
Utypes : Points to discuss

Data Model Working Group , M.Louys,

IVOA Interop Heidelberg, mai 2013

Application modeling or Utype definition

Where do we put the line ?

 Serialisation / deserialisation should not bother the
archive end
 Data models try to be very comprehensive : consider as many

use-cases as possible

 Archives offer a partial set of metadata depending of the
mission, instrument, data products, etc.

 Applications evolve quicker than archive management –
Apps are driven by evolving science questions

 Archives need to be stable for the long term and cannot
completely and precisely anticipate and forsee the next
applications paradigms

 The needs are different

 Clear and rich documentation is the common basis

How to derive a utype from UML
DeSerialisation needs

 Object Types (classes)

 Associations between classes too (collection, composition,
inheritance (?)

 At the finest level, for classes attributes, we need :

 names , data type, and often unit and ucd

We agreed that we need a unique identifier for a piece of
metadata and that we derive it from a UML data model
representation

 logical path to a data model item

 Same UML diagram , two different path definitions
 VO-DML defines a relative path , for classes and any level of nesting

 Legacy utypes used root-to-leave path , for leaves

 The trade-off could be to have both co-exist *in the spec*

Combining two levels of annotation

Legacy utype :
Keep on FIELD and PARAM in VOTable serialisation

They correspond to a long path traversing the DM graph

 Simple to check for the data provider for short data model
instances

 Needed for a transition period

VODML utypes
Defined for Groups  any hierarchy in the DM tree

Contain the role of a group with respect to its parent level in a
hierarchy

Hooked to a FIELD by a FIELDref

 Is their a consistency issue?

Utype as labels in 2012

 Up_to_now:

 a utype is a label that tells where a metadata value can be

located in an existing IVOA DM

 It has a path-like structure

 It goes from single value element to classes descriptions in a

DM

 For deserialisation :

 Build-up classes instances from an IVOA data model and

fill their attributes with the values stored in VOTable

fields.

 Object types were defined in an XML schema attached to

the IVOA REC (no explicit tag in VOTable serialisation))

Utype as labels in 2013

 VO-DML offers to describe any kind of VO DM in a machine
readable format

 It needs labels for all data model items to express their nature:

 Classes: a label for an object type name

 Attributes: a label for the name

 Collection, a label from an element to the container object.

 Reference: a label for the link between two classes

 Inheritance: a label for the derivation link (??)

 These are structure information , as embedded in the XMI
format used internally by any UML modeler (CASE tool).

 This is different from the semantic flavored usage of Utypes
defined previously.

The semantic role of Utype

 The semantic role of the former utype

 char: characterisation.spatialAxis.accuracy.staterror.value

 Is different from
Accuracy.statError

 which represents an object type, that can be used in a relation
to any kind of measurement or Axis calibration

 How to interpret the Accuracy.StatError label in a data
cube for instance ?

Is it attached to a spectral, spatial, velocity, flux measurement?

You need to interpret the group nesting to know the accuracy of
what you are describing/using.

Long strings or nested multi-level parsing ? Each « . »
corresponds ‘grosso modo’ to GROUP

 Same complexity

specialised

generic

From Obscore DM

obs:Obs.Characterisation.SpectralAxis.resolution.resolPower.refVal

obs:Obs.Characterisation.

SpectralAxis.accuracy.staterror.refval

Need for well defined reusable blocks

 From experience , we can notice that most applications and
protocols need some stable representations for current usage

 Coordinate system STC

 Coordinates STC

 Regions STC

 Filter, Photometric calibration PhotDM

 Data product identification Dataset

 Access to linked data Access

 Others?

 These should be stabilised for all models

 A dictionnary of common classes and their VOTable mapping
with associated utypes.

 The skeleton for re-usable libraries

Things to clarify

 Define a Vo-dml property for a GROUP
<GROUP utype="src:source.Source.position">

 <PARAM utype="vo-dml:Instance.type“
value="src:source.SkyCoordinate

" name="datatype".../>

<GROUP>

Here utype is used for meta-information on data model
definition:

This utype is part of the VODML translation mechanism of
a data model instance in VOTable

Why not use a more specific dedicated annotation :

? otype as new attribute in VOTable GROUP

? <INFO

? <LINK ref=‘http://vodml/vodml_item#Instance.root’

Anything better ?

Issues to fix / things to clarify

 Support for data model item property : mandatory

and optional

 Example Obstap

 has mandatory datamodel elements

 Need to be there in order to be compliant to Obs/TAP spec

 Can also provide richer metadata descriptions with optional

DM items

 A tag for mandatory status

Data model extension

Define new data model fields for a specific use-case

 If a data model does not cover sufficiently the needs of a

specific service or data collection

 Define a new data model name (name space)

 Define new classes by

 derivation of existing classes

 Addition of new classes

 Provide documentation and utypes for the extended data

model fields

 Could be VODML description

 Need some sort of IVOA validation to enter the

interoperable ivoa domain and avoid redefinition

