	[image: image1.jpg]

	 International
 Virtual
 Observatory
Alliance

VOSpace-1
Version 0.21
WD 2006 May 18
This version:

0.21-20060518
Previous version(s):

0.20
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOStore0.20.doc
0.19
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOStore0.19.doc

0.18
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOStore0.18.pdf

0.17
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOStore0.17.pdf

0.15
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices /VOStore0.14.pdf

0.13
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices /VOStore0.13.pdf

Authors:

Matthew Graham

Paul Harrison

David Morris

William O’Mullane

Guy Rixon (editor for this draft)
Ani Thakar

Abstract

VOSpace is a SOAP interface for access to data stores. VOSpace-1 applies the VOSpace concept to flat, unconnected stores.
Status of This Document

This is a working draft. It has not been released outside the working group.
This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or made obsolete by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than “work in progress”.
A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.
Contents

41.
Introduction

42.
VOSpace identifiers

53.
VOSpace metadata-structures

53.1.
node

63.2.
location

63.3.
transfer

74.
Access control

75.
VOSpace web-service operations

75.1.
Creating and manipulating data-nodes

75.1.1.
createNode

85.1.2.
deleteNode

95.1.3.
listNodes

105.1.4.
moveNode

105.1.5.
copyNode

115.2.
Manipulating metadata of data-sets

115.2.1.
getNodeProperties

115.2.2.
setNodeProperties

125.3.
Access to node data

125.3.1.
pushDataToVoSpace

145.3.2.
pullDataToVoSpace

165.3.3.
pullDataFromVoSpace

175.3.4.
pushDataFromVoSpace

18Annex A: Access to node data via DIME attachments to SOAP

196.
References

1. Introduction

VOSpace is an interface standard for data stores. It specifies how VO agents and applications can use network-attached data-stores to persist and exchange data in a standard way.
A VOSpace web-service is an access point for a distributed storage-network. Through that access point, a client can:

· add or delete data-sets;
· manipulate metadata for the data-sets;

· obtain URIs through which the content of the data-sets can be got or put.

VOSpace does not define how the data are stored, but only how they are accessed. Thus, the VOSpace interface can readily be added to an existing storage-system.

When we speak of “a VOSpace”, we mean the arrangement of data accessible through one particular VOSpace service. A VOSpace data-node means a data-set within a VOSpace. Nodes in VOSpace have unique identifiers expressed as URIs in the vos:// scheme, as defined below.
In VOSpace 1, the subject of this standard, each VOSpace is a single, flat container of data-sets, like one directory of a file-system. There are no links between VOSpace 1 services. A VOSpace-1 service provides facilities similar to a service in the earlier VOStore standard; VOSpace-1 supercedes VOStore.
Later versions of VOSpace will allow a hierarchical arrangement of data-sets within a space, and will allow VOSpaces to be linked such that a client can navigate them as one tree. Services implementing VOSpace 1 can be linked in as leaf-nodes of this combined tree without needing to change; the VOSpace 2+ services will make the links

2. VOSpace identifiers
The identifier for a node in VOSpace shall be a URI with the scheme vos. Such a URI shall have the following parts:
· scheme;

· naming authority;

· path;

· (optional) query;

· (optional) fragment identifier;

with the meanings and encoding rules defined in RFC2396 [2].

The naming authority for a VOSpace node shall be the VOSpace service through which the node was created. The authority part of the URI shall be constructed from the IVO identifier [3] for that service by deleting the ivo:// prefix and changing all forward-slash characters (‘/’) in the resource key to exclamation marks (‘!’).

This is an example of a possible VOSpace identifier.

vos://org.astrogrid.cam!vospace!container-6/siap-out-1.vot?foo=bar#baz

· org.astrogrid.cam!vospace!container-6 is the authority part of the URI, corresponding to the IVO-ID ivo://org.astrogrid.cam/vospace/container-6. There should be a VOSpace service registered with this identifier.

· /siap-out-1.vot is the path part of the URI. Slashes in the path imply a hierarchical arrangement of data, as is normal with URIs. Since VOSpace 1 does not support data hierarchies, an identifier for a VOSpace-1 node must have one slash at the start of the path and no other slashes.

· ?foo=baz is a query string and thus is something to which the VOSpace service is supposed to respond. No queries of this nature are defined for VOSpace 1, but the query-string systne is reserved for later versions of VOSpace. VOSpace-1 identifiers must not contain the ‘?’ delimiter.
· #baz is a fragment identifier. Its meaning attaches to the data-set stored in the VOSpace node, not to the node itself. The fragment identifier is interpreted by the client, not by the VOSpace service; the service shall ignore any fragment identifier in a received node-identifier.
A VOSpace identifier shall refer to exactly one node in any VOSpace.
A client shall decode a VOSpace identifier for access to the node according to the following procedure.

