

International

 Virtual

 Observatory

Alliance

IVOA Astronomical Data Query Language

Version 1.5
IVOA Working Draft 2007 January 26

This version:
 1.5-20070126
Latest version:
 http://www.ivoa.net/Documents/latest/ADQL.html
Previous version(s):
 none

Editor(s):
 Pedro Osuna and Inaki Ortiz
Author(s):
 Inaki Ortiz, Yuji Shirasaki, Maria A. Nieto-Santisteban, Masatoshi Ohishi, William

O’Mullane, Alexander Szalay, Pedro Osuna, the VOQL-TEG and the VOQL Working
Group.

Abstract

This document describes the Astronomical Data Query Language (ADQL). ADQL
has been developed based on SQL92. This document describes the subset of
the SQL grammar supported by ADQL. Special restrictions and extensions to

SQL92 have been defined in order to support generic and astronomy specific
operations.

Status of This Document
This is a Working Draft. The first release of this document was 2006 January 22.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Contents

1 Introduction 2
2 Astronomical Data Query Language (ADQL) 3
2.1 Characters, Keywords, Identifiers and Literals 3

2.1.1 Characters 3
2.1.2 Keywords and Identifiers 4
2.1.3 Literals 5

2.2 Query syntax 6
2.2.1 Subqueries and joins 6
2.2.2 Search condition 7

2.3 Functions 7
2.3.1 Mathematical Functions 7
2.3.2 Region 8
2.3.3 User Defined Functions 8

Appendix A: BNF Grammar 9
References 18

1 Introduction
The Astronomical Data Query Language (ADQL) is the language used by the
International Virtual Observatory Alliance (IVOA) to represent astronomy queries
posted to VO services. The IVOA has developed several standardized protocols
to access astronomical data, e.g., SIAP and SSAP for image and spectral data
respectively. These protocols might be satisfied using a single table query.
However, different VO services have different needs in terms of query complexity
and ADQL arises in this context.

http://www.ivoa.net/Documents/

The ADQL specification pretends to avoid any distinction between core and
advanced or extended functionalities. Hence ADQL has been built according to a
single language definition (BNF based [1]). Any service making use of ADQL
would then define the level of compliancy to the language. This would allow the
notion of core and extension to be service-driven and it would decouple the
language from the service specifications.

ADQL is based on the Structured Query Language (SQL), specially on SQL 92.
The VO has a number of tabular data sets and many of them are stored in
relational databases, making SQL a convenient access means. A subset of the
SQL grammar has been extended to support queries which are specific to
astronomy.

2 Astronomical Data Query Language (ADQL)
This section describes the ADQL language specification. We will define in
subsequent sections the syntax for the special characters, reserved and non-
reserved words, identifiers and literals and then, finally, the syntax for the query
expression.

The formal notation for syntax of computing languages is often expressed in the
“Backus Naur Form” BNF. This syntax is used by popular tools for producing
parsers. Appendix A to this document provides the full BNF grammar for ADQL.

The following conventions are used through this document:

• Optional items are enclosed in meta symbols [and]
• A group of items is enclosed in meta symbols { and }
• Repetitive item (zero or more times) are followed by [,…]
• Terminal symbols are enclosed by < and >
• Terminals of meta-symbol characters (=,[,],(,),<,>,*) are surrounded by

quotes (“) to distinguish them from meta-symbols
• Case insensitiveness otherwise stated.

2.1 Characters, Keywords, Identifiers and Literals

2.1.1 Characters
The language allows simple Latin letters (lower and upper case, i.e. {aA-zZ}),
digits ({0-9}) and the following special characters:

• space
• single quote (’)

• double quote (“)
• percent (%)
• left and right parenthesis
• asterisk (*)
• plus sign (+)
• minus sign (-)
• comma (,)
• period (.)
• solidus (/)
• colon (.)
• less than operator (<)
• equals operator (=)
• greater than operator (>)
• underscore (_)

2.1.2 Keywords and Identifiers
Besides the character set, the language provides a list of reserved and non-
reserved keywords plus the syntax description for regular identifiers.

