

International

Virtual

Observatory

Alliance

Astronomical Keywords in the era of the Virtual Observatory

Version 1.0 IVOA Note 2007 April 25

This version: AstroKeys-20070425 Latest version:

Previous version(s):

Author(s): Andrea Preite Martinez, Soizick Lesteven

Abstract

In the framework of the on-going activities within the Semantics working group of the International Virtual Observatory Alliance (IVOA) in this paper we report on the usage of standard keywords in the field of astronomy and astrophysics. In order to monitor the usage of keywords in the literature we have scanned all the issues of Astronomy and Astrophysics (A&A) and of The Astrophysical Journal (ApJ) in the years 1995, 2000 and 2005 and the issues of MNRAS in the years 2000 and 2005.

Scope of the study is: (i) to compare the lists of keywords that the three journals A&A, ApJ and MNRAS propose to the authors. The three lists (at the date of September 2006) are slightly different and we analyze these differences; (ii) to understand how authors use keywords to synthetically describe their work. To do this we derive the frequency of use of the various keywords, its evolution with time and possible anomalies in the use of the keywords.

As a result of the first part of this study, we define a merged, standard list of keywords and we propose to the editors of the three journals to adopt this standard list of keywords as a very short term common action.

Starting from the analysis of the statistics of usage, we propose to the editors amendments to the standard list of keywords, in order to better suit the needs of the authors.

Finally, we suggest an action to transform the list of keywords into an IVOA standard vocabulary.

Status of This Document

This is a IVOA Note. The first release of this document was 2007 April 25.

This is an IVOA Note expressing suggestions from and opinions of the authors. It is intended to share best practices, possible approaches, or other perspectives on interoperability with the Virtual Observatory. It should not be referenced or otherwise interpreted as a standard specification.

A list of <u>current IVOA Recommendations and other technical documents</u> can be found at http://www.ivoa.net/Documents/.

Acknowledgements

Contents

1	Introduction	3
2	Comparison: is there only one list?	4
2.1	Differences in number	4
2.2	Differences in order	5
2.3	Differences in format	5
2.4	Differences in text or spelling	5
2.5	Table 1	5
2.6	Table 2	7

3	Statistics on the use of astronomical keywords	7
3.1	Frequencies of use	8
3.2	Туроз	8
3.3	Non-standard keywords	9
3.4	A bottom-up search for new keywords	9
4	Suggestions	10
Appe	ndix A: Table 3	11
Appe	ndix B: Table 4	20
Appe	ndix C: Table 5	21
Appe	ndix D: Table 6	21
Appe	ndix E: Table 7	22
Refer	ences	22

1 Introduction

During a work on the definition of an astronomical standard vocabulary in progress within the IVOA working group on <u>Semantics</u>, we came across different lists of astronomical concepts and keywords used in different contexts (the old astronomical thesaurus, various flavours of keywords, lists of astronomical object types, etc.).

In particular, an interesting list of astronomical concepts, processes and object types is provided by the editors of astronomical journals to help authors of astronomical papers to class their works: **the astronomical keywords** (we will use in this work the term *astronomical* rather than *astronomy and astrophysics* to avoid confusion with the journal of the same name).

In the 70s some astronomical journals introduced keywords with the articles in order to index their papers. Different subject indexes or keyword lists were established. It was in 1992 that publishers of the main astronomical journals (A&A, ApJ, MNRAS) adopted for the first time a common lists of keywords to allow for consistent indexing and search capabilities across the astronomical literature. Since that time some other journals joined in, as AJ in 1998 and ApJS in 2001. Since then the list of keywords is updated on a regular basis to reflect changes in the literature. With the increasing use of electronic journals and the development of more powerful search engines, this set of keywords keeps a important role in the actual context of exchange standards.

We started our study comparing the lists of keywords proposed by the editors of the major astronomical journals, then we moved on in order to analyze the use of those keywords by the authors, check the frequency of use of the different keywords and its evolution with time, with the aim to eventually detect possible obsolete terms and missing important new term.

We limited our study to papers published in the Main Journal section of Astronomy and Astrophysics (A&A), The Astrophysical Journal (ApJ) and Monthly Notices of the Royal Astronomical Society (MNRAS). In order to test the evolution of usage, we used all papers published in the years 1995, 2000 and

2005 for A&A and ApJ, and in the years 2000 and 2005 for MNRAS (because for this journal the files for the year 1995 were not available at the CDS).

Since many years the scientific editors of astronomical journals have put a great effort in the development, standardization and maintenance of keywords. The aim of this paper is to examine how the present corpus of astronomical keywords could be optimized for an efficient and easy use in the context of the Virtual Observatory.

2 Comparison: is there only one list?

The latest lists of keywords were found at: A&A 445, A5-A6 (2006) or <u>http://aanda.u-strasbg.fr:2002/docinfos/AA/keywords.html</u> for A&A, at <u>http://www.journals.uchicago.edu/ApJ/instruct.key.html</u> for ApJ and at Mon. Not. R. Astron. Soc. 320 (2001) or <u>http://www.blackwellpublishing.com/pdf/mnraskey.pdf</u> for MNRAS.

In all the documents above the editors state that the list presented to the authors is common to the three major Astronomical and Astrophysical Journals (A&A, ApJ and MNRAS).

