
Data Access Layer Architecture

 - 1 -

 International

 Virtual

 Observatory

Alliance

IVOA Data Access Layer
Service Architecture and Standard Profile

Version 0.1 (DRAFT)

IVOA Note 2008 October 5

This version:
 V0.1-20081005
Latest version:
 http://www.ivoa.net/Documents/latest/latest-version-name
Previous version(s):
 none
Authors:
 D. Tody (ed.), F. Bonnarel, M. Dolensky, J. Salgado, others TBD

Abstract

The IVOA Data Access Layer (DAL) protocols define a family of service
interfaces providing access to all astronomical data available via the VO. These
interfaces are structured as a class hierarchy, rooted at the generic dataset, with
a subclass for each type of astronomical data, i.e., Table, Image, Spectrum, etc.
Much of the service functionality, interface, and metadata is common to all
classes of data and hence to all data access interfaces. A major goal of the

Data Access Layer Architecture

 - 2 -

second generation DAL interfaces (DAL2) design was to define this architecture
including the basic service profile and common metadata to permit a uniform set
of second generation interfaces to be defined, unlike the first generation
prototypes where the interfaces evolved significantly with each new interface. In
this document we examine the overall architecture for the DAL interfaces, and
note what is common to all interfaces as well as where they differ.

Status of This Document
This is an IVOA Note. The first release of this document was 2008 October 5.

This is an IVOA Note expressing suggestions from and opinions of the authors. It
is intended to share best practices, possible approaches, or other perspectives
on interoperability with the Virtual Observatory. It should not be referenced or

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents

1 Introduction 3
2 Data Service Architecture 4
2.1 Class Hierarchy 4
2.2 Generic and Typed Interfaces 6
2.3 Data Discovery vs. Data Access 6
2.4 Data Models 7

2.4.1 Dataset Metadata and Data Queries 8
2.4.2 Data Representation and UTYPE 9

2.5 Virtual Data 9
3 Common Service Elements 10
3.1 Form of Interface 11

3.1.1 Request Format 11
3.1.2 Parameters 11
3.1.3 Parameter Values 12
3.1.4 Error Response 12
3.1.5 WMS Comparison 13

3.2 Query Input 13
3.3 Query Response 15

Data Access Layer Architecture

 - 3 -

3.4 Standard Service Profile 16
3.5 Grid Capabilities 17

References 18

1 Introduction
The DAL architecture and standard service profile described here (also known as
the second generation DAL service architecture, or DAL2) has been under
development since at least May 2003 when the first IVOA interop was held in
Cambridge, UK. It was largely complete by the May 2006 interop in Victoria, with
the SSA interface (the first of the second generation DAL interfaces) completed
by the time of the Beijing interop in May 2007. In the fall of 2007 SSA became
an IVOA Recommendation, and by this time has been widely implemented. The
SIAV2 and TAP protocols currently under development, along with SSA and its
related SED and time series interfaces and the planned generic dataset interface,
will provide the core of the second generation IVOA DAL protocols.

Figure 1. Historical DAL Service Architecture (Cambridge UK, May 2003)

The DAL2 protocols form a family of data access interfaces, with a great deal
which is common to all the interfaces. This becomes evident if we examine the
class hierarchy of related classes of data and their associated interfaces, with the
inheritance of common query parameters, metadata, service methods, and
service interface which this class structure implies.

Exploiting this commonality of the DAL interfaces is important to provide
uniformity; users expect to see similar functionality implemented consistently in a

Dataset

Time Series

Catalog Source Catalog

Event List

Visibility Data

Image NDImage

1D Spectrum

SED

Data Access Layer Architecture

 - 4 -

family of closely related interfaces. It is also important to promote code sharing,
both on the server side when using a service framework to implement the entire
suite of interfaces, and on the client side, where the service interface is much the
same for all classes of data which can therefore share a common implementation,
with only the data-specific details differing from one class of data to the next.