A reserved keyword has a special meaning in ADQL and cannot be used as an
identifier. A non-reserved keyword has a special meaning in specific contexts
and can be used as an identifier in some other contexts.

The identifiers are used to express, for example, a table or a column reference
name.

Both the identifiers and the keywords are case insensitive. They SHALL begin
with a letter {aA-zZ}. Subsequent characters shall be letters, underscores or
digits {0-9}.
 <Latin letter> [{ <underscore> | {<Latin letter> | <digit>} }]

Reserved keywords are:

ALL, AND, AS, ASC, AVG, BETWEEN, BY, COUNT, DESC, DISTINCT,
EXISTS, FALSE, FROM, FULL, GROUP, HAVING, IN, INNER, INTO, IS,
JOIN, LEFT, LIKE, MAX, MIN, NATURAL, NOT, NULL, ON, OR, ORDER,
OUTER, RIGHT, SELECT, SUM, TOP, TRUE, USING, WHERE.

Non-Reserved keywords are:

ABS, ACOS, ASIN, ATAN, ATAN2, CEILING, COS, DEGREES, EXP,
FLOOR, LOG, LOG10, MODE, PI, POWER, RADIANS, REGION, RAND,
ROUND, SIN, SQRT, UDF, TAN, TRUNCATE.

iortiz
The list could be extended. For the time being I have just put the main reserved keywords which are SQL92 compliant and used within the SELECT statement (plus some extensions)UPLOAD is not present as we still have to discuss whether it is part of the language or the service

iortiz
Not SQL92 but useful nonetheless to be able to return a subset of records.The is not a common naming convention across vendors:LIMIT and OFFSET are specific to MySQL and PostgreSQL, while ROWNUM is for Oracle, ROWCOUNT for Sybase and TOP is SQL Server specific. I would propose to use TOP for historical reasons.

iortiz
These are mostly mathematical functions.

iortiz
Its syntax and usage will be defined in later sectionsJeff Lusted, through KA, proposed a region predicate construct in BNF

iortiz
Placeholder for User Defined Functions or SQL macros. The usage of this keyword will be defined in the relevant section (2.3 Functions)Still to discuss whether specific constructs like CROSS APPLY fit into this schema (AS)

For practical purposes the language specification should be able to address
reserved keyword and special character conflicts. To do so the language
provides a way to escape a non-compliant identifier by using the double quote
character as a delimiter.

ADQL allows making use of the same quoting mechanism to handle the case
sensitiveness if needed.

2.1.3 Literals
Finally we define the syntax rules for the different data types: string, number,
boolean, date and time.

A string literal is a character expression delimited by single quotes.

Literal numbers are expressed in BNF as follows:

 <unsigned numeric literal> ::=

<exact numeric literal> | <approximate numeric literal>
 <exact numeric literal> ::=

<unsigned integer> [<period> [<unsigned integer>]]
| <period><unsigned integer>

 <unsigned integer> ::= <digit>
 <approximate numeric literal> ::= <mantissa> E <exponent>
 <mantissa> ::= <exact numeric literal>
 <exponent> ::= <signed integer>
 <signed integer> ::= [<sign>] <unsigned integer>
 <sign> ::= <plus sign> | <minus sign>

A boolean literal expression is either TRUE or FALSE.

