2.2 Extended Model
2.2.1 Class diagram and VO-DML compatibility

i 0.1
— ActivityDesciption: Plan
' ' Activhy
! 0
- 1 | | 1
1 1 :
0.1 wasinformedBy
v
Agent
= usea | - 0.1 UsedDesciption
[wasgensratsasy | | wasGeneraiccByDescipion
C ' 0.1
1 a ,‘:’
1 1 . l g
- | Entity EntityDesciption
|) ! - | 0.1
> ‘

1

5
wasDerivedFrom T

Core model ‘

R

Figure 5: Class diagram showing the main functional features of the Prove-
nance DM. The specialized entities and relations are defined in this section
(2.2) and further presented in diagrams 7 and 2.2.3. The various hasDe-
scription relations are shown with red arrows.

In the domain of astronomy, certain processes and steps are repeated
over and over again, maybe using a different configuration and within a
different context. Defining such descriptions allows them to be reused, which
is less redundant when performing a series of tasks of the same type. We
therefore separate the descriptions of activities from the actual processes and
introduce an additional ActivityDescription class, which derives from a W3C
prov:Plan. The relation between the Activity and the ActivityDescription is
wasAssociated With, which optionally also includes a responsible Agent.

For Entity we add an EntityDescription class. The EntityDescription
class is linked to the Entity by the description attribute of that class.

A similar normalization of descriptions of the actual processes and
datasets can be found in the IVOA Simulation DM (SimDM, ?)), which de-
scribes simulation metadata. The SimDM classes Ezperiment and Protocol
correspond to the Provenance terms Activity and ActivityDescription.

Figure 5 shows the global class diagram. In addition to the core model
(Section 2.1), we define specialized entities (Section 2.2.2) and relations (Sec-
tion 2.2.3) that were identified as useful in one or several use cases. For some

23

wasInformedBy

hadContext
Activity Context

+activity 1 hadDescription [o ——
) 1 + U-*i ActivityDescription \
+ activity | 1+ activity’ "
@cm@dwnn hadConfiguration

*
+a 1

ent

+
UsedDescription
1 = *
WasGeneratedByDescription

WasAttributedTo l

. _ :
wasAttributedTa Entity EntityDescription

+ entity 1 hasDescription
1

wasDefivedFrom |

0.1

Figure 6: VO-DML compatible version of the class diagram in Figure 5.
Note: This diagram needs an update to reflect the recent changes.

of the concepts that are well known in the IVOA ecosystem, we propose a
detailed structure in order to facilitate the access to such resources and foster
interoperability (Sections 2.2.4, 2.2.6 and 2.2.5).

Figure 6 shows a version of the UML diagram applying the VO-DML
designing rules and reusing VO-DML IVOA datatypes package. This is
however currently outdated and does not include the changes of
the last year.

The documentation of all classes and an automatically generated figure
based on the underlying xmi-description behind this UML diagram is avail-
able in the Volute repository at https://volute.g-vo.org/svn/trunk/
projects/dm/provenance/vo-dml/ProvenanceDM.html.

2.2.2 Specialized Entities

The abstraction level of the W3C PROV-DM being high, one of the objec-
tive of this IVOA recommendation is to guide the usage of this model in
the astronomy context by providing specialized entities that are connected
to concepts known in astronomy and relevant to assess the quality and reli-
ability of the exchanged entities.

We first remind the W3C PROV definition of an Entity: “An entity is a
physical, digital, conceptual, or other kind of thing with some fixed aspects;
entities may be real or imaginary.”

24

There are two ways Entity objects may be defined: Either they directly
carry their value (like numbers, or strings), or they refer to some external
object: a file, a table or a table row, or even some physical object like a photo
plate. Entities that carry their value form a special subclass, Parameter
and have the attribute value set to their value, while for other entities the
pointer to the external object is in the attribute location. Fntity may be
linked linked to a EntityDescription by the hasDescription relation. In case
of Parameter, the EntityDescription will be a ParameterDescription.

We already expressed the necessity of adding Descriptions to the con-
cepts of Activity and Entity, in order to avoid redundancy and give detail
explanations on the method or algorithms that compose the core of an ac-
tivity. The structuring links of specialized entities is presented in Figure 7.
The list given below is not intended to be exhaustive, additional project-
dependant entities may be defined when relevant.