Our intention here is only to provide a brief overview of the DAL service
architecture. Further information can be found in the SSA specification [1], and
other documents; in particular, most of the SSA query parameters and query
response metadata belong to the generic dataset and are not specific to SSA.
Likewise section 8 of the SSA specification, titled Basic Service Elements,
describes the standard service profile for a second generation DAL service and is
not specific to spectral access. Ultimately this may want to be moved out to a
separate document (possibly the generic dataset specification) since it will be
common to all the DAL2 services, but since SSA was the first DAL2 interface it
was simpler to just include it directly in the specification.

The recent document Scope and Concepts of SIAV2 [2] discusses the concept of
the generic dataset and the relationship of this to the typed interfaces such as
SSA and SIA. The basic service profile adopted for DAL2 is based upon the
OpenGIS specification for the Web Mapping Service (WMS) [3] which is the
basis for applications such as NASA Worldwind and which helped motivate later
applications such as Google Earth. The second generation DAL protocols are
based in part on the original VO data access protocols, Simple Cone Search [4],
and Simple Image Access V1.0 [5].

2 Data Service Architecture

2.1 Class Hierarchy
DAL has always had the concept of a unified service architecture and family of
data access protocols, although it has evolved quite a bit over the years, and will
probably continue to evolve. The current DAL class hierarchy is shown in Figure
2 below. This diagram is not intended to be complete. There may be additional
classes at each level, but the important thing is the overall structure and the
relationships between levels.

The generic dataset is at the root. Each of the top level “typed” data classes is a
subclass of the generic dataset, representing the major classes of astronomical
data. These can be subclassed further to create more specialized classes of
data, e.g., a source catalog is a subclass of table with the addition of a source
catalog data model, and a class of spectra created from a theoretical model (as
in TSAP) is a special class of Spectrum.

Data Access Layer Architecture

 - 5 -

At the lowest level we have instrumental data collections which may be
subclassed from any of the higher level classes, inheriting the basic service
interface and data model while adding metadata and functionality specific to the
data collection. In this example a client application may view the data as a
generic Dataset, as a top level typed object (Image, Spectrum, etc.), or as an
instrumental dataset.

A given physical data collection may be interfaced in more than one way
simultaneously, e.g., an event list could be viewed as both a table and as an
image, or a spectral data cube could be viewed as both an image cube and as a
source for extracted spectra. More complex datasets could be modeled as
logical associations of simple data objects.

Figure 2. Current DAL class hierarchy of data and their associated services.

Some classes of data are not shown, in part because we are still considering
where they fit into this structure. Spectral line data (SLAP), while not shown, is
probably a top level class of data and interface. Solar and planetary data might
require a top level interface, or might be subclassed from top level classes such
as Image and Spectrum if these are generic enough to apply to solar and
planetary data. Data from general theoretical models might be represented
either via a table-oriented SimDB, or via a data access oriented SNAP interface.

Dataset

Table

Image

SourceCatalog

SimDB

Spectrum

TheorySpectrum

SDSS PSC

SED

TimeSeries

HST Images

STIS Spectra

Generic Dataset Top Level Class Specialized Class Instrumental Data

(etc)

(etc)

(etc)

(etc)

Data Access Layer Architecture

 - 6 -

2.2 Generic and Typed Interfaces
The main difference between the generic dataset and the typed interfaces (Table,
Image, Spectrum, etc.) is that the generic dataset can describe any type of
astronomical data, whereas the typed interfaces can describe only a single type
of data, but can do so in greater detail, with a more refined data model specific to
the data. A second key difference is that the generic dataset can describe only
entire archival datasets (entire data objects or files as stored in some archive),
whereas the typed interfaces can describe, generate, and provide access to both
static archival datasets as well as virtual data (datasets which may not actually
exist when described, but which can be computed on demand if accessed).
Finally, since the generic dataset can describe any type of data it can also
describe relationships between different types of data, for example to associate
multiple discrete data products as elements of complex data of some sort.

This approach provides a great deal of flexibility for both describing and
accessing data. A complex observation consisting of several related data
products can be described via the generic dataset query mechanism. For
example we might have a survey field consisting of a spectral data cube, some 2-
D projections of the cube, a source catalog for the field computed from the 2-D
continuum, and possibly some extracted spectra of objects in the field. Client
applications which do not understand the complex data association could still be
used to access and analyze the individual primary datasets. Data objects such
as extracted spectra or projections could be either precomputed or computed on
demand as virtual data. If the client application is sufficiently knowledgeable of
the data it could use the instrumental or collection-specific metadata provided to
perform a more detailed analysis of the data.