The BNF for date and time literals constructs are:

<date string> ::= <quote> <date value> <quote>
<date value> ::= <years value> <minus sign> <months value>

<minus sign> <days value>
<years value> ::= <datetime value>
<months value> ::= <date time value>
<days value> ::= <date time value>
<datetime value> ::= <unsigned integer>

<time string> ::= <quote> <time value> [<time zone interval>] <quote>
<time value> ::= <hours value> <colon> <minutes value> <colon>

<seconds value>
<hours value> ::= <datetime value>
<minutes value> ::= <datetime value>

iortiz
PostgreSQL, Oracle and Sybase make use of a double quote delimiter though it is not standardized and some vendors do support single quote as well.

iortiz
Time interval taken out for the time being to make it simpler

<seconds value> ::= <seconds integer value> [<period> [<seconds
fraction>]]

<seconds integer value> ::= <unsigned integer>
<seconds fraction> ::= <unsigned integer>
<time zone interval> ::= <sign> <hours value> <colon> <minutes value>

<timestamp string> ::= <quote> <date value> <space> <time value>

[<time zone interval>] <quote>

2.2 Query syntax

The compact syntax for the SELECT statement shows the main constructs for
the query specification:

 SELECT [ALL | DISTINCT]
 [TOP <unsigned integer>]

{ * | COUNT(*) | { <expression> [AS <name>] } [,…] }
[INTO <target specification>]
FROM <table reference> [<alias>] [,…]
[{ [NATURAL] { { LEFT | RIGHT } [OUTER] } | INNER | FULL

[OUTER] } JOIN <alias> { ON < search condition> |
USING(col1, col2,…) }]

[WHERE <search condition>]
[GROUP BY <column> [,…]]
[HAVING <search condition>]
[ORDER BY { <column> | <unsigned integer> } [ASC | ESC] [,…]]

The SELECT statement defines a query to some derived table(s) specified in the
FROM clause. As a result of this query, a subset of the table(s) is returned. The
order of the rows MAY be arbitrary unless ORDER BY clause is specified. The
order of columns to return SHOULD be the same as the order as specified in the
selection list, or de order defined in the original table if asterisk is specified.

TOP n construct is used to return the first n-rows.

The selection list MAY include any numeric, string and datetime value expression.

In the following sections some constructs requiring further description are
presented.

2.2.1 Subqueries and joins
A subquery can contain a simple query description or a join statement. Among
the different types of joins ADQL supports qualified ones only. These are INNER
and OUTER ones (LEFT, RIGHT and FULL). All of these can be NATURAL or
not. The join condition does not support embedded sub joins.

iortiz
Requires further description. Section 2.2.1Qualified join only presented… what about cross join?

iortiz
Requires further description. Section 2.2.1

iortiz
Requires further description. Section 2.2.3

iortiz
What about interval value expression?

iortiz
What about CROSS JOIN?

2.2.2 Search condition

The search condition can be part of several other clauses: JOIN, HAVING and,
obviously, WHERE. Standard logical operators are present in its description
(AND, OR and NOT). Six different types of predicates are present in which
different types of reserved keywords or characters are used:

• Standard comparison operators: =, !=, <, >, <=, >=
• BETWEEN
• LIKE
• NULL
• EXISTS

[The full syntax for the SELECT statement is present in Appendix A.]

2.3 Functions

ADQL declares a list of non reserved keywords (section 2.1.2) which defines a
set of special functions to enhance the astronomical usage of the language.
These can be split into three different types:

2.3.1 Mathematical Functions

The next table shows the description of the mathematical functions.

Name Return type Comment

acos(x) double Basic function. Inverse cosine.

asin(x) double Basic function. Inverse sine.

atan(x) double Basic function. Inverse tangent.

atan2(x,y) double Basic function. Inverse tangent of x/y.

cos(x) double Basic function. Cosine.

sin(x) double Basic function. Sine.

tan(x) double Basic function. Tangent.

abs(x) double Basic function. Absolute value.

ceiling(x) double Basic function. Smallest integer not less
than argument.

degrees(x) double Basic function. Radians to degrees.

iortiz
To define explicitly where to use these functions.We agreed that REGION should be part of the WHERE clause only (VOQL-TEG Meeting #2)

exp(x) double Basic function. Exponential.

floor(x) double Basic function. Larger integer not
greater than argument.

log(x) double Basic function. Natural logarithm.

log10(x) double Basic function. Base 10 logarithm.

mod(x, y) double Basic function. Remainder of y/x.

pi() double Basic function. Pi constant.

power(x, y) double Basic function. X raised to the power of
Y.

radians(x) double Basic function. Degree to radians.

sqrt(x) double Basic function. Square root.

rand() double Basic function. Random value between
0.0 and 1.0.

round(x, n) double Basic function. Round to nearest
integer.

truncate(x, n) double Basic function. Truncate to n decimal
places.