Entity

+1d :string
+name : slring[0..1]

Collection

+ type : EntityType [*] . 0

+location : siring .
+ annotation : string [0.1] hadMember 0.1

+value : string
+ creationTime : date
+ destretiorTime : date
+rights : string

T

| |

MainEntity Description Plan

Data EntityDescription ActivityDescription

B

\

Parameter ParameterDescription

UsedDescription

WasGeneratedByDescription

Figure 7: Class diagram showing the structuring links for specialized enti-
ties.

It is important to note that specialized entities inherit from FEntity, all
those classes thus share the identifier attribute id, as well as the relations
of the core model. The id attribute must be unique for each different entity
so that it can be connected to other concepts using core or specialized rela-
tions (see Section 2.2.3). It is possible to attach an Agent to any of those
subclasses of Entity in order to provide specific contacts for the content of
a specialized entity.

MainEntity: Provenance information are expected to be recorded primarily
for those main entities, to which we may attach descriptions, detail the

25

configuration that led to their generation and the context in which they
were generated.

Data : digital, machine-readable information in some content that will
be used/transformed/analysed. It could be a cell or a column in a
table, a file, an image, a cube of data... This Data Entity might be
bounded to a IVOA Dataset record or an IVOA ObsCore record (see
also Section B.1 in the Appendix).

Parameter : directly holds its value (typically a number, or a string) di-
rectly within the object, e.g. the number of bins desired in the sam-
pling of a signal. This class is further described in Section 2.2.6.

Description: This subclass of entities carries detailed information on the
expected behaviour of an activity and on the expected structure and use of
an entity.

EntityDescription : describes a category of entities, and contains descrip-
tive information about a normal Entity that is known before an entity
instance is created (file format, MIME or content type, etc), for ex-
ample: all files that follow the FITS-LDAC structure and format in a
project. This class is further described in Sections 2.2.4 and 2.2.5.

ParameterDescription : is a subclass of EntityDescription and contains
attributes that describe the value of a Parameter. Those attributes
are similar to the attributes of the FIELD block in a VOTable (unit,
UCD, UType...). This class is further described in Section 2.2.6. It is
part of an ActivityDescription class.

UsedDescription : describes the roles of expected inputs in an Activity,
e.g. ared channel in the creation of an RGB image (see Section 2.2.5).

WasGeneratedByDescription : describes the roles of expected outputs
in an Activity, e.g. a master bias in the stacking of a set of bias images
(see Section 2.2.5). It is part of an ActivityDescription class.

Plan: This W3C subclass of Entity carries information on the intended
activity to reach its goals. It describes in a structured way the plan prepared
for and followed during an activity, and as such, influences directly the
activity.

ActivityDescription : explanations on the activity, such as the method
used, the algorithm, the source code. This class is further described
in Section 2.2.5.

26

2.2.3 Specialized Relations

In order to distinguish the different usages of entities, we define the corre-
sponding specialized usage relations between Activity and Entity: hadCon-
figuration and hadContext. The ActivityDescription is connected to the Ac-
tivity through a wasAssociated With relation, that optionally also links to an
Agent. In addition, we introduce the hasDescription relation that derivates
from the W3C relation wasInfluencedBy. It connects an Entity class to a
Description class (hence between two Entity classes). Those relations are
illustrated in Figure 8.

Activity Entity
1 * used * 1
—_— >

hadConfig
hadContext
1 . wasGeneratedBy . 1
‘+— +

Figure §: Class diagram showing the usage and generation relations between
Activity and Entity

The role attribute in the used and wasGeneratedBy relations points to
the UsedDescription and WasGeneratedByDescription classes that further
describe the usage or the generation.

2.2.4 EntityDescription

The category of entities can be predefined using a description class Enti-
tyDescription. This class is meant to store descriptive information about
an entity that is known before an FEntity instance is created. For example,
a format (e.g. JPG images, FITS, FITS-LDAC, ...) can be common to
several entities. However, the size of this image or file cannot be known
before it is created. In this example, format would be an EntityDescription
attribute, while size would be a property attached to the Entity instance.
The EntityDescription general attributes are summarized in Table 12. Ad-
ditional attributes that describe the content of the data could be derived
from the Dataset Metadata Model (see Section B.1)

The EntityDescription class should not contain information about the

27

EntityDescription

Attribute Data type Description

id (qualified) string a unique identifier for this description

name string a human-readable name for the entity
description

annotation string a decriptive text for this kind of entity

doculink url link to more documentation

Optional attributes:

content_ type string MIME type for the content of the
entity
format string type of container for the entity

Table 12: Attributes of the EntityDescription class. Attributes in bold
must not be null.

usage of the data, in particular, it tells nothing about them being used
as input or as output. This kind of information should be provided by the
relations (and their relation descriptions) between activities and entities (see
Section 2.1.5).