We checked the three lists and we realized that actually the lists differ in (i) number, (ii) order, (iii) format and (iv) spelling of keywords. All the four kind of differences are of some nuisance if one wants to use keywords e.g. for search/classification purposes.

A detailed list of all the differences found between the merged list of keywords and the individual lists of each journal is presented in Table 1. A summary by kind of difference is presented in Table 2.

2.1 Differences in number

If one merges the three lists (A&A, ApJ and MNRAS) and extracts the list of different keywords - regardless of format and spelling - one gets a total of 325 keywords, while the number of keywords in the individual lists are 322, 318 and 317 for A&A, ApJ and MNRAS, respectively.

More significant are the differences between any two individual lists. The lists of A&A and ApJ differ by 10 keywords, ApJ and MNRAS differ by 5, A&A and MNRAS differ by 11 keywords.

	Merged	A&A	ApJ	MNRAS
keywords	325	322	318	317
missing		3	7	8

2.2 Differences in order

In a few cases new keywords were added to older lists without inserting them in the right alphabetic order. This is not a great problem if the author is searching the appropriate keyword(s) via a search engine, but our experience is that on short lists the search is made preferentially by eye inspection (and, by the way, not necessarily on the list provided by the journal chosen for the publication of the paper). This mixing up of keywords and lists can be misleading for the author. Keywords out of order are also those present in all the three lists, but placed under different sections. Displacements of keywords (two cases) only concern the ApJ list. The key "Celestial mechanics" is not listed under the section "Astrometry and celestial mechanics", but in the section "Astronomical instrumentation, methods and techniques".

The other displaced keyword is "gravitational lensing": it is listed in section 2 "Physical data and processes" by all three journals, but **all ApJ authors** (and all A&A authors publishing in the year 2000) have moved it *de facto* to section 12, modifying the text in "cosmology: gravitational lensing".

2.3 Differences in format

In the text accompanying the individual lists, editors explain the meaning of the different format elements present in their lists: words in italics should be omitted, do not include any part of a heading that is in parentheses, or both (omit if both in italics and in parentheses). Abbreviated forms of longer text is also in parentheses, as HR for Hertzsprung-Russell, but no indication of usage is given to the authors.

2.4 Differences in text or spelling

There are small differences in spelling, concerning the use of hyphenation and the spelling of "delta Scuti".

The main difference in text is the lack of reference to the Colour-Magnitude diagram in the keyword "*Stars:* HR and C-M diagrams", in both ApJ and MNRAS lists.

2.5 Table 1

In Table 1 we show the differences between the merged (A&A, ApJ and MNRAS) list of keywords and individual lists. The total number of keywords found in each section is also given.

	A&A	ApJ	MN
1. General	9	8	6
Publications, bibliography	+	-	-
Sociology of Astronomy	+	+	-
Standards	+	+	-
	-		
2. Physical data and processes	41	40	40
Astrobiology	nao	+	+
Astrochemistry	nao	+	+
Chaos	+	-	-
Gravitational lensing	+	d.12	+
Magnetohydrodynamics MHD	df	+	+
3. Astronomical instrumentation, methods and techniques	32	30	31
Light pollution	+	-	+
Methods: observational	+	-	+
Space vehicles	+	nao	-
4. Astronomical data bases	4	4	4
		_	
5. Astrometry and celestial mechanics	7	7	7
Celestial mechanics	+	d.3	+
6. The Sun	29	30	30
Sun: atmospheric motions	-	+	+
Sun: X-rays, gamma rays	+	+	ds
7 Salar ovotom	45	45	15
7. Solar system	15	15	15
8. Stars	61	59	59
Stars: binaries: symbiotic	+	nao	+
Stars: Hertzsprung-Russell (HR) and C-M diagrams	+	dt	dt
Stars: mass-loss	+	ds	+
Stars: peculiar (except chemically peculiar)	+	-	-
Stars: starspots	+	dt	+
Stars: variables: delta Scuti	ds	+	ds
Stars: variables: general	+	_	-
Stars: variables: other	-	+	+
Stars: variables: RR Lyr	+	-	-
Stars: winds, outflows	+	nao	+
9. Interstellar medium (ISM), nebulae	21	22	22
ISM: evolution	df	+	+
ISM: globules	-	+	+
ISM: Herbig-Haro objects	nao	+	nao
ISM: individual objects: (except planetary nebulae)	+	dt	dt
10. The Galaxy	18	18	18
Galaxy: stellar content	df	+	+
Galaxy: structure	df	+	+
		4.5	
11. Galaxies	42	42	42
Galaxies: halos	+	+	ds
Galaxies: irregular	+	nao	nao
Galaxies: star clusters	+	nao	+

12. Cosmology	10	10	10
13. Sources as a function of wavelength	33	33	33

Notes to Table 1:

+ = present
- = absent
nao=not in the alphabetic order listed, but in the same section
ds= different spelling, same words
dt= different text
df= different format (short form suggested to authors)
d.n= present, but displaced in section n

2.6 Table 2

In Table 2 we show the summary of differences between the merged list of keywords and individual lists. For the kind of differences, see note to Table 1.

	A&A	ApJ	MNRAS
Notes:			
missing(-)	3	7	8
nao	3	5	2
ds	1	1	3
dt	0	3	2
df	4	0	0
d.n	0	2	0

3 Statistics on the use of astronomical keywords

In order to study the actual usage of keywords by the scientific community, we proceeded in the following way. We extracted the keywords section from all the papers published by A&A and ApJ in 1995, 2000 and 2005, and by MNRAS in 2000 and 2005.