2.3 Data Discovery vs. Data Access
The DAL protocols provide capabilities for both data discovery and data access,
generally within the same interface. While one might imagine separating
discovery from access in the case of access to static archival data, this would be
difficult or impossible for access to virtual data. “Discovery” in the case of virtual
data includes negotiation with the service to determine the details of what the
service can actually deliver, given the parameters of the ideal dataset as
requested by the client.

The data query present in the typed interfaces combines both pure data
discovery and negotiation of the details of virtual data into a single query
interface. In many simple cases a single query is sufficient to discover data of
interest. In more complex cases the process is iterative, e.g.:

• Perform an initial discovery query to find data of interest.
• Select a dataset to be accessed.
• Use the dataset metadata to refine the query, specifying in detail the

virtual dataset to be retrieved.

Data Access Layer Architecture

 - 7 -

• Download (and hence compute) the final fully specified dataset.

This process can be repeated starting from the second step for any number of
individual datasets, or to access different portions or views of a single dataset.

The planned generic dataset service will provide an additional dimension to this
process, allowing discovery of more than one type of data in a single query as
well as describing any complex data associations. A generic dataset query
would find all static archival datasets of any type matching the search criteria.
Access to specific datasets would then be performed using the appropriate typed
interface, iterating in the usual fashion upon the parameters of the virtual data to
be generated.

2.4 Data Models
Data models affect DAL primarily in two areas: the query response describing
available data, and the dataset to be accessed, which implements a data model
of some form which will affect access to and analysis of the data.

For all DAL interfaces with the exception of TAP (which has only a very limited
data discovery capability) the query data operation implements a data model
based upon the generic dataset metadata. In the case of SSA for example this
includes the following types of metadata:

Service Metadata
Query Describes the query itself
Association Logical associations
Access Dataset access-related metadata

Data Model Metadata
Dataset General dataset metadata
DataID Dataset identification (creation)
Curation Publisher metadata
Target Observed target, if any
Derived Derived quantities
CoordSys Coordinate system frames
Char Dataset characterization

Characterization Metadata
Char.FluxAxis Observable, normally a flux measurement
Char.SpectralAxis Spectral measurement axis, e.g., wavelength
Char.TimeAxis Temporal measurement axis
Char.SpatialAxis Spatial measurement axis
Char.*.Coverage Coverage in any axis
Char.*.Accuracy Resolution and error in any axis

Data Access Layer Architecture

 - 8 -

Essentially all of this is generic dataset metadata and would be present for any of
the DAL2 interfaces. Dataset identification, curation, target information, and
dataset characterization for example are applicable to any type of data. The only
class of metadata specific to spectra is the “Dataset” metadata, which provides a
place to put metadata specific to the class of Dataset being described (Spectrum
in the case of SSA).

2.4.1 Dataset Metadata and Data Queries
Dataset metadata can be tricky to use for queries as much of the standard
dataset metadata is optional and will often not be provided, and what is provided
will vary from one service to the next (although some basic metadata is
mandatory). One of the reasons we have parameter-based queries in DAL is
because this provides a mechanism to permit data discovery even in the
presence of missing metadata. An ADQL query for example, being a formal
expression, would be prone to failure when posed against dataset metadata due
to missing metadata, especially when posing the same query against multiple
services. The parameter-based query avoids this by identifying the most
important bits of metadata needed for queries, and by defining query semantics
which permit queries to be well-formed and computable even in the presence of
missing metadata.

For the planned generic dataset service the goal is to provide both parameter-
based and ADQL-based discovery queries. While the missing metadata problem
will affect generic dataset queries much as for typed dataset queries, it is more
tractable as there is no virtual data to deal with (the query is more like a
traditional database query), and the effort to support ADQL-based queries is
more easily justified since the whole point of the generic dataset query will be
data discovery and description.