2.2.5 Activity Description classes

The inner working of an activity can be explained by a corresponding Ac-
tivityDescription class. This could be, for instance, the name of the code
and its version used to perform an activity or a more general description
of the underlying algorithm or process. An activity is then a concrete case
(instance) that follows the described inner working, with a startTime and
an endTime, and it refers to a corresponding description for further infor-
mation.

A close concept in the W3C PROV-DM is the Plan (defined as a subclass
of Entity). A plan in PROV-DM is primarily attached to the Agent class
with hadPlan through the wasAssociated With relation. It is accepted to omit
the agent, but it is always supposed that an agent exist. ActivityDescription
is derived from Plan.

There must be exactly zero or one ActivityDescription per Activity. If
steps from a pipeline shall be grouped together, one needs to create a proper
ActivityDescription for describing all the steps at once. This method can
then be referred to by the pipeline activity.

Descriptions of the Used and WasGeneratedBy relations. In order to
describe more largely an activity, it is common to define the expected inputs

28

ActivityDescription

Attribute Data type Description

id string a unique id for this activity
description

name string a human-readable name (to be
displayed by clients)

annotation string additional free text description for the
activity

doculink url link to further documentation on this

activity, e.g. a paper, the source code
in a version control system etc.

Optional attributes:

activity__type string type of the activity, from a vocabulary
or list, e.g. data acquisition
(observation or simulation), reduction,
calibration, publication

activity__subtype string more specific subtype of the activity

code string the code (software) used for this
process, if applicable

version string a version number, if applicable (e.g.
for the code)

Table 13: Attributes of the ActivityDescription class. Attributes in bold
must not be null.

and outputs of this activity, i.e. what we expect to store in the Used and
WasGeneratedBy relations.

In the case of workflow description models, such as ProvONE (but also
Kepler or Taverna for example), input and output ports are defined, and
can be connected to build a workflow of activities. In ProvONE (?), an Ac-
tivityDescription is restricted to a Program, and an Activity is an Execution
associated to a Program, with further entities and relations dedicated to
workflow descriptions (see SectionB). However, the description of workflows
is out of the scope of this document, and the more general concepts we in-
troduce here are the UsedDescription and the WasGeneratedByDescription
classes. Those classes are meant to store descriptive information about the
usage or generation of an entity that is known before the activity is executed.

In particular, if the role attribute is given in those description classes,
the corresponding Used and WasGeneratedBy relations must contain the
same role value.

A multiplicity attribute can indicate that more than one entity may
have the same role, e.g. in the case of the stacking of several images, an

29

undefined number of input images is expected and will share the same role.

UsedDescription

Attribute Data type Description

id string identifier

type string usage type like hadConfiguration or
hadContext

name string a human-readable name (to be
displayed by clients)

annotation string additional free text description of the
usage

— default link link to the default entity to be used

— activityDescription link link to ActivityDescription

— entityDescription link link to EntityDescription

Table 14: Attributes and references of the UsedDescription class. References
in the data model are indicated with an arrow (—). Attributes in bold must
not be null.

WasGeneratedByDescription

Attribute Data type Description

id string identifier

name string a human-readable name (to be
displayed by clients)

annotation string additional free text description of the
generation

— activityDescription link link to an ActivityDescription

— entityDescription link link to EntityDescription

Table 15: Attributes and references of the WasGeneratedByDescription
class. References in the data model are indicated with an arrow (—). At-
tributes in bold must not be null.

EntityDescription in the context of an Activity. When related to the
UsedDescription or WasGeneratedByDescription, the attributes of Entity-
Description (see Section 2.2.4) help to describe the category of entities ex-
pected as an input or an output in an activity. For example: the input bias
files must be in FITS format, or the red, green and blue channel images
must be in PNG or JPEG format.

30

2.2.6 Parameter and ParameterDescription

For the configuration of activities, but also as input data, often a number
of individual values is used. These values are represented by the Parameter
class, which is a specialized Entity class (and therefore may have provenance
information). For effectivity, the metadata of parameters are separated in
a ParameterDescription class, which is shown in table 17. This is modelled
in the same way as FIELD elements in VOTable (?).