The resulting 8 files were handled separately, and number of occurrences were found for each keyword per year and per journal. The results are shown in Table 3 and Table 4. In the first column of Table 3 we list all the different keywords found, separating "standard" keywords (i.e.: keywords present in the lists proposed by the editors) from "non-standard" ones. In columns 2, 3 and 4 we show the total number of occurrences over the periods of reference indicated for A&A, ApJ and MNRAS, respectively. The great difference in total number of keywords used for the three journals is entirely due to the different number of papers published in the years indicated by the three journals. Indeed, the number

of keywords per paper (year-averaged) is practically constant (over time and journals) and is about 4 keywords/paper.

In Table 4 we show the evolution of use of the keywords of different sections along the reference years and across journals. Numbers are percentages of the total number of keywords belonging to the given section that were used in the year indicated. One can clearly see from the results shown: (i) what is the scientific production of the different fields, (ii) the evolution with time (10-year span) of their relative importance and (iii) how the different fields are distributed among journals. We can see that papers in the field of "Stars" are more frequent in A&A than in ApJ or MNRAS, while extra-galactic subjects (galaxies, cosmology) are more frequent in MNRAS.

3.1 Frequencies of use

Apart from the "General" section, all standard keywords are used at least once over the period of time considered, but there are keywords rarely used. Take for instance the number of keywords used \leq 3 times over the period of reference: they are 13 (A&A), 20 (ApJ) and 60 (MNRAS). One could interpret this saying that there is an increasing degree of specialization going from A&A through ApJ to MNRAS, A&A being the most "generalist" journal, MNRAS being used for a more limited number of subjects.

On the other hand there are keywords that are used very frequently, e.g. more than 100 times over the period of reference: there are 50 of them in A&A, 94 in ApJ and 16 in MNRAS or, respecting the proportion of total number of keywords used in this study (18518:27881:8801, i.e.: 100:150:48): 60 in ApJ (used more than 150 times) and 59 in MNRAS (used more than 48 times).

This can be interpreted either as an indication that the corresponding subjects are very popular, or that there is some sort of "degeneracy" in those concepts, a detail that could be made more explicit, or most probably both.

3.2 *Typos*

We include in this category: real typos, non-conform use of capital letters and hyphens, errors in punctuation or separation of words, the use of tex formatting characters.

Typos are rare in the ApJ and in MNRAS, while relatively frequent in earlier issues of A&A. The situation in A&A started improving in 2000, and in 2005 the number of typos is similar in all three journals: there are 73 misprinted keywords in MNRAS (1.4% of the number of keywords used in 2005), 162 in the ApJ (1.5%, but mostly due to capitalization errors) and 266 in A&A (3.6%). In this latter case the situation is still improvable. An interesting example is to see one of the keywords with the most complex spelling "(*Stars:*) Hertzsprung-Russell (HR) and (C-M) diagrams" being reported by the 20 papers published in 2005 with 10 different spellings! For the records, only 4 out of these 20 papers got it right.

Furthermore, editors should explicitly discourage the use of tex formatting characters within the keywords section, e.g. "{\em N}-body" (see MNRAS) should be replaced by "N-body".

3.3 Non-standard keywords

Non-standard keywords are keywords not present (totally or partially) in the list provided by the editor of the journal. Non-standard keywords are listed at the end of each section in Table 3. Their use represent 1.4% of the total number of keywords used in A&A over the three years of reference, 1.5% in the ApJ (reduced to 0.6% if the displacement of "gravitational lensing" is not taken into consideration) and they are practically absent (0.1%) in MNRAS.

We can classify them into three different categories: (i) really new concept, (ii) finer subdivision of an existing concept, and (iii) un-required creation of a keyword due to lack of care by the author(s).

An example of category (iii) is the fusion of two keywords into one, as in "ISM: HII regions: abundances" instead of "ISM: abundances – (ISM:) HII regions", or in: "Infrared: ISM: lines and bands" instead of "Infrared: ISM – ISM: lines and bands"

An example of category (ii) can be "supernova remnants: plerions", and "Asteroseismology" for category (i).

3.4 A bottom-up search for new keywords

Of course a statistical study on keywords actually used is not the most efficient way to collect new concepts or sub-concepts, because most of the authors feel constrained by the list of standard keywords (and this is *per se* a good thing!).

On the other hand we can let statistics on usage of the present list(s) of keywords guide us in the search of new concepts or sub-concepts. The method we adopted was to use the most frequently used keywords (> 100 times in the reference period) to guide us in this search. As we noted in §2.1 above, a high frequency of citation could hide a higher semantic richness than that carried by the keyword.

For a number of these "best cited" keywords we selected the corresponding papers, in most cases only from A&A and the ApJ, and we analysed the text written by the authors for the Abstract section of their paper. We selected only the Abstract for two obvious reasons: the conciseness of the concepts imposed to authors and the smaller size, simpler to handle. We then extracted all the sentences containing the keyword under study. From those sentences we selected in a very subjective way, depending on the scientific "sensitivity" of the examiner (APM), groups of words containing the given keyword (the zero-order concept). In Table 5 we list some of those "best cited" keywords, the number of sentences examined for each of them and the number of sub-concepts found. As

an illustrative example of the kind of sub-concepts we found, in Table 6 we show for 4 keywords (zero-order concepts) the list of sub-concepts at the first-order of detail. This means that in most cases the authors go further in the specification of the concept. If we take for instance the case of the concept "accretion" we find 57 different second-order specifications of the first-order sub-concept "accretion disk", and 26 for "accretion flow".