1. Extract the authority part of the VOSpace URI.

2. Convert the authority back to the IVO-ID of the VOSpace service by changing any ‘!’ characters to ‘/’ and adding the ivo:// prefix.

3. Resolve the IVO-ID to an endpoint for the VOSpace service using the IVO resource-registry.

4. Access the node via the endpoint using the operation defined in this standard.

3. VOSpace metadata-structures

3.1. node

The node element in VOSpace metadata describes one node in a space. Several of the web-service operations return a node element. The element shall be a structure containing the following members.

· The full, URI-encoded identifier for the node.

· The type of the node.

· The set of properties associated with the node.

· A status element which may take the following codes.

· empty: the node is created but contains no data either as a result of createNode or pushData... but the transfer has not yet happened.
· loading: data is being transferred to the node;
· complete: any data transfer to the node is complete;

· expired: the node has been created but no data transfer has occurred and the allotted transfer-time has expired.

The type refers to the node itself, not to the data-set stored in the node. It is not a MIME type for the data-set (MIME type is stored in the node properties). In VOSpace-1, all nodes shall have type ivo://org.astrogrid.vospace/types/data.node. In VOSpace-2, other types (containers; links) will be introduced.

The node properties are a set of name-value pairs. All properties are optional and the set of property names is open. However, property names with the prefix vos. are reserved and may be given standard meanings in future versions of the VOSpace standard. Possible node properties include

· MIME-type;

· size of data-set;

· identity of node owner;

· time of last modification.

VOSpace implementations may define and use their own properties.

3.2. location

The location element in VOSpace metadata defines an endpoint for a data transfer. The element shall be a structure containing the following members.

· The URI for the endpoint.

Later versions of the standard may define location variants with more metadata. Hence, location cannot be a simple type holding a URI but does need to be a structure.

3.3. transfer

The transfer element in VOSpace metadata defines the details of a data transfer to or from a space. The element shall be a structure with the following members.
· The URI for the format of the transferred data. Allowed values are

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable.

· The URI naming the transport protocol for the data transfer. Allowed values include

· ivo://org.astrogrid.vospace/protocols/http-get

· The location element for the endpoint of the transfer inside the space.

4. Access control

The access-control policy for a VOSpace is defined by the implementor of that space according to the use-cases for which the implementation is intended. A space may have any access-control policy for its nodes but the policy shall be uniform across all nodes in the space and shall be declared in human-readable form in the registry metadata for the space.

These are the most-probable access policies.

1. No access control is asserted. Any client can create, read, write and delete nodes anonymously.

2. No authorization is required, as in policy #1, but clients must authenticate an identity (for logging purposes) in each request to the space.
3. Clients may not create or change nodes (i.e. the contents of the space are fixed by the implementation or set by some interface other than VOSpace), but any client can read any node without authentication.
4. Nodes are considered to be owned by the user who created them. Only the owner can operate on a node.
No operations to vary the access policy (e.g. to set permissions on an individual node) are included in this standard. Later versions may add such operations.

Where the access policy requires authentication of callers, the VOSpace service shall support the IVOA single-sign-on profile.
5. VOSpace web-service operations
A VOSpace-1 service shall be a SOAP service with the following operations.
The contract for the forthcoming VOSpace-2, which will support hierarchies of containers and links between spaces, is a super-set of the contract in this section. Please see the original discussion of VOSpace semantics [1] to see how the contract changes.

5.1. Creating and manipulating data-nodes

5.1.1. createNode

Creates a new node in a space. This method is used to create empty data nodes.

Parameters

· Name - A (optional) valid name for the new node, e.g.
· my results

· If the name is null, then the service will generate a new unique name for the node e.g.

· 000-517

· Properties - An optional properties structure.
Returns

A <node> element for the new node.
Faults

· The service will throw a NodeNotFound exception if the parent node does not exist.

· The service will throw a DuplicateNode exception if a node already exists with the same name.

· The service may throw an OperationNotSupported exception if it does not support user defined names.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

5.1.2. deleteNode

Delete a node from VOSpace.

Parameters

· Target - The URI of an existing node e.g.
· vos://[service]/000-517

Returns

Nothing.

Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

5.1.3. listNodes

Lists the nodes in a VOSpace-1.
In order to support large numbers of nodes, this method uses a continuation token to enable the list to be split across more than response.

Parameters

· Token - An optional continuation token from a previous request.

