
International
Virtual
Observatory

Alliance

Utype: A data model field name con-
vention

Version 0.4

IVOA Note November 6, 2009

This version:
http://www.ivoa.net/Documents/Notes/WD-Utypes-0.3-20090520.pdf

Latest version:
http://www.ivoa.net/Documents/latest/Utypes.html

Previous versions:
0.3

Editor(s):
Mireille Louys, ...???

Authors:
Mireille Louys, Jonathan McDowell, François Ochsenbein,
Doug Tody, François Bonnarel, Alberto Micol, Gerard Lemson

Abstract

This document discusses the definition, usage and implementation of Utypes
in the Virtual Observatory.

1 Status of this document

This document has been produced by the Data Model Working Group. It is
still a draft.

1

 http://www.ivoa.net/Documents/Notes/WD-Utypes-0.3-20090520.pdf
http://www.ivoa.net/Documents/latest/Utypes.html

Acknowledgements

Members of the IVOA Data Model Working Group, including representatives
of the US NVO, Astrogrid, and the Euro-VO have contributed to the present
draft. F. Bonnarel , Anita Richards and M. Louys acknowledge support from
the European EUROVO-AIDA project.

2

Contents

1 Status of this document 1

2 Introduction 4
2.1 Scope of the document . 4
2.2 Context and definition . 4

3 What are Utypes for? 5
3.1 Serialisation . 5
3.2 Requirements for Utypes construction 7

4 Utypes Syntax 8
4.1 Building-up the string . 8

5 Data model re-use 9
5.0.1 Canonical notation . 11
5.0.2 Alternative Utypes representation 12

5.1 Short abbreviations for Utypes 12

6 Generating Utypes from UML data models via their XML
representation 13

7 How are Utypes documented? 14

8 How are Utypes published? 15

9 How are Utypes used? 15
9.1 Publishing data to the VO . 15
9.2 Naming metadata in VO protocols 16
9.3 Querying data bases . 16

10 Conclusion 17

A Appendix A: Utype serialisation example 18

B Appendix B: VOTable serialisation example 19

C Appendix C: Updates of the document 20

3

2 Introduction

2.1 Scope of the document

This document is summarizing the practice adopted in the Virtual Observa-
tory for naming and identifying data models elements. It defines the Utype
concept, the syntax proposed to represent Utypes-lists in the VO , and finally
illustrates how to use them.

2.2 Context and definition

In the field of astronomy, when two services or users need to share data, they
can represent the necessary associated metadata using various data model
compliant products. At the code level, they can share data model classes,
then re-using the full Object Oriented modeling with classes and methods. In
a more portable way, they also can exchange lists of metadata values labeled
with names derived from the data model classes and relationships.

The advantage is to have homogeneous labels understandable by various
data centers and to be able to first publish one’s data in a VO understandable
way, and then to compare metadata from data sets of different origins.

The Virtual Observatory provides protocols and interoperable applica-
tions in order to access, retrieve, analyze astronomical data. Services are
principally based on the unified representation of metadata which are pro-
vided basically by data models for each domain: Observation, Spectra, Sim-
ulations, VOEvents, etc...

The metadata in astronomy are distributed using file formats like FITS,
VOTABLE, which are rather flat representations for a data set or XML
files which brings hierarchy. This is important for interoperable services
and applications to be able to recognise and identify the role of one piece
of metadata inside a VO Model. For example if we get (SPATRES = 1.3

arcsec in the FITS header of an observed spectrum or image, we would
guess it is a spatial resolution and by browsing the Characterisation Data
Model [3] consider that it can be expressed as a standard name or label or
tag: SpatialAxis.resolution.referenceValue according to the structure of the
SpatialAxis object in the model. This string is the name of the attribute
used in the data model to represent this property of an observation.
Such a name, defined and understood in the context of a data model (here
Characterisation) is called a Utype.

4

3 What are Utypes for?

The main goal of Utypes is to help to parametrize a data model, i.e. to
describe all items in the model as a list of keyword-value pairs. This very
simple flat representation of a model can be handled in various ways. We can
take a list of metadata associated to a specific data set, parameterize it via
Utypes, and store the resultant data in the fields of a table, in a parameter set,
in a hash map in Java, or even in a FITS header (provided that unique FITS
keyword names are associated with a corresponding Utype, as for example
in the Simple Spectral Access protocol [1]).

Other semantic tags, like UCDs already exist to classify metadata, they
can categorise physical quantities but are not precise enough to uniquely
identify a piece in a data model. As long as new data collections appear with
many different metadata organisation, the need to bind one piece of metadata
(wavelength band-width in an optical observation) with its corresponding
representation in an IVOA Data model (e.g. in SpectrumDM) is crucial to
promote interoperability and make protocols and applications easier for the
user.

Up to now, data models like SpectrumDM, CharacterisationDM, SimDB
data model help to define, represent and manipulate metadata. They provide
UML diagrams, XML serialisations and Utypes lists for the model classes.