There are of course also top-down methods for updating the standard list of keywords. Among these we can count: (i) the definition of a new object class by the community (e.g.: the recent "dwarf planet"), (ii) the forthcoming launch of a space mission or the first light of a new instrument that are expected to open new interesting and hopefully productive fields (as for, e.g.: "Asteroseismology" or "Exoplanets") or (iii) synchronization with other lists used by the scientific community, as the <u>Simbad's object types</u> or the list of object types and processes for astronomical events used by the VO-Event IVOA community (see the IVOA working group web page <u>http://www.ivoa.net/twiki/bin/view/IVOA/IvoaVOEvent</u>). We think that the updating of the standard list of astronomical keywords is a process that needs a continuous and organized effort, bearing in mind the importance of the issues of interoperability between the publishing journals, seen as the providers of the particular resource "papers", and all data centers and data providers already integrated in the Virtual Observatory.

Nonetheless, to help editors in their present updating effort and authors to improve the tagging of their papers, we suggest in Table 7 a number of possible new entries that could be added to the standard list of keywords.

4 Suggestions

From the analysis performed in this study and from our experience in the framework of the Virtual Observatory and of interoperability techniques, we can derive the following conclusions and suggestions for the editors of the main astronomical journals:

- First of all, we are grateful to the scientific editors of the journals for the delicate and time consuming task of defining and maintaining a list of keywords.
- Tagging papers with keywords is useful, we should keep the system and improve it;
- There should be one and only one list of keywords, available on the web, maintained by a single organization under mandate of the editors;
- The list of keywords should evolve rapidly, not lagging too much behind the needs of the scientific community;
- A new, more efficient updating process needs to be organized;

- It is time for bibliography to be inserted in the Virtual Observatory as a vital resource. The presence of standard keywords is essential;
- As a consequence, keywords should become one of the interoperability standards of the <u>IVOA</u> and of the IAU.

Appendix A: Table 3

Table 3. Statistics on the use of astronomical keywords in the years 1995, 2000 and 2005. The use of non-standard keywords is also reported at the end of each section.

Journal:	A&A	ApJ	MNRAS
years:	95-00-05	95-00-05	00-05
Total no. of keywords used:	18518	27881	8801
Section / keyword			
1. General			
Editorials, notices	1	1	
Errata, addenda	18	53	17
Extraterrestrial intelligence		1	
History and philosophy of astronomy	1	5	
Miscellaneous			
Obituaries, biographies		3	
Publications, bibliography	1		
Sociology of Astronomy			
Standards	2		
Non-standard			
Book reviews	21		
Videotapes		11	
2. Physical data and processes			
Acceleration of particles	77	139	17
Accretion, accretion disks	242	493	180
Astrobiology	5	19	
Astrochemistry	29	53	6
Atomic data	66	59	22
Atomic processes	57	78	16
Black hole physics	60	269	86
Chaos	20	3	4
Conduction	3	9	
Convection	48	74	18
Dense matter	31	30	7
Diffusion	26	53	5
Elementary particles	13	58	4
Equation of state	26	17	5
Gravitation	33	65	34
Gravitational lensing	68		85
Gravitational waves	11	24	12
Hydrodynamics	174	319	75

Instabilities	70	150	41
Line: formation	99	85	18
Line: identification	35	53	10
Line: profiles	135	95	33
Magnetic fields	41	105	50
Magnetohydrodynamics MHD	177	310	71
Magnetonyurodynamics wind	53	75	22
Molecular data	27	58	11
Molecular processes	56	132	29
Neutrinos	<u> </u>	21	<u>25</u> 5
Nuclear reactions, nucleosynthesis, abundances	<u> </u>	158	9
Plasmas	77	127	13
Plasmas	107	160	50
Radiation mechanisms: general	107		3
		10	
Radiation mechanisms: non-thermal	88	234	49
Radiation mechanisms: thermal	19	44	7
Radiative transfer	124	167	39
Relativity	34	112	25
Scattering	47	51	18
Shock waves	97	188	27
Stellar dynamics	39	47	45
Turbulence	82	157	22
Waves	54	78	20
Non-standard			
Asteroseismology	1		1
disk evolution	1		
Accretion disks: stationary	1		
Accretion induced collapse	1		
boundary layers	2		
disks, shear flow, expansion opacity	1		
electron density	1		
dynamos	2		
heat transfer	1		
Line: broadening	1		
Line: intensities	1		
microlensing	2		
Recombination di-electronic	1		
Relativistic hydrodynamics	1		
superluminal motions	1		
tidal disruption	1		
Hydromagnetics		1	
Shock heating		1	
Contribution function	1		
3. Astronomical instrumentation, methods and techniques			
Atmospheric effects	7	18	8
Balloons	1	7	
Instrumentation: adaptive optics	9	15	8
Instrumentation: detectors	5	12	7
Instrumentation: high angular resolution	6	7	2
Instrumentation: interferometers	10	14	3
Instrumentation: miscellaneous	1	4	12
Instrumentation: photometers	5	1	3
Instrumentation: polarimeters	6	1	1
Instrumentation: spectrographs	15	14	6
Light pollution	10		1
		I	I I