As mentioned earlier, TAP (table access) is different as it is more of a pure data
access interface with only a limited data discovery capability (this is an optional
capability using POS, SIZE or REGION in a table metadata query). TAP queries
still have a data model; it is just that the model (the table schema) belongs to the
data table being queried rather than being defined by the TAP interface (future
UTYPE-based catalog queries being the exception to this rule). Although the
data model is different, a TAP query is really little different than any other DAL
data query such as a SSA or SIA queryData operation: parameters are input,
query response data model elements are set for each output table row, and an
output table is returned in any of the supported output formats. Execution can be
either synchronous or asynchronous. The form of the service interface can be
the same in both cases, with the only significant difference being the data model
or schema assumed by the query.

Data Access Layer Architecture

 - 9 -

2.4.2 Data Representation and UTYPE
As we saw in section 2.4, the query response data model for a DAL protocol is
structured as a number of reusable component data models: DataID, Curation,
Target, Characterization, and so forth. These little models are intended to be
components which can be reused in all the DAL interfaces. These standard
component models are aggregated, possibly combined with other data specific or
custom component models, to describe some particular type of data.

In order to support a variety of output data formats as well as flexibility of
representation within client software, data models in DAL are defined abstractly,
independent of representation. The UTYPE construct allows the elements of a
data model to be tagged with unique, fixed identifiers. This makes it possible to
reduce a hierarchical data model (up to some level of complexity) to a simple set
of keyword-value pairs. This greatly simplifies client software by allowing
standard containers of many different types to be used to store and manipulate
the “content” of a data model, while allowing the exact same content to be
represented in many different forms. For example, a data model composed in
this way may be represented as a VOTable, as a DBMS table, as a FITS header,
as a parameter set, as a hash table or map, and so forth.

Metadata extension is an important capability of data models as represented in
the DAL interfaces. Metadata extension is what allows a standard model to be
subclassed to represent a more specialized type of data, or to represent
instrumental data where instrument-specific metadata is to be passed through.
Since data model components are aggregated within a container, the standard
model components are unaffected if additional custom components are included
in the container.

The DAL query response mechanism also defines a metadata extension
mechanism which allows arbitrary data to be associated with the main query
response table. For example, if we have a VOTable container, the main query
response will be a table, using the REF-ID mechanism to associate query
response records with extension metadata stored in additional RESOURCE
elements. This mechanism allows more complex objects to be included in the
query response than can easily fit into custom components within the main query
response table. This is done without complicating the main query response table,
which remains a simple flat table. Client applications which don’t need to access
the extension metadata are unaffected if such optional metadata is included.

2.5 Virtual Data
Most DAL services decompose into two major elements: the data query and
actual data access. Data access may be as simple as providing pass-through
access to entire archival datasets in some native collection-specific format; this
mode is comparable to most current archive data interfaces, and is fully
supported by the DAL service architecture. Limiting access to pass-through of

Data Access Layer Architecture

 - 10 -

entire native-format datasets is very restrictive though, as the datasets can be
very large even though only a small portion of the data may be required, and it is
hard for client applications to accommodate the great variety of native data
formats present in the VO. Virtual data solves this problem, by providing optional
data subsetting, filtering, and transformation on the fly at access time. The
capability to dynamically provide virtual data tailored to what the client application
requires for analysis is extremely important to enabling efficient, sophisticated
astronomical data analysis via the VO.

Full support for virtual data is inherent in the DAL interfaces due to the separation
of the query from actual data access, and the iterative query-response nature of
the data query. Describing a virtual data product is very much the same thing as
describing a static archival data product, allowing the same query interface to be
used for both, simplifying the interface overall and abstracting away the
complexities of virtual data generation.

Computation of virtual data products can be either trivial or quite complex and
computationally expensive depending upon the data characteristics, the service
capabilities, and the client request. The latter case however, is a good example
of “moving the computation to the data”, and provides a powerful while still well-
defined mechanism for distributing computation and maximizing data bandwidth
within the VO. In the most challenging cases, computation of a virtual data
product may require a significant astronomical algorithmic data processing
capability as well as scalability, asynchronous execution, authentication, and
data staging to network data storage. All of the latter are addressed by related
VO technologies while the former is the domain of traditional astronomical data
processing.