In the context of web service resources, a list of input parameters is
written in the form of an IVOA DataLink Service Descriptor (?), a VOTable
resource that contains a group of InputParams with PARAM elements. This
connection to Service Descriptors is further developped in Section 3.4.

The ParameterDescription class should be used to describe this value
attribute The attributes of ParameterDescription are taken from the FIELD
and PARAM elements in the VOTable specification (?).

For example, in the case of a processing activity that cleans an im-
age with a sigma-clipping method, the input and output images would be
the main entities and the value of the number of sigma for sigma-clipping
would be carried by a Parameter entity set before running the activity. The
corresponding ParameterDescription defines the type and range of the ex-
pected value for this parameter (using the attributes datatype, min, max,
options...).

3 Serialization of the provenance data model

3.1 Introduction

Serialization files constitute the building blocks of the client/server dialogs.
The provenance information as represented in the data model is split in
three main concepts that can be searched following many different relations

Parameter
Attribute Data type Description
id string parameter unique identifier
value (value dependent) the value of the parameter, type

depends on
ParameterDescription.datatype
and xtype; follows same rules as
VOTable TABLEDATA and DALI

Table 16: Attributes of the Parameter class. Attributes in bold must not
be null.

31

ParameterDescription

Attribute Data type Description

id string parameter unique identifier

name string parameter name

annotation string additional free text description

datatype string datatype as in VOTable 1.2 and above

arraysize number number of values of specified
datatype, if there is more than one

unit string physical unit

ucd string Unified Content Descriptor, supplying

a standardized classification of the
physical quantity

utype string Utype, meant to express the role of
the parameter in the context of an
external data model

xtype string extended datatype as in VOTable 1.2
and above. A list of proposed

Optional attributes:

min number minimum value
max number maximum value
options list list of accepted values

Table 17: Attributes of the ParameterDescription class. Attributes in bold
must not be null.

between the main 3 classes, Activity, Entity and Agent. The selection of the
relations to expose when distributing the provenance information depends
on the usage and will be described more extensively in the Implementation
Note (?) and the links therein.

To give a very simple example, suppose a client asks for the context of
execution for one specified activity, which computes a simple RGB color
composition. On the server side, exposing the provenance information for
this activity or for an entity, corresponding to a monocolor or RGB im-
age, means expose only the structure of the classes and relation tables and
feed them with the related tuples in the database. On the client side, the
content of a VO-Provenance serialization document can then be explored
and represented using graphical interfaces, as inspired by the Provenance
Southampton suite or by customized visualisation tools.

Such serializations can be retrieved through IVOA access protocols (see
Section 4), or directly integrated in dataset headers or “associated metadata”
in order to provide provenance metadata for these datasets.

32

For FITS files, a provenance extension called “PROVENANCE” could be
added which contains provenance information of the activities that generated
the FITS file. This information could be stored directly using one of the
serialization formats, for example as a unique cell in an ASCII TABLE
extension.

3.2 Wa3C serialization formats: PROV-N, PROV-JSON and
PROV-XML

Serialization formats are proposed in the W3C PROV framework for storing
and exchanging the provenance metadata: PROV-N, PROV-JSON,PROV-
XML and PROV-RDF, that are defined in 7, 7, ?,and ? respectively. They
can be reused here as well for serializations of our data model.

The W3C compatible serializations use the following namespaces:

o http://www.w3.org/ns/prov# (suggested prefix prov) for classes and
attributes available in the W3C model, and

e http://http://www.ivoa.net/documents/dm/provdm/voprov/ (sug-
gested prefix voprov) for attributes specific to the IVOA provenance
model.

Mappings to the W3C names to be used are given in Tables 1, 2, 3,4, 5
and 6.

The specialized entities defined in Section 2.2.2 must be written as
Entity instances and the attribute prov:type must be set to the cat-
egory of the specialized entity e.g. voprov:Data, voprov:Parameter,
voprov:ActivityDescription. This is also the rule for Collection, as done
in W3C PROV-DM. We note here that several prov:type values can be
provided.

The specialized relations defined in Section 2.2.3 must be written as
a W3C relation (e.g. used relation between an Activity and and Entity,
or the more general wasInfluencedBy relation between all classes). The
attribute prov:type must be set to the name of the specialized relation,
e.g. voprov:hadDescription or voprov:hasConfiguration.