2.3.2 Region
To be discussed.

2.3.3 User Defined Functions

To be discussed.

iortiz
We just agreed that the REGION construct was supposed to be part of the WHERE clause.KA sent some comments from Jeff Lusted about the possible BNF syntax for the region predicate.Full support of the STC is an issue

iortiz
Or SQL macros… which name should we choose?We still have to see whether for example the CROSS APPLY could fit in the UDF container.

iortiz
Missing stuff:SELECT INTO detailed syntaxUsage of Comments –ADQL Version UPLOAD to be discussed if it’s part of the languageQualified table names (through service identifiers)XPath?

Appendix A: BNF Grammar

--
<ADQL language character> ::=
 <simple Latin letter>
 | <digit>
 | <ADQL special character>

<simple Latin letter> ::=
 <simple Latin upper case letter>
 | <simple Latin lower case letter>

<simple Latin upper case letter> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<simple Latin lower case letter> ::=
 a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

<digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<ADQL special character> ::=
 <space>
 | <double quote>
 | <percent>
 | <quote>
 | <left paren>
 | <right paren>
 | <asterisk>
 | <plus sign>
 | <comma>
 | <minus sign>
 | <period>
 | <solidus>
 | <colon>
 | <less than operator>
 | <greater than operator>
 | <equals operator>
 | <underscore>
<space> ::= !! space character in character set in use

<double quote> ::= "

<percent> ::= %

<quote> ::= '

<left paren> ::= (

<right paren> ::=)

<asterisk> ::= *

iortiz
This is a preliminary and incomplete version of the grammar. It should only be used as a starting point. SELECT INTO construct missingMathematical functions missingSQL macros, User Define Functions and Region constructs are not reflected in this preliminary attempt either.

iortiz
Characters

<plus sign> ::= +

<comma> ::= ,

<minus sign> ::= -

<period> ::= .

<solidus> ::= /

<colon> ::= :

<less than operator> ::= <

<equals operator> ::= =

<greater than operator> ::= >

<underscore> ::= _

--
<token> ::=
 <nondelimiter token>
 | <delimiter token>

<nondelimiter token> ::=
 <regular identifier>
 | <keyword>
 | <unsigned numeric literal>
 | <bit string literal>
 | <hex string literal>

<regular identifier> ::= <identifier body>

<identifier body> ::= <identifier start> [{ <underscore> | <identifier part> } ...]

<identifier start> ::= <simple Latin letter>

<identifier part> ::= <identifier start> | <digit>

<keyword> ::= <reserved word> | <non-reserved word>

<reserved word> ::=
 ALL | AND | AS | ASC | AVG | BETWEEN | BY | COUNT | DESC | DISTINCT | EXISTS

| FALSE | FROM | FULL | GROUP | HAVING | IN | INNER | INTO | IS | JOIN | LEFT |
LIKE | MAX | MIN | NATURAL | NOT | NULL | ON | OR | ORDER | OUTER | RIGHT |
SELECT | SUM | TOP | TRUE | USING | WHERE

<non-reserved word> ::=

ABS | ACOS | ASIN | ATAN | ATAN2 | CEILING | COS | DEGREES | EXP | FLOOR |
LOG | LOG10 | MODE | PI | POWER | RADIANS | REGION | RAND | ROUND | SIN |
SQRT | UDF | TAN | TRUNCATE

<unsigned numeric literal> ::=
 <exact numeric literal>

iortiz
Tokens: keywords and identifiers

 | <approximate numeric literal>

<exact numeric literal> ::=
 <unsigned integer> [<period> [<unsigned integer>]]
 | <period> <unsigned integer>

<unsigned integer> ::= <digit> ...