3 Common Service Elements
As noted earlier the DAL interfaces form a closely related family of interfaces.
While each interface is tailored for the type of data to be accessed, there is much
that is common to all the interfaces (the biggest exception is virtual data
generation which can be very specific to the type of data being manipulated). A
major goal for the second generation DAL (DAL2) interfaces is to provide a
uniform look, feel, and function to all the interfaces; this is important for
consistency and rigor as well as to promote code sharing at all levels, from
service to client application. This is feasible now that the necessary VO
technology has largely been developed and is becoming mature.

In this section we summarize those things which are largely common to all the
DAL2 interfaces, and which we have tried to standardize beginning with SSA.

Data Access Layer Architecture

 - 11 -

3.1 Form of Interface
The basic interface for a second generation DAL service is specified in detail in
section 8 (Basic Service Elements) of the SSA specification [1]. In this section
we merely summarize the basic elements of a DAL2 service interface. Much of
what is presented here is adapted from the OpenGIS WMS standard [3].

3.1.1 Request Format
In general a service may implement multiple operations, such as queryData;
altogether these define the interface to the service. Interfaces may change with
time hence are versioned. It is possible for a given service instance to
simultaneously expose multiple interfaces or versions of interfaces.
The SSA interface described in this document is based on a distributed
computing platform (DCP) comprising Internet hosts that support the Hypertext
Transfer Protocol (HTTP). Thus, the online representation of each operation
supported by a service is composed as a HTTP Uniform Resource Locator (URL).
Service functionality is defined independently of the DCP and the same service
functionality could be implemented in the future for other distributed computing
platforms.
A request URL is formed by concatenating a baseURL with zero or more
operation-defined request parameters. The baseURL defines the network
address to which request messages are to be sent for a particular operation of a
particular service instance on a particular server. Service operations generally
share the same baseURL but this is not required.

3.1.2 Parameters
A given service operation may define zero or more parameters which are used to
control the function of the operation. In general parameters are specific to each
operation, although it is a good practice when a parameter of the same name
appears in multiple operations that the function be the same.
Parameters may appear in any order. If the same parameter appears multiple
times in a request the operation is undefined (if alternate values for a parameter
are desired the range-list syntax may be used instead). Parameter names are
case-insensitive. Parameter values are case-sensitive unless defined otherwise
in the description of an individual parameter.
All operations define the following standard parameters (these are part of the
service specification, not the individual operations):

REQUEST The request or operation name (mandatory).

VERSION The version number of the interface (optional).

The values of both the REQUEST and VERSION parameters are case-insensitive.
Use of REQUEST is mandatory even if a service interface defines only a single
operation.

Data Access Layer Architecture

 - 12 -

Example:
<baseURL>?REQUEST=queryData&POS=22.438,-17.2&SIZE=0.02

A given service instance may support multiple versions of the service interface,
which includes all service operations, their input parameters, the query response
with all of its complex metadata, and the service capabilities. By default if the
interface version is not specified the service assumes the highest standard
version which is implemented by the service (access to any experimental
versions supported by a service requires explicit specification of the version by
the client). Explicit specification of the interface version assumed by the client is
desirable to ensure against a runtime version mismatch, e.g., if the client caches
the service endpoint but a newer version of the service is subsequently deployed.
If desired the client can omit the VERSION parameter to disable runtime version
checking, and default to the highest version standard interface implemented by
the service.
All other request parameters are defined separately for each operation.

3.1.3 Parameter Values
Integer numbers are represented as defined in the specification of integers in
XML Schema Datatypes. Real numbers are represented as specified for double
precision numbers in XML Schema Datatypes. Sexagesimal formatting is not
permitted, either for parameter input or in output metadata, other than in ISO
8601 formatted time strings (sexagesimal format is fine for a user interface but
inappropriate for a lower level machine interface, where it only complicates
things).
The DAL interfaces define a special range-list format for specifying numerical
ranges, simple lists of values, or lists of ranges as parameter values. For
example, “1E-7/3E-6;source“ could specify a spectral bandpass defined in
the rest frame of the source. Time ranges are permissible using ISO8601 syntax
(this is where the use of “/” as the range delimiter comes from). String values
may be included in lists but the range syntax is not supported for string values.
The range syntax supports both open and closed ranges. Ranges or range lists
are permitted only when indicated in the definition of an individual parameter.