Methods: analytical	46	37	42
Methods: data analysis	122	82	75
Methods: laboratory	26	71	8
Methods: miscellaneous	5	1	3
Methods: N-body simulations	14	54	41
Methods: numerical	135	234	136
Methods: observational	24	7	13
Methods: statistical	56	83	68
Site testing	3	2	5
Space vehicles	6	9	1
Space vehicles: instruments	5	5	1
Techniques: high angular resolution	15	33	2
Techniques: image processing	22	26	16
Techniques: interferometric	56	63	16
Techniques: miscellaneous	7	1	8
Techniques: photometric	71	22	30
Techniques: polarimetric	24	15	9
Techniques: radar astronomy			2
Techniques: radial velocities	30	17	5
Techniques: spectroscopic	70	73	24
Telescopes	9	14	8
Non-standard			
artificial satellites, space probes	4		
Telescopes: liquid mirrors	2		
synthetic spectra	1		
Hipparcos	1		
Hubble Space Telescope	1		
ISO Matada, binarias, adinaing	1		4
Metods: binaries: eclipsing			1
4. Astronomical data bases			
Astronomical data bases Astronomical data bases: miscellaneous	12	1	6
Atlases	2	2	0
Catalogs	46	12	19
Surveys	71	107	85
Surveys	71	107	05
5. Astrometry and celestial mechanics			
Astrometry	103	47	17
Celestial mechanics	59	64	38
Eclipses	7	2	3
Ephemerides	12		
Occultations	8	3	1
Reference systems	33	1	1
Time	7		1
6. The Sun			
Sun: abundances	20	39	4
Sun: activity	71	118	11
Sun: atmosphere	50	37	
Sun: atmospheric motions		10	
Sun: chromosphere	58	50	
Sun: corona	154	250	3
Sun: coronal mass ejections (CMEs)	12	44	1
Sun: evolution	4	10	2
Sun: faculae, plages	18	4	
Sun: filaments	13	20	

Sun: flares	93	181	6
Sun: fundamental parameters	5	3	3
Sun: general	8	8	2
Sun: granulation	32	14	3
Sun: helioseismology	7	29	6
Sun: infrared	8	10	
Sun: interior	20	65	8
Sun: magnetic fields	166	239	12
Sun: oscillations	77	84	13
Sun: particle emission	15	48	1
Sun: photosphere	70	32	3
Sun: prominences	17	29	1
Sun: radio radiation	43	47	2
Sun: rotation	13	28	3
Sun: solar-terrestrial relations	3	12	1
Sun: solar wind	47	79	4
Sun: sunspots	47	55	10
Sun: transition region	37	30	1
Sun: UV radiation	60	69	3
Sun: X-rays, gamma rays	51	88	ļ
Non-standard			
Sun: doppler shifts	1		
heliosphere	1		
Sun: magnetohydrodynamics	2		-
Sun: polarization	1		
spicules	1		
7. Solar system	= 1		4.0
Comets: general	51	36	12
Comets: individual	39	25	8
Earth	8	6	3
Interplanetary medium	30	47	3
Kuiper Belt	<u>5</u> 21	18 19	12
Meteors, meteoroids		19	12
Minor planets, asteroids Moon	<u>56</u> 2	4	1
Oort Cloud	3	4 5	2
Planets: rings	<u> </u>	3	
Planets and satellites: formation	29	10	1 6
Planets and satellites: general	38	29	8
Planets and satellites: individual	<u> </u>	49	12
Solar system: formation	16	66	8
Solar system: general	21	13	8
Non-standard	4 I		
Comets: abundances	2	1	1
Comets: tensile strength	1		1
TNOs (Trans Neptunian Objects)	1		1
	•	1	
8. Stars			1
Stars: abundances	240	143	46
Stars: activity	111	63	27
	158	102	33
Stars: AGB and post-AGB		96	27
Stars: AGB and post-AGB Stars: atmospheres	149	30	
Stars: atmospheres	<u>149</u> 175	217	107
	<u>149</u> <u>175</u> 79		