<approximate numeric literal> ::=
 <mantissa> E <exponent>

<mantissa> ::= <exact numeric literal>

<exponent> ::= <signed integer>

<signed integer> ::= [<sign>] <unsigned integer>

<sign> ::= <plus sign> | <minus sign>

<character representation> ::= <nonquote character> | <quote symbol>

<nonquote character> ::= !! See the Syntax rules

<quote symbol> ::= <quote> <quote>

<separator> ::= { <comment> | <space> | <newline> }...

<comment> ::= <comment introducer> [<comment character>...] <newline>

<comment introducer> ::= <minus sign><minus sign> [<minus sign>...]

<comment character> ::= <nonquote character> | <quote>

<newline> ::= !! implementation defined end of line indicator

<bit string literal> ::=
 B <quote> [<bit> ...] <quote> [{ <separator>... <quote> [<bit>...] <quote> }...]

<bit> ::= 0 | 1

<hex string literal> ::=
 X <quote> [<hexit> ...] <quote> [{ <separator>... <quote> [<hexit>...]
<quote> }...]

<hexit> ::= <digit> | A | B | C | D | E | F | a | b | c | d | e | f
--
<delimiter token> ::=
 <character string literal>
 | <boolean literal>
 | <date string>
 | <time string>
 | <timestamp string>
 | <ADQL special character>
 | <not equals operator>
 | <greater than or equals operator>
 | <less than or equals operator>

iortiz
Tokens: literals and operators

 | <concatenation operator>
 | <double period>
 | <left bracket>
 | <right bracket>

<character string literal> ::= <quote> [<character representation>...] <quote> [{ <separator>...
<quote> [<character representation>...] <quote> }...]

<boolean literal> ::= TRUE | FALSE

<date string> ::= <quote> <date value> <quote>

<date value> ::= <years value> <minus sign> <months value> <minus sign> <days value>

<years value> ::= <datetime value>

<datetime value> ::= <unsigned integer>

<months value> ::= <datetime value>

<days value> ::= <datetime value>

<time string> ::= <quote> <time value> [<time zone interval>] <quote>

<time value> ::= <hours value> <colon> <minutes value> <colon> <seconds value>

<hours value> ::= <datetime value>

<minutes value> ::= <datetime value>

<seconds value> ::= <seconds integer value> [<period> [<seconds fraction>]]

<seconds integer value> ::= <unsigned integer>

<seconds fraction> ::= <unsigned integer>

<time zone interval> ::= <sign> <hours value> <colon> <minutes value>

<timestamp string> ::= <quote> <date value> <space> <time value> [<time zone interval>]
<quote>

<not equals operator> ::= <>

<greater than or equals operator> ::= >=

<less than or equals operator> ::= <=

<concatenation operator> ::= ||

<double period> ::= ..

<left bracket> ::= [

<right bracket> ::=]

--

iortiz
Search Condition

<search condition> ::=
 <boolean term> | <search condition> OR <boolean term>

<boolean term> ::=
 <boolean factor> | <boolean term> AND <boolean factor>

<boolean factor> ::= [NOT] <boolean test>

<boolean test> ::= <boolean primary> [IS [NOT] <truth value>]

<boolean primary> ::= <predicate> | <left paren> <search condition> <right paren>

<predicate> ::=
 <comparison predicate>
 | <between predicate>
 | <in predicate>
 | <like predicate>
 | <null predicate>
 | <exists predicate>

<comparison predicate> ::= <row value constructor> <comp op> <row value constructor>

<row value constructor> ::=
 <row value constructor element>
 | <left paren> <row value constructor list> <right paren>
 | <row subquery>

<row value constructor element> ::=
 <value expression>
 | <null specification>

<value expression> ::=
 <numeric value expression>
 | <string value expression>
 | <datetime value expression>
 | <interval value expression>