3.1.4 Error Response
In the case of an error, service operations should return a VOTable containing an
INFO element with name QUERY_STATUS and the value set to “ERROR”.
Explanatory text may be included as the value of the INFO to describe the error
which occurred. More fundamental service or protocol errors may however result
in an HTTP level error; hence a client program should be prepared to handle
either response. A null query, that is a data query which does not find any data,
is not considered an error.

Data Access Layer Architecture

 - 13 -

3.1.5 WMS Comparison
As a comparision to the request formatting specified herein, the following
example illustrates a typical OpenGIS WMS request, used to get a GIS image
(map), with the requested graphics overlays (interestingly, WMS also defines a
getCapabilities operation returning service metadata in XML, much like that used
in DAL and VOSI):

Example:
<baseURL>?REQUEST=GetMap&VERSION=1.3.0
 &CRS=CRS:84&BBOX=-97.105,24.913,78.794,36.358
 &WIDTH=560&HEIGHT=350&LAYERS=AVHRR-0927&FORMAT=image/png

Aside from adopting a proven HTTP interface style, the similarity to OpenGIS
standards such as WMS might prove useful someday, if for example we should
want to adopt (probably with some modifications or extensions) OpenGIS
standards such as WMS for VO.

3.2 Query Input
The parameters defined by a service operation are specific to the operation and
in principle can be anything. In practice services and service operations are
often similar in many respects, and may have similar parameters. When
common patterns and functionality are identified, input parameters should be
consistent between services or sometimes service operations.

The query parameters summarized below are either generic (inherited from the
generic dataset and common to all data queries based upon the generic dataset
metadata), or specific to the basic table-oriented query mechanism common to
all DAL queries. These are taken from the SSA specification, but are applicable
to most or all classes of data. We only summarize these parameters here; no
attempt is made to fully define each parameter.

The following are basic to the DAL2 discovery query:

Parameter Sample value Physical unit Datatype
POS 52,-27.8 degrees; defaults to ICRS string
SIZE 0.05 degrees double
BAND 2.7E-7/0.13 meters string
TIME 1998-05-21/1999 ISO 8601 UTC string
FORMAT votable - string

The following include more advanced query parameters based upon the generic
dataset metadata, as well as parameters specific to the query mechanism (e.g.,
MAXREC, RUNID):

Parameter Sample value Unit Req Datatype

Data Access Layer Architecture

 - 14 -

SPECRP 2000 λ/dλ REC double
SPATRES 0.05 degrees REC double
TIMERES 31536000 (=1yr) seconds OPT double
TARGETNAME mars OPT string
TARGETCLASS star OPT string
ASTCALIB absolute OPT string
WAVECALIB absolute OPT string
FLUXCALIB relative OPT string

PUBDID ADS/col#R5983 REC string
CREATORDID ivo://auth/col#R1234 REC string
COLLECTION SDSS-DR5 REC string

MAXREC 5000 REC string
MTIME 2005-01-01/2006-01-01 ISO 8601 REC string
COMPRESS true REC boolean
RUNID REC string

The SSA interface defines additional parameters (e.g., SNR, REDSHIFT) which
we do not include here as they are not applicable to all types of data, although
they would be appropriate for any other single object aperture-based observation,
such as a SED or time series.

PUBDID and CREATORDID allow the use of dataset identifiers to specify a
particular dataset to be accessed. COLLECTION allows a single data collection
to be queried or accessed.

MAXREC is part of the mechanism used to return table output data synchronously
to the client. By default a service will return at most a certain number of table
records, as defined in the service capability metadata. If overflow occurs this is
indicated in the table output returned to the client. If desired the client can
reissue the query with a large value of MAXREC (up to the maximum defined by
the service capabilities), to attempt to stream a large query response back to the
client. While not fully general, this simple mechanism is sufficient for many
queries, and Grid capabilities (async, VOSpace) can be used if simply increasing
MAXREC is not sufficient.

