiary agents. The question then arises,
how to delegate the user session credentials in a secure manner to the subsidiary agent. It
is important for the delegation mechanism to be modeled after the authentication protocol
I discussed in the previous section. The reason is obvious: we can thus reuse in the concrete
implementation the same code. The stages are as follows :

2



4 Security of SOAP messages

1.1 AgU : eKU
S
(nonce, hash(nonce)) (for details of the nonce construction see below).

1.2 AgU : eKU
S
(nonce, hash(nonce)) , U −→ AgDelU .

2.1 AgDelU : KDelU
S ,KDelU

Pu

2.2 AgDelU : msg, hash(msg) where: msg = U,KDelU
Pu , eKU

S
(nonce, hash(nonce)), DelID

−→ SO.

3.1 SO checks: eKU
S
(nonce, hash(nonce)) (it maintains a list with all the relevant param-

eters in this case it uses KU
Pu)

3.2 if verify OK:

3.3 SO signs: new certDelU containing KDelU
Pu .

3.4 SO: certDelU −→ AgDelU .

3.5 else verify NOK: Error msg to community manager.

The nonce should contain some information that can identify the delegating agent. For
example:

#IVOID#DN Community#Usergroup#Random string#Time stamp#

4 Security of SOAP messages

5 Implementation details

I now discuss a concrete implementation of this design as a proof of concept.

6 Literature

[1] Guy Rixon, April, 18th 2005:

http://software.astrogrid.org/SoftwareArchitectureFor2005.html

3

http://software.astrogrid.org/SoftwareArchitectureFor2005.html

	1 Signing on to the IVO
	2 Authenticating to the service
	3 Delegation of credentials
	4 Security of SOAP messages
	5 Implementation details
	6 Literature