<numeric value expression> ::=
 <term>
 | <numeric value expression> <plus sign> <term>
 | <numeric value expression> <minus sign> <term>

<term> ::=
 <factor>
 | <term> <asterisk> <factor>
 | <term> <solidus> <factor>

<factor> ::= [<sign>] <numeric primary>

<numeric primary> ::= <value expression primary> | <numeric value function>

<value expression primary> ::=
 <unsigned value specification>
 | <column reference>
 | <set function specification>
 | <scalar subquery>

iortiz
<quantified comparison predicate>, <match predicate> and <overlaps predicate> taken out

iortiz
<default specification> taken out

iortiz
<cast specification> taken out

 | <left paren> <value expression> <right paren>

<unsigned value specification> ::= <unsigned literal>
<unsigned literal> ::= <unsigned numeric literal>

<column reference> ::= [<qualifier> <period>] <column name>

<qualifier> ::= <table name> | <correlation name>

<correlation name> ::= <identifier>

<set function specification> ::=
 COUNT <left paren> <asterisk> <right paren>
 | <general set function>

<general set function> ::=
 <set function type> <left paren> [<set quantifier>] <value expression> <right paren>

<set function type> ::= AVG | MAX | MIN | SUM | COUNT

<set quantifier> ::= DISTINCT | ALL

--
<scalar subquery> ::= <subquery>

<subquery> ::= <left paren> <query expression> <right paren>

<query expression> ::= <non-join query expression> | <joined table>

<non-join query expression> ::=
 <non-join query term>

<non-join query term> ::=
 <non-join query primary>

<non-join query primary> ::= <simple table> | <left paren> <non-join query expression> <right
paren>

<simple table> ::=
 <query specification>

<query specification> ::=
 SELECT [<set quantifier>] <select list> <table expression>

<select list> ::=
 <asterisk>
 | <select sublist> [{ <comma> <select sublist> }...]

<select sublist> ::= <derived column> | <qualifier> <period> <asterisk>

<derived column> ::= <value expression> [<as clause>]

<as clause> ::= [AS] <column name>

<table expression> ::=

iortiz
<general literal> taken out

iortiz
<general literal> taken out

iortiz
Queries

iortiz
UNION, EXCEPT taken out

iortiz
INTERSECT taken out

iortiz
<explicit table> and <table value constructor> taken out

 <from clause>
 [<where clause>]
 [<group by clause>]
 [<having clause>]
 [<order by clause>]

<from clause> ::= FROM <table reference> [{ <comma> <table reference> }...]

<table reference> ::=
 <table name> [<correlation specification>]
 | <derived table> <correlation specification>
 | <joined table>

<correlation specification> ::=
 [AS] <correlation name> [<left paren> <derived column list> <right paren>]

<derived column list> ::= <column name list>

<derived table> ::= <table subquery>

<table subquery> ::= <subquery>

<joined table> ::=
 <cross join>
 | <qualified join>
 | <left paren> <joined table> <right paren>

<cross join> ::=
 <table reference> CROSS JOIN <table reference>

<qualified join> ::=
 <table reference> [NATURAL] [<join type>] JOIN <table reference> [<join
specification>]

<join type> ::=
 INNER
 | <outer join type> [OUTER]

<outer join type> ::= LEFT | RIGHT | FULL

<join specification> ::= <join condition> | <named columns join>

<join condition> ::= ON <search condition>

<named columns join> ::= USING <left paren> <join column list> <right paren>

<join column list> ::= <column name list>

<where clause> ::= WHERE <search condition>

<group by clause> ::= GROUP BY <grouping column reference list>

<grouping column reference list> ::=
 <grouping column reference> [{ <comma> <grouping column reference> }...]

iortiz
Should we include cross join? Not present in the ’Query Syntax’ section

iortiz
Subjoin not needed… remove?