MTIME is used to detect any modifications (including additions and deletions) to a
data resource. The value is a time range in ISO8601 format. This may be used
to maintain replicas of a data resource such as a catalog of images, or a table.

COMPRESS is used to allow a service to return compressed datasets, e.g., a gzip-
compressed version of the dataset file (this is not the same as HTTP-level
stream compression, which would still deliver an uncompressed dataset to the
client).

Data Access Layer Architecture

 - 15 -

RUNID is a pass-through parameter used to tag all operations which are part of
some larger distributed job. If a service operation should call other services, it
passes on the value of RUNID, and so on down the line.

Other standard parameters will be defined for DAL2 as specification of additional
services such as TAP and SIAV2 goes forward. For example a REGION
parameter has been proposed for both TAP and SIAV2, which would allow use of
a STC-S (or possibly STC-X) region specification in spatial queries.

3.3 Query Response
The form and semantic content of a DAL query was already covered in section
2.4. To summarize, the following are common to most DAL queries:

• Generic dataset metadata. Any query used for dataset discovery returns
generic dataset metadata, augmented by metadata specific to the typed
dataset, and possibly collection-specific metadata.

• Form of response. The query response is a table. Each row

corresponds to a data model or schema of some sort. For dataset queries
the table is returned as a VOTable, using UTYPE to identify data model
elements. For more general queries the same semantic content may
optionally be returned in other formats, e.g., FITS, CSV, text, HTML, etc.

• Metadata Extension. Metadata extension using standard mechanisms

(additional component models or table fields; custom extension records)
may be used to extend a standard model to add additional metadata
specific to the type of data being described, without changing the basic
query mechanism (generic clients are unaffected by the inclusion of the
extra information).

Much of implementing a DAL service involves a query of some sort (the other
major functionality being virtual data generation). While details such as exactly
what query parameters are defined and the specific data model implemented by
the query response will vary somewhat from one DAL query to another, the basic
query mechanism can be the same for all such queries.

Mechanisms such as separation of data model from representation, the use of
VOTable and UTYPE, the use of MAXREC etc. to manage the query response,
can be common to all queries. In the case of dataset queries (SIA, SSA, etc.),
much of the data model and metadata can be common to all such queries. Even
in the case of services such as TAP, the same basic query mechanism can be
reused, substituting a table schema for a DAL data model. All such reuse carries
over to the client side as well, affecting client VO interfaces as well as client
applications.

Data Access Layer Architecture

 - 16 -

3.4 Standard Service Profile
As we saw in section 3.1.1, the DAL2 service model is a service, normally
located by a single service endpoint (baseURL in the case of HTTP), which
defines one or more service operations, identified by the REQUEST and VERSION
parameters.

In general the operations defined by a service can be anything, depending upon
the service functionality required. Most DAL services follow a similar pattern
however, as the functionality is much the same for each service, the main
difference being the type of data being queried or accessed.

For dataset-oriented services the standard service profile is as follows:

• QueryData. Query for data satisfying the given parameters. Used both
for data discovery and to refine the parameters of a virtual dataset to be
generated. Depending upon the service this may be a single operation or
multiple operations; advanced query techniques such as inclusion of an
ADQL expression could be used. Both GET and POST versions are
possible in the case of an HTTP-based interface. Execution may be either
synchronous or asynchronous.

• GetData. Get a single dataset as referenced in a prior queryData. This is

not normally an explicit service operation at the protocol level; normally an
access reference URL is used instead, to allow greater flexibility in how
the actual data access is performed. GetData is always synchronous,
always gets a single dataset, and is always provided as a GET in the case
of HTTP. Transports other than HTTP are possible so long as they can be
expressed as a URL.

• StageData (optional). Initiate an asynchronous operation to compute one

or more datasets and stage them for later retrieval. As with getData,
stageData refers to actual or virtual datasets referenced in a prior
queryData; however multiple datasets may be referenced in a single
stageData request. StageData may or may not be an explicit service
operation. StageData is always synchronous, returning a result status and
a JobID if the request is successful. The UWS pattern is used to monitor
and control subsequent job execution. Data is normally staged either to
service local JobID-specific temporary storage, or to a VOSpace.