· 5177-B8

· PageSize - A (optional) page size, indicating how many results per response.

· 10

Returns

· A continuation token, indicating that the list is incomplete. The client can use this token to request the next list of nodes in the sequence.

· A <node> element for each node

Faults
· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw an InvalidToken exception if it does not recognise the continuation token.

· The service may throw an InvalidToken exception if the continuation token has expired.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

Notes

· The server may impose a limited lifetime on the continuation token.

· If the token has expired, the server will throw an exception, and the client will have to make a new request.

5.1.4. moveNode

Move a node within a VOSpace service.

Note that this does not cover moving data between separate VOSpace services.

Moving nodes between separate VOSpace services should be handled by the client, using the import, export and delete methods.

Parameters

· Target - The full URI of an existing node.
· Name - A valid name for the new node.
· Properties - An optional set of node properties.
Returns

· A <node> element for the node in its new location.
Faults
· The service will throw a NodeNotFound exception if the target node does not exist.

· The service will throw a DuplicateNode exception if a node already exists with the same name.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

5.1.5. copyNode

Copy a node within a VOSpace service.

Note that this does not cover copying data between separate VOSpace services. Copying nodes between separate VOSpace services should be handled by the client, using the import and export methods.

Parameters

· Target - The URI of an existing node.
· Name - A valid name for the new node.
· Properties - An optional set of name value properties for the node

Returns

· A <node> element for the new node.
Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service will throw a DuplicateNode exception if a node already exists with the same name.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

5.2. Manipulating metadata of data-sets

5.2.1. getNodeProperties

Get the details for a specific node.

Parameters

· Target - The URI of an existing node.

Returns

· A <node> element for the node.
Faults
· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

5.2.2. setNodeProperties

Set the properties for a specific node.

Parameters

· Target - The URI of an existing node

· Properties - A set of updated properties for the node

Returns

· A <node> element.
Faults
· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

Notes

· Some properties may be read-only e.g. MD5 checksum.

5.3. Access to node data
5.3.1. pushDataToVoSpace

Request a URL to send data to a VOSpace node.

This method asks the server for a URL that the client can use to send data to. The data transfer is initiated by the client, after it has received the response from the VOSpace service. The client sends the data using a put request, and the data is transferred into the target node.

The primary use case for this method is a laptop or desktop client that wants to send some data to a VOSpace service.

Parameters

Import into an existing node

· Target - The URI of an existing node

Import into a new node

· Name - A (optional) valid, name for the new node.
· Replace - A (optional) boolean flag to indicate if the service should replace an existing node (defaults to true).

Generic import params

· Properties - An optional set of node properties to apply to the node.

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-put

· ivo://org.astrogrid.vospace/protocols/http-put-chunked

· ivo://org.astrogrid.vospace/protocols/dime-put

Returns

· A <node> element for the updated node.

· A <transfer> element, containing details of the data transfer.
Faults
Target node specified

· The service will throw a NodeNotFound exception if the target node does not exist.

Create node specified

· The service will throw a OperationNotSupported exception if it does not support the requested type.

· The service may throw a OperationNotSupported exception if it does not support user defined names.

· The service may throw a DuplicateNode exception if <replace> is false, and a node with the same name already exists

Import exceptions

· The service may throw a OperationNotSupported exception if it does not support the requested transfer protocol.

· The service may throw a OperationNotSupported exception if it does not support the requested data format.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

Notes

· If the new node name is null, then the service will generate a new unique name for the node.

· The transfer 'window' may have a limited lifetime, and may be deleted from the server if it has not been used by its expiry date.

Questions

· Do we need the <replace> flag to prevent overwriting an existing file ?

· Should we make the default format binary and allow the <format> element to be optional ?

· What status codes do we want for a transfer, or can we use URIs ?

· If we use xsi:type on the <location>, then do we need the <protocol>.

· Or should the xsi:type be on the <transfer> or <protocol> element ?

5.3.2. pullDataToVoSpace

Import data into a VOSpace node.

This method asks the server to fetch the data from a remote location. The data transfer is initiated by the VOSpace service, using a get request, and the response is transferred direct into the target data node.

The primary use case for this method is transferring data from one server or service to another. The data source can be another VOSpace service, or a standard HTTP or FTP server.

Parameters

Import into an existing node

· Target - The URI of an existing data node.
Import into a new node

· Name - A (optional) valid, human-readable name for the new node.
· Replace - A (optional) boolean flag to indicate if the service should replace an existing node (defaults to true).

Generic import params

· Properties - An optional set of name value properties to update the node

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· ivo://org.astrogrid.vospace/protocols/dime-get

· A <location> element containing details of where to get the data from.