Stars: binaries: spectroscopic	87	33	30
Stars: binaries: symbiotic	36	13	5
Stars: binaries: visual	37	25	5
Stars: blue stragglers	6	15	2
Stars: carbon	42	30	5
Stars: chemically peculiar	90	14	20
Stars: chromospheres	26	31	5
Stars: circumstellar matter	229	296	61
Stars: coronae	48	53	5
Stars: distances	45	26	9
Stars: dwarf novae	5	5	9
Stars: early-type	132	101	35
Stars: emission-line, Be	68	29	22
Stars: evolution	226	195	58
Stars: flare	38	35	4
Stars: formation	221	389	102
Stars: fundamental parameters	186	86	34
Stars: general	21	6	13
Stars: Hertzsprung-Russell (HR) and C-M diagrams	66	15	5
Stars: horizontal-branch	31	27	5
Stars: imaging	18	11	8
Stars: individual	773	906	270
Stars: interiors	63	104	18
Stars: kinematics	39	28	14
Stars: late-type	156	112	39
Stars: low-mass, brown dwarfs	72	110	27
Stars: luminosity function, mass function	36	53	15
Stars: magnetic fields	121	117	41
Stars: mass-loss	154	161	30
Stars: neutron	148	322	70
Stars: novae, cataclysmic variables	106	129	69
Stars: oscillations (including pulsations)	148	106	64
Stars: peculiar (except chemically peculiar)	5	8	
Stars: planetary systems	50	158	27
Stars: planetary systems: formation	10	44	6
Stars: planetary systems: protoplanetary disks	9	50	9
Stars: Population II	48	33	10
Stars: pre-main sequence	151	215	35
Stars: pulsars: general	65	168	62
Stars: pulsars: individual	66	215	42
Stars: rotation	98	114	45
Stars: starspots	21	7	3
Stars: statistics	20	31	5
Stars: subdwarfs	26	16	7
Stars: supergiants	25	25	3
Stars: supernovae: general	80	160	41
Stars: supernovae: individual	37	124	22
Stars: variables: Cepheids	26	31	9
Stars: variables: delta Scuti	25	6	8
Stars: variables: general	87		2
Stars: variables: other	2	44	69
Stars: variables: RR Lyr	10	3	
Stars: white dwarfs	80	146	49
	56	69	20
Stars: winds, outflows Stars: Wolf-Rayet	65	50	18

extra-solar planets	<u>1</u>		
black holes	5		
Stars: accretion disks	1		
Stars: bynaries: pulsars	2		
Stars: bynaries: low-mass X-Ray	1		
Stars: faint blue	1		
Stars: giant	2	1	
Stars: Herbig Ae/Be	1		
Stars: polarization	1		
Stars: variables: Other: long-period		6	
Stars: variables: Other: luminous blue		5	
Stars: OH/IR	2		
Stars: variables: Other: beta Cep	1		
Stars: variables: Other: AM Her		1	
Stars: variables: Other: FU Ori		1	
Stars: variables: Other: GW Vir		1	
Stars: variables: Other: RS CVn	1		
Stars: variables: Other: RV Tau		1	
Stars: pulsar wind nebulae	1	İ	
Stars: structure	•		1
Stars: X-Ray		2	•
Stars: substellar companions	1	L	
	1		
0. Interatellar madium (ISM), nahulaa			
9. Interstellar medium (ISM), nebulae	00	470	
ISM: abundances	90	170	23
ISM: atoms	25	33	4
ISM: bubbles	35	34	6
ISM: clouds	161	265	59
ISM: cosmic rays	51	119	15
ISM: dust, extinction	179	250	62
ISM: evolution	7	12	4
ISM: general	53	59	17
ISM: globules		10	4
ISM: Herbig-Haro objects	12	9	1
ISM: HII regions	92	151	43
ISM: individual objects: (except planetary nebulae)	201	412	51
ISM: jets and outflows	108	162	67
ISM: kinematics and dynamics	59	107	20
ISM: lines and bands	21	33	6
ISM: magnetic fields	29	77	10
ISM: molecules	196	359	65
ISM: planetary nebulae: general	50	52	24
ISM: planetary nebulae: individual	58	54	22
<i>ISM:</i> reflection nebulae	14	18	5
ISM: structure	50	87	12
ISM: supernova remnants	71	164	4
Non-standard	• •		· T
ISM: abundances: depletion	1		
ISM: abundances, depletion /SM: cosmic ray electrons	1		
diffuse medium	1		
gas dynamics			
	1		
sublimation	1		
ISM: HI gas	1		
ISM: HII regions: abundances	1		
ISM: molecules: PAH	2		
ISM: photon escape	1		