• GetCapabilities. Get the service capabilities. This describes what the

service can do, including the service interface (input parameters), what
optional service capabilities defined by the service specification are
implemented by the service instance, and any limits on maximum search
region size, maximum table output size, and so forth. Output is returned
as a registry-compatible resource Capability element, the contents of
which are defined by the service specification. Execution is synchronous.

Data Access Layer Architecture

 - 17 -

Since getCapabilities can be called by directly by a client application it is
implemented as an explicit service operation (REQUEST =
getCapabilities). VOSI compatibility is met since this reduces to a
single fixed URL which can be set when the service is registered. Note
that getCapabilities may take a VERSION parameter; this is required if a
service instance implements multiple versions of a service interface.

Other VOSI operations are possible, for example getAvailability, to monitor that
a service is available and functional, and getTableMetadata, to get registry-
compliant table metadata for a service. As with getCapabilities, these are
implemented as normal service operations which reduce to a single fixed URL
which can be set when the service is registered. Both are synchronous.

In the case of non-dataset oriented services such as TAP (or the legacy cone
search) the usual queryData-getData interaction pattern may not apply. In such
a case we still have something very close to queryData, but it directly queries a
data table with a table-specific schema, instead of querying a DAL data model.
GetData is not required. StageData is still required, but as noted earlier may or
may not be a separate explicit service operation (it may instead be a variation on
the data query, implemented as a POST, which merely initiates an asynchronous
job, since no access reference is required). All of the VOSI operations are the
same for all service classes.

3.5 Grid Capabilities
By “Grid” capabilities we refer to service capabilities which go beyond what can
be done with the usual synchronous HTTP GET or POST. This includes
asynchronous execution, authentication including single sign-on authentication,
scalable execution, coordinated distributed execution, and network storage of
data on a per-user basis.

DAL relies upon the IVOA GWS standards (UWS, SSO, VOSpace, etc.) for all
Grid capabilities. Aside from integration issues such as how an asynchronous
job is created or how VOSpace storage is referenced in a DAL operation, these
capabilities are independent of the type of data being accessed, and function the
same for all DAL services, and indeed for all VO services. Hence they are an
important class of capability which are common to all the DAL services, and
which can probably share a common interface and implementation.

The details of how Grid capabilities are to be integrated into the DAL2 protocols
are still being worked out. The initial DAL protocols, including SSA, do not yet
support Grid capabilities so the details of how integration of Grid functionality into
the DAL interfaces will be provided has not yet been specified. This is expected
to be addressed in TAP and SIAV2, both of which will require Grid capabilities for
high-end use-cases.

Data Access Layer Architecture

 - 18 -

In general, to serve a broad set of use-cases, both simple synchronous,
unauthenticated execution, and Grid-oriented execution (auth, async, etc.) are
required. If the DAL services were to be used only within datacenter applications
or large project software then it might be simplest to only implement the full-up
Grid-enabled capabilities. If however we expect the user community to write
software which directly accesses VO data then a simple open-access,
synchronous mode of execution is also required. Experience over the past
decade or more has proven that this is adequate for many applications, and
important to encourage user take-up of VO-type middleware. High end
applications however do require Grid capabilities.

References

[1] D. Tody, M. Dolensky, J. McDowell, F. Bonnarel, et.al, Simple Spectral Access
Protocol , http://www.ivoa.net/Documents/latest/SSA.html

[2] D. Tody, F. Bonnarel, M. Dolensky, Scope and Concepts of SIAV2 ,
http://www.ivoa.net/internal/IVOA/SiaInterface/SIA-V2-Analysis.pdf

[3] Jeff de la Beaujardiere ed., OpenGIS® Web Map Server Implementation
Specification, http://www.opengeospatial.org/standards/wms

[4] R. Williams, R. Hanisch, A. Szalay, R. Plante, Simple Cone Search,
http://www.ivoa.net/Documents/latest/ConeSearch.html

[5] D. Tody, R. Plante, Simple Image Access Specification,
http://www.ivoa.net/Documents/latest/SIA.html