Additionally, the following rules must be respected:

o attribute voprov:name — prov:label
« attribute voprov:annotation — prov:description

o ActivityDescription: also add prov:type = ’prov:Plan’

Here is an example of a serialization instance document for an entity
being processed by an activity, in PROV-N notation:

33

document
prefix ivo <http://www.ivoa.net/documents/rer/ivo/>
prefix voprov <http://www.ivoa.net/documents/dm/provdm/voprov/>
prefix prov <http://www.w3.org/ns/provi#>
prefix ex <http://www.example.com/provenance/>

entity(ivo://example#Public_NGC6946, [prov:label="Processed image of
— NGC 6946", prov:type="voprov:Data"])
entity(ivo://example#DSS2.143, [prov:label="Unprocessed image of NGC
— 6946", prov:type="voprov:Data"])
activity(ex:Processl, 2017-04-18T17:28:00, 2017-04-19T17:29:00,
— [prov:label="Process 1"])
used(ex:Processl, ivo://example#DSS2.143, -)
wasGeneratedBy (ivo://example#Public_NGC6946, ex:Processl,
— 2017-05-05T00:00:00)

endDocument

Here is the same example in PROV-JSON format:

{
"prefix": {
"ivo": "http://www.ivoa.net/documents/rer/ivo/",
"voprov": "http://www.ivoa.net/documents/dm/provdm/voprov/",
"prov": "http://www.w3.org/ns/prov#",
"ex": "http://www.example.com/provenance/"
1,
"activity": {
"ex:Processi": {
"prov:startTime": "2017-04-18T17:28:00",
"prov:endTime": "2017-04-19T17:29:00",
"prov:label": "Process 1"
}
1,
"wasGeneratedBy": {
"oiidat: {
"prov:time": "2017-05-05T00:00:00",
"prov:entity": "ivo://example#Public_NGC6946",
"prov:activity": "ex:Processl"
}
1,
"used": {
"_ridit: {
"prov:entity": "ivo://example#DSS2.143",
"prov:activity": "hips:AlaRGB1"
}
1,
"entity": {

"ivo://example#DSS2.143": {
"prov:label": "Unprocessed image of NGC6946",
"prov:type": "voprov:Data"

})

34

"ivo://example#Public_NGC6946": {
"prov:label": "Processed image of NGC 6946",
"prov:type": "voprov:Data"

3

X
}

3.3 VOTable format for Provenance metadata

To emphasize the compatibility to the IVOA framework, where the XML-
based VOTable format is a reference to circulate metadata, we define a
VOTable mapping specification. All classes’ declarations and relations de-
scribed for this data model are translated into separated tables, one for each
class of the model. All attributes of these classes are translated to columns,
i.e. VOTable FIELDS. In addition, the specification defines the VOTable
values of the FIELD and PARAM attributes ucd, datatype, utype, unit,
description, etc.
This can be appropriately used for two goals:

e Publishing full provenance metadata for data collections in VOTable
format. This can be produced by data processing workflows or as
output of databases containing provenance metadata.

e Providing the backbone for the TAP schema describing IVOA prove-
nance metadata which is used for ProvTAP

The VOTable serialization can be considered as a flat view on the various
tables stored in a database implementing the data model structure explained
in Section 2. More examples of serialization documents are provided in
Appendix A. It is possible to create separate tables for each specialized
entity, where the TABLE tag must have the name attribute set to the name
of this specialized entity, and utype=voprov:Entity.

A VOTable serialization can be produced using the voprov python mod-
ule, available to the community, as mentioned in see also in Implementation
Note (?).

Here is a VOTable document transcription of the serialization example
given above in PROV-N and PROV-JSON:

<?zml version="1.0" encoding="UTF-8"?2>

<VOTABLE version="1.2" xmlns="http://www.ivoa.net/xml/V0Table/v1.2"
xmlns:ex="http://www.example.com/provenance"
xmlns:ivo="http://www.ivoa.net/documents/rer/ivo/"
xmlns:voprov="http://www.ivoa.net/documents/dm/provdm/voprov/"
xmlns:xsi="http://wuw.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.ivoa.net/xml/V0Table/v1.2
— http://www.ivoa.net/xml/V0Table/V0Table-1.2.xsd">

35