Within the DAL WG, protocols such as SSA also makes use of Utypes.
The SSA protocol version 1.04 has its own Utype serialisation attached in
Appendix D: ’SSA Data Model Summary’ of the standard document [1] .

3.1 Serialisation

Serialisation is a process that helps to represent collections of metadata in
a transportable way -that is outside programs, and in compatibility with an
IVOA Data Model. Models are built following object oriented programming
principles. They are represented in UML (Unified Modeling Language), using
mainly the class diagrams. From these classes descriptions, the developer
can derive a library in Java or C++ or Python , that can operate on these
classes, and re-use them for his/her own application. However in most cases,
metadata circulate in the VO via files in specific formats: VOTable, FITS,
XML or structured ASCII files. These are the places where Utypes can be
used in order to map fields or elements in these files to data model items.

More precisely, there are 4 ways of using/exporting the data model struc-
tural organisation :

• implement the data model classes in an object oriented language. Then
metadata associated with a 2D image for instance, are described by a

5

set of classes within the Observation DM. To publish the metadata
values of such an image, one just need to instantiate the corresponding
classes of the data model and use the setters and getters functions of
these classes to load or export the attribute values.

• derive an XML schema from the data model. Every class and every
class’s attribute will be translated as an element. Nested classes will
produce a tree like structure in XML. The metadata for let say a 2D
image, is then an XML instance document following the XML schema
structure.

• use a nesting strategy to bring back the hierarchy in a non hierarchical
serialisation : VOTable, JSON [2], PARfile [] allow for that.

• re-use names of elements in the XML schema as keywords in a flat
ASCII (keyword,value) list.

Considering an observation, – f.i. from the GOODS data set, to be pub-
lished to the VO, how can we express its spatial, spectral, temporal, and
photometric features? This is in the scope of the Characterisation Data
Model (or in SSA Utype list as well). Various possibilities are available to
describe such a metadata list for each data set:

1. use an XML instance document containing the whole tree of elements
below the root element “Characterisation”.

2. provide a (keyword, value) list with keywords mapping the leaves of
the corresponding XML tree.

3. use a VOTable document, and attach to each main structure FIELD,
PARAM, GROUP, or TABLE, a name from the data model elements.
This representation is preferable for large collections of metadata chunks
of similar structure.

See Appendix A, B, C for serialisations examples.

Every serialisation has its advantages:

• XML provides a hierarchy of nested objects and can directly use XML
searching tools like XPath.

• The ASCII list of (keyword,value) pairs is the simplest most compact
representation.

• VOTable encodes object nesting within GROUP elements and supports
large collections of similar objects.

Hence all three should co-exist within the VO. The translation from one
representation to the other should be bijective which implies that the Utype
string must encode the nesting structure of the objects in the model. Whereas

6

the graph structure of the UML class diagram is richer than the XML tree
projection, the translation can still be organized both ways, provided some
rules are adopted for the UML design as explained in Section 4.

3.2 Requirements for Utypes construction

The Utype purpose is essentially to point to the simplest atoms of a data
model, i.e attributes within a class, so that it can be used in a pair like
in (Utype,value). Composing a name for atomic elements is just using a
string composition in most object programming language. For example, in
Characterisation DM, pointing to the number of bins along the Spectral
axis will be SpectralAxis.numbins. Most of attributes in data models are
themselves classes, that can be browsed down in order to reach the lowest
level of encapsulation and point to single value elements. This is the case for
SpectralAxis.coverage.Location.unit with 2 levels of nesting.

If a data model gets more complex, like SimDB/DM or ObservationDM
for instance, groups of classes involved in the same use-cases (functionali-
ties) are identified and organised in packages. See the SimDB overview at
: http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IVOATheorySimDBDM or the
Observation DM sketchout at Fig 1. This should also be reflected in the
string structure of Utypes.

Figure 1: Observation DM overview: This model include existing packages
: Characterisation, Spectrum, Provenance, Photometry, and Spectrum and
re-uses some classes of STC classes as base types for attributes.

Because of the graphical structure of UML, linking classes with each

7

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IVOATheorySimDBDM

other, a path inside the data model is not always unique. In order to be able
to build-up Utypes names directly from a UML data model, we propose the
following rules for UML design, and developed a Utype syntax from it.

4 Utypes Syntax

4.1 Building-up the string

questions to Gerard: corrections / suggestions?? The building up of Utypes
has been discussed extensively within and between both Data Model WG
and Theory IG and at various Interoperability meetings. Here is a proposed
syntax we have agreed on for simple valued element.

The Theory interest group has tried to come up with a minimal, nec-
essary set of rules to produce a string that uniquely represents any of the
fundamental syntactic elements in the model. These rules are the following:

• Property names are unique in a Class. Note there are three types of
properties:

- An Attribute is a property the datatype of which is a value type
(NOT an object type/class), though it need not be primitive but
may be structured (i.e. have attributes of its own).