ISM: supernova remnants: plerions	1		
ISM: theory	•		1
10. The Galaxy			
Galaxy: abundances	52	32	5
Galaxy: bulge	6	7	7
Galaxy: center	30	109	15
Galaxy: disk	18	3	4
Galaxy: evolution	48	28	4
Galaxy: formation	12	3	12
Galaxy: fundamental parameters	5	3	2
Galaxy: general	17	13	1
Galaxy: globular clusters: general	55	84	26
Galaxy: globular clusters: individual	62	87	19
Galaxy: halo	57	74	16
Galaxy: kinematics and dynamics	36	24	16
Galaxy: nucleus		5	
Galaxy: open clusters and associations: general	50	24	16
Galaxy: open clusters and associations: individual	109	58	49
Galaxy: solar neighbourhood	35	9	8
Galaxy: stellar content	38	32	9
Galaxy: structure	49	64	28
Non-standard			
Galaxy: thick disk	1	-	
diffuse galactic gamma rays	1		
11. Galaxies			
Galaxies: abundances	66	82	28
Galaxies: active	246	448	224
Galaxies: BL Lacertae objects: general	30	35	9
Galaxies: BL Lacertae objects: individual	35	71	11
Galaxies: bulges	3	4	5
Galaxies: clusters: general	131	280	170
Galaxies: clusters: individual	78	176	58
Galaxies: cooling flows	12	69	23
Galaxies: distances and redshifts	54	121	27
Galaxies: dwarf	40	52	20
Galaxies: elliptical and lenticular, cD	58	136	60
Galaxies: evolution	159	375	181
Galaxies: formation	66	273	148
Galaxies: fundamental parameters	45	98	53
Galaxies: general	<u>43</u> 22	25	<u>29</u>
Galaxies: halos		100	67
Galaxies: high-redshift Galaxies: individual	26	96	30
Galaxies: individual l	347	669	<u>195</u> 56
	75	102	
Galaxies: interactions	75	103	
Galaxies: interactions Galaxies: intergalactic medium	41	192	77
Galaxies: interactions <i>Galaxies:</i> intergalactic medium Galaxies: irregular	41 20	192 21	77 7
Galaxies: interactions <i>Galaxies:</i> intergalactic medium Galaxies: irregular Galaxies: ISM	41 20 160	192 21 218	77 7 45
Galaxies: interactions Galaxies: intergalactic medium Galaxies: irregular Galaxies: ISM Galaxies: jets	41 20 160 80	192 21 218 132	77 7 45 42
Galaxies: interactions Galaxies: intergalactic medium Galaxies: irregular Galaxies: ISM Galaxies: jets Galaxies: kinematics and dynamics	41 20 160 80 102	192 21 218 132 178	77 7 45 42 104
Galaxies: interactions <i>Galaxies:</i> intergalactic medium Galaxies: irregular Galaxies: ISM Galaxies: jets Galaxies: kinematics and dynamics <i>Galaxies:</i> Local Group	41 20 160 80 102 25	192 21 218 132 178 30	77 7 45 42 104 12
Galaxies: interactions <i>Galaxies:</i> intergalactic medium Galaxies: irregular Galaxies: ISM Galaxies: jets Galaxies: kinematics and dynamics <i>Galaxies:</i> Local Group Galaxies: luminosity function, mass function	41 20 160 80 102 25 19	192 21 218 132 178 30 42	77 7 45 42 104 12 25
Galaxies: interactions Galaxies: intergalactic medium Galaxies: irregular Galaxies: ISM Galaxies: jets Galaxies: kinematics and dynamics Galaxies: Local Group	41 20 160 80 102 25	192 21 218 132 178 30	77 7 45 42 104 12

Galaxies: peculiar	7	8	
Galaxies: peculial	75	101	38
Galaxies: quasars: absorption lines	46	170	41
Galaxies: guasars: emission lines	15	43	16
Galaxies: quasars: general	113	166	94
Galaxies: quasars: individual	105	140	36
Galaxies: Seyfert	91	193	61
Galaxies: spiral	89	96	55
Galaxies: starburst	109	189	84
Galaxies: star clusters	51	72	26
Galaxies: statistics	22	45	37
Galaxies: stellar content	59	115	53
Galaxies: structure	66	161	65
Non-standard			
Galaxies: active galactic nuclei (AGN)	1		
Galaxies: associaton	1		
Galaxies: clustering	5	12	1
Galaxies: compact	10	11	3
Galaxies: dark halo population	1		
Galaxies: lenticular	1		
Galaxies: quasars: redshift	2		
Galaxies: quasars: UV radiation	1		
Galaxies: spheroidal	1		
Galaxies: star formation			1
Galaxies: theory	1		
12. Cosmology			
Cosmology: cosmic microwave background	39	147	72
Cosmology: cosmological parameters	17	27	22
Cosmology: miscellaneous	21	18	20
Cosmology: observations	124	303	102
Cosmology: theory	60	387	188
Cosmology: dark matter	95	220	131
Cosmology: diffuse radiation	23	64	20
Cosmology: distance scale	16	85	10
Cosmology: early Universe	19	64	21
Cosmology: large-scale structure of Universe	100	298	191
Non-standard			
Cosmology: cosmic microwave background: anisotropies		1	
Cosmology: gravitational lensing	40	250	
Cosmic strings		6	
Cosmic background radiation		1	
Cosmology: black holes			1
13. Sources as a function of wavelength	• •		
Gamma rays: bursts	82	310	46
Gamma rays: observations	87	129	11
Gamma rays: theory	35	99	14
Infrared: galaxies	95	167	76
Infrared: general	<u>19</u>	21	5
Infrared: ISM	29	37	22
Infrared: solar system	14	19	1
Infrared: stars	113	164	44
Radio continuum: galaxies	70	117	48
Radio continuum: general	18	28	10
Radio continuum: ISM	16	42	9

Radio continuum: solar system	4	1	
Radio continuum: stars	4 46	67	18
Radio continuum: stars	93	46	15
Radio lines: galaxies	<u> </u>	7	4
Radio lines: ISM	105	129	24
Radio lines: solar system	9	3	27
Radio lines: stars	19	17	1
Submillimeter	25	46	22
Ultraviolet: galaxies	20	113	11
Ultraviolet: general	6	32	5
Ultraviolet: ISM	10	73	2
Ultraviolet: solar system	2	8	
Ultraviolet: stars	41	135	14
X-rays: binaries	83	93	56
X-rays: bursts	20	48	4
X-rays: diffuse background	5	11	7
X-rays: galaxies	138	336	134
X-rays: galaxies: clusters	22	43	22
X-rays: general	70	98	36
X-rays: individuals	39	49	21
X-rays: ISM	26	86	6
X-rays: stars	215	346	76
Non-standard			
gamma rays: general	3	1	
gamma rays: individuals	1		
gamma rays: lines	1		
Infrared: ISM: continuum	27	32	
Infrared: ISM: lines and bands	46	57	
Infrared: lines	1		
millimeter	1		
Radio lines: atomic	3		
Radio lines: molecular	4		
Radio sources: general	1	1	
Radio sources: lines		1	
Ultraviolet: quasars	1		
Ultraviolet: spectra		3	
X-Rays: comets	1		
X-Rays: novae	1		
X-Rays: quasars	2		
X-Rays: transients	2		
X-Rays: supersoft sources	1		

Appendix B: Table 4

Table 4. Distribution of the use of astronomical keywords in the journals A&A and ApJ in the years 1995, 2000 and 2005and MNRAS in 2000 and 2005 (all values are percentages).