Returns

· A <node> element for the updated node.

· A <transfer> element, containing details of the data transfer.

Throws

Target node specified

· The service will throw a NodeNotFound exception if the target node does not exist.

Create node specified

· The service will throw an OperationNotSupported exception if it does not support the requested type.

· The service may throw a OperationNotSupported exception if it does not support user defined names.

· The service may throw a DuplicateNode exception if <replace> is false, and a node with the same name already exists

Import exceptions

· The service may throw a OperationNotSupported exception if it does not support the requested transfer protocol.

· The service may throw a OperationNotSupported exception if it does not support the requested data format.

· The service may throw a TransferFailed exception if the data transfer does not complete.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

Notes

· If the new node name is null, then the service will generate a new unique name for the node.

· In VOSpace version 1.0, the transfer is synchronous, and the SOAP call does not return until the transfer has been completed.

· For a SOAP DIME transfer, the VOSpace service will need to authenticate with the remote service using a proxy certificate.

Questions

· Do we need the <replace> flag to prevent overwriting an existing file ?

· Should we make the default format binary and allow the <format> element to be optional?

5.3.3. pullDataFromVoSpace

Request a URL that the client can read data from.

This will probably be the primary data access method for reading data from a VOSpace The client requests access to a data node, and the server responds with a URL that the client can read the data from.

Parameters

· Target - The URI of an existing data node.
· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· ivo://org.astrogrid.vospace/protocols/dime-get

Returns

· A <node> element for the updated node.

· A <transfer> element, containing details of the data transfer.

Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw a OperationNotSupported exception if it does not support the requested transfer protocol.

· The service may throw a OperationNotSupported exception if it does not support the requested data format.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

Notes

· The URL or URI supplied in the response should be considered as a 'one shot' URL.

· A VOSpace service connected to a standard web server may return the public URL for the data.

· However, a different implementation may create a unique URL specifically for this transfer, which can only be used once, and may have a limited lifetime.

Questions

· Should we make the default format binary and allow the <format> element to be optional?

· Should the server response include details of the lifetime of the transfer object?

5.3.4. pushDataFromVoSpace

Ask the server to send data to a remote location.

The client supplies a URL or URI, and asks the server to send the data to the remote location. The transfer is initiated by the server, and the data is transferred direct from the server to the remote location.

Parameters

· Target - The URI of an existing data node

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· A <location> element containing details of where to send the data to.

Returns

· A <node> element for the updated node.

· A <transfer> element, containing details of the data transfer.

Faults
· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw a OperationNotSupported exception if it does not support the requested transfer protocol.

· The service may throw a OperationNotSupported exception if it does not support the requested data format.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

Notes

· In VOSpace version 1.0, the transfer is synchronous, and the SOAP call does not return until the transfer has been completed.

· If the DIME PUT protocol is selected, then the server will need to authenticate with the remote service using a proxy certificate.

Questions

· Should we make the default format binary and allow the <format> element to be optional ?

Annex A: Access to node data via DIME attachments to SOAP

The data-transfer operations may support direct transport of data using DIME attachments. This feature is an optional extension to the VOSpace-1 standard.

If a VOSpace supports DIME transfers, then the normal data-transfer operations in the core standard are used to set up a transfer. The pushDataToVoSpace and pushDataFromVoSpace operations work with DIME; the corresponding “pull” operations have no meaning for DIME transfers.

The protocol element in the request shall be set to ivo://org.astrogrid.vospace/protocols/DIME.attachment.

The location element returned for a DIME transfer shall carry the endpoint of a SOAP service. This may be the endpoint of the original VOSpace service, or it may refer to a subordinate service that specializes in DIME transfers.

DIME is supported in many of the current SOAP toolkits. However, it is a deprecated protocol, and is being replaced by MTOM. As toolkit support for MTOM becomes stable, this method will be replaced by a similar MTOM based one.

Some issues remain with DIME transfers. Should we have a version of this that accepts the URI of a data node, so that the transfer does not use the subsidiary endpoint? If not, what is the SOAP operation that carries the DIME attachments?
6. References

[1] Statement VOSpace operations, including VOSpace-2 facilities, http://wiki.astrogrid.org/bin/view/Astrogrid/VoSpace20060426

[2] T. Berners-Lee, R. Fielding, U. Irvine, L. Masinter, Uniform Resource Identifiers (URI): Generic Syntax, http://www.faqs.org/rfcs/rfc2396.html
[3] R. Plante, T. Linde, R. Williams, & K. Noddle, IVOA Identifiers, http://www.ivoa.net/Documents/latest/IDs.html