iortiz
UNION join taken out

<grouping column reference> ::= <column reference>

<having clause> ::= HAVING <search condition>

<query term> ::= <non-join query term> | <joined table>

<query primary> ::= <non-join query primary> | <joined table>

--
<character value expression> ::= <concatenation> | <character factor>

<concatenation> ::= <character value expression> <concatenation operator> <character factor>

<character factor> ::= <character primary>

<character primary> ::= <value expression primary> |

<datetime value expression> ::=
 <datetime term>
 | <interval value expression> <plus sign> <datetime term>
 | <datetime value expression> <plus sign> <interval term>
 | <datetime value expression> <minus sign> <interval term>

<interval term> ::=
 <interval factor>
 | <interval term 2> <asterisk> <factor>
 | <interval term 2> <solidus> <factor>
 | <term> <asterisk> <interval factor>

<interval factor> ::= [<sign>] <interval primary>

<interval primary> ::= <value expression primary> [<interval qualifier>]

<interval term 2> ::= <interval term>

<interval value expression> ::=
 <interval term>
 | <interval value expression 1> <plus sign> <interval term 1>
 | <interval value expression 1> <minus sign> <interval term 1>
 | <left paren> <datetime value expression> <minus sign> <datetime term> <right paren>
<interval qualifier>

<interval value expression 1> ::= <interval value expression>

<interval term 1> ::= <interval term>

<datetime term> ::= <datetime factor>

<datetime factor> ::= <datetime primary>

<datetime primary> ::= <value expression primary> | <datetime value function>

<string value expression> ::= <character value expression>

<null specification> ::= NULL

iortiz
<collate clause> taken out

iortiz
Query expression components

iortiz
<collate clause> taken out

iortiz
String value functions out (SUBSTRING, UPPER, LOWER, CONVERT, TRANSLATE, TRIM… etc)

iortiz
Time zone taken out

iortiz
<bit value expression> taken out

<row value constructor list> ::= <row value constructor element> [{ <comma> <row value
constructor element> } ...]

<row subquery> ::= <subquery>

<comp op> ::=
 <equals operator>
 | <not equals operator>
 | <less than operator>
 | <greater than operator>
 | <less than or equals operator>
 | <greater than or equals operator>

<between predicate> ::=

<row value constructor> [NOT] BETWEEN <row value constructor> AND <row value
constructor>

<in predicate> ::= <row value constructor> [NOT] IN <in predicate value>

<in predicate value> ::= <table subquery> | <left paren> <in value list> <right paren>

<in value list> ::= <value expression> { <comma> <value expression> } ...

<like predicate> ::= <match value> [NOT] LIKE <pattern>

<match value> ::= <character value expression>

<pattern> ::= <character value expression>

<escape character> ::= <character value expression>

<null predicate> ::= IS [NOT] NULL

<exists predicate> ::= EXISTS <table subquery>

<row value constructor 1> ::= <row value constructor>

<row value constructor 2> ::= <row value constructor>

<truth value> ::= TRUE | FALSE

<order by clause> ::= ORDER BY <sort specification list>

<sort specification list> ::= <sort specification> [{ <comma> <sort specification> }...]

<sort specification> ::= <sort key> [<ordering specification>]

<sort key> ::= <column name> | <unsigned integer>

<ordering specification> ::= ASC | DESC

iortiz
ESCAPE taken out

iortiz
UNKNOWN taken out

References

[1] BNF Grammar for ISO/IEC 9075:1992 – Database Language SQL (SQL-92)
http://savage.net.au/SQL/sql-92.bnf.html
[2] BNF for SQL92
http://www.sqlzoo.net/sql92.html

http://savage.net.au/SQL/sql-92.bnf.html
http://www.sqlzoo.net/sql92.html

	Introduction
	Astronomical Data Query Language (ADQL)
	Characters, Keywords, Identifiers and Literals
	Characters
	Keywords and Identifiers
	Literals

	Query syntax
	Subqueries and joins
	Search condition

	Functions
	Mathematical Functions
	Region
	User Defined Functions

	Appendix A: BNF Grammar
	References