	A&A 1995	2000	2005		ApJ 1995	2000	2005		MNRAS 2000	2005	
				Total				Total			Total
General	0,00	0,34	0,30	0,24	0,57	0,00	0,27	0,27	0,11	0,25	0,19
Physical data and processes	14,90	13,02	13,67	13,75	16,51	16,37	14,53	15,71	14,42	12,98	13,57
Astronomical instrumentation, methods and techniques	3,31	3,35	6,09	4,43	2,48	3,58	3,87	3,38	4,96	7,43	6,42
Astronomical data bases	0,37	0,56	1,06	0,71	0,50	0,30	0,52	0,44	1,14	1,32	1,25
Astrometry and celestial mechanics	1,74	0,94	1,18	1,24	0,60	0,40	0,30	0,42	0,89	0,56	0,69
The Sun	4,99	6,60	7,65	6,62	5,77	6,22	6,53	6,21	1,61	0,86	1,17
Solar system	2,24	1,50	2,36	2,03	0,80	1,04	1,73	1,23	1,22	1,09	1,15
Stars	31,35	31,44	27,92	30,01	23,53	20,79	21,59	21,87	22,86	21,31	21,94
Interstellar medium (ISM), nebulae	9,27	9,12	7,46	8,49	11,31	9,42	8,11	9,46	6,43	5,64	5,97
The Galaxy	3,59	3,46	3,93	3,68	2,45	2,20	2,44	2,36	2,28	2,98	2,69
Galaxies	15,61	17,75	16,59	16,75	18,61	21,20	22,93	21,13	27,17	27,63	27,44
Cosmology	2,86	3,15	2,94	2,99	6,43	7,51	6,20	6,71	8,02	9,41	8,84
Sources as a function of wavelength	9,76	8,78	8,87	9,06	10,44	10,97	10,95	10,81	8,88	8,54	8,68

Appendix C: Table 5

Table 5. Sentences analyzed and sub-concepts found for a sample of "best cited" keywords.

Keyword	Analysed sentences	Extracted sub- concepts
abundances	2792	45
accretion	2672	130
circumstellar	592	129
galaxies active	854	41
galaxies cluster	4481	120
GRB	2205	37
hydrodynamics	192	8
mass-loss	261	30
neutron stars	1486	52
numerical	1170	76
stars binary close	409	37
stars formation	1769	129
supernova	1969	34

Appendix D: Table 6

Table 6. Examples of sub-concepts extracted (only at first order).

Zero-order concept (keyword)	first-order sub-concepts
accretion	column, disk, efficiency, flow, rate, stream, torque, torus
circumstellar	absorption, accretion, atmosphere, bubble, cavities, clouds, cocoon, debris, density, disk, dust, emission, envelopes, environment, expansion, features, gas, grains, HI, interaction, layers, magnetic field, maser, mass, mass-loss, material, matter, medium, nebula, nebulosity, opacity, outflow, plasma, properties, radius, region, ring, shell, structures, torus, winds
neutron star	atmosphere, bare, binaries, center, core, crust, isolated, magnetosphere, polar caps, surface
	cold, hot, radio-quiet, transient

	accreting, bursting, coalescing, cooling, glitches, magnetar, magnetized, mergers, millisecond, non-rotating, oscillations, precessing, pulsations, rotating, spin, spinning, superfluid, unmagnetized, wind-accreting
	evolution, model, new-born, old, progenitor, proto
supernova	bubble, core, debris, ejecta, envelope, shell
	enrichment, high-redshift, light-curve, radio, spectrum, typela, typelb, typelc, typell, typelln, typellp, typeV
	blast-wave, core-collapse, ejection, explosion, fallback, kick, shock, yields
	first-generation, models, Population III, pre-SN, pre-SN wind, progenitor, rate

Appendix E: Table 7

 Table 7. Proposed new concepts.

Section	Proposed new concept
Physical data and processes	Asteroseismology
Astronomical instrumentation, methods and	Virtual Observatory
techniques	
Solar system	Dwarf planet
Stars	Exoplanet
	(Stars:) variables: long-period
Interstellar medium (ISM), nebulae	(ISM:) clouds: molecular
The Galaxy	MACHO
Galaxies	AGN
	Blazar
	compact
Sources as a function of wavelength	Gamma rays: general

References

[1] R. Hanisch, *Resource Metadata for the Virtual Observatory*, <u>http://www.ivoa.net/Documents/latest/RM.html</u>
[2] R. Hanisch, M. Dolensky, M. Leoni, *Document Standards Management: Guidelines and Procedure*, <u>http://www.ivoa.net/Documents/latest/DocStdProc.html</u>
[3] A&A 445, A5-A6 (2006)
[4] Mon. Not. R. Astron. Soc. 320 (2001)