- A Collection is a named, 1-to-many composition relation of a parent
to a child class.

- A Reference is a named, many-to-one shared association to another
class.

• Class names are unique in a Package (name space).
• Package names are unique in either an enclosing parent package, or in

the set of models adopted in the IVOA.

So a name like (in a pseudo regexp notation)

<model-name>:[<package-name>/]*<class-name>.<attribute-name>[.<attribute-name>]*

is a unique pointer to an attribute in a data model. Similarly

<model-name>:[<package-name>/]*<class-name>.<reference-name>

<model-name>:[<package-name>/]*<class-name>.<collection-name>

are unique pointers to the reference and collection properties of a class. When
classes are embedded, there may be attributes before the reference.How do we

8

handle this?

The rule allows for an arbitrary nesting of packages, which is necessary
to ensure a unique encoding. Since attributes can be structured, we allow
for chaining these until the final primitive attribute is reached, i.e one which
carries a single value.

The reference name (resp. collection-name) is an explicit name for a link,
or pointer to a target class, as shown in fig. 2 where
SimDB:simdb/experiment/Experiment.protocol, is a reference to the protocol
used to realize this particular Experiment.
to improve ...

In the Utype string construction, references and collections are NOT fol-
lowed further. Only the pointing mechanism is expressed in the Utype. The
referenced (target) class will be encoded normally and pointers will be im-
plemented to it.

Each serialisation mode can support this :

• XML will use the ID/IDREF mechanism to set a link from the class
to the referenced one provided the two connected classes are defined in
the same document.

• VOTable applied the same mechanism.

Reference could be implemented in the (Utype,value) pair list, but XML
and VOTable are much more convenient for that. Therefore the Utype list
serialisation should be reserved for small sets of metadata consisting in single
value attributes, as used in the various VO protocols.

Utypes for higher level, less primitive elements such as classes are obtained
simply by not expanding attributes to the end. They are not useful for (key-
word, value) lists serialisation, but are interesting in hierarchical VOTable
serialisation, where by using a GROUP structure we can fully encode nested
objects. See the VOTable Example in Appendix B.

All this works efficiently with a simple or complex self-explaining data
model but in many case, a data model re-use classes from another datamodel
as data types.

5 Data model re-use

However, in the VO there are common structures that are needed everywhere,
like IVOA identifiers, or coordinates. Coordinates are defined in a separate

9

Figure 2: UML diagram excerpt of the SimDB data model. This illustrates
the reference mechanism between classes. Here ObjectType is the name of
a class, that can be accessed from the ObjectCollection via a link or pointer
called objectType. This means that the class ObjectCollection gathers ob-
jects whose types are described in the ObjectType class, allowing to consider
any new types of objects.

10

model: STC, http://www.ivoa.net/Documents/latest/STC.html and identifiers
are standardised in at http://www.ivoa.net/Documents/latest/IDs.html.

In object oriented programs, classes of these packages are simply linked
using libraries, and can then be used as types (primitive classes) for other
models. For serialisation, we need an explicit mechanism to mention that
attributes in a class re-use STC basic structures, for instance.

XML serialisation reusing other models are easy to build up as existing
schemata can be linked together or imported. For instance the Character-
isation data model imports STC elements which are then parsed using the
XML name space mechanism. In the case of Utypes serialisation, there are
two proposed strategies:

5.0.1 Canonical notation

This is the most explicit that allows various versions of the two associated
models. Utypes are prefixed with their relative data model name space string
and just concatenated using a specific delimiter as suggested in Fig. 3. Utypes
would then be chained according to this pattern:

dm1:Utype1;dm2:Utype2

which means that entities named Utype2 in ’dm2’ are re-used as atomic
constructs inside Utype1 entities in ’dm1’. This notation helps to clearly
identify the data model which each Utype belongs to.

Figure 3: Correspondance between XML elements and Utypes: this example
illustrates the similarities between the XML path reaching a leaf element and
its Utype representation.

11

http://www.ivoa.net/Documents/latest/STC.html
http://www.ivoa.net/Documents/latest/IDs.html

dm1 and dm2 are name space prefix that point to the data model repre-
sentation , for example the XML schema corresponding to the corresponding
version of the model. The concatenating character ; (semicolon) is not
overlapping with any reserved characters of the VOTable standard, or XML,
or uri syntax. In order to be able to use the Uri mechanism [?] described by
Norman Gray, [@,*,$,#,%] not allowed in URI should be avoided.

The concatenation is supposed to happen only one time which means
the right part after ’;’ is a kind of VO type described consistently and self
sufficiently in one single data model. This makes the assumption that VO
models are properly organised in nested packages and are cooperative enough
to cover the whole field of astronomical metadata with a minimum of overlap.

5.0.2 Alternative Utypes representation

The canonical notation applied to the Characterisation data model provides
very long Utype strings that are not appealing to the user and too long to be
used as data base column names. If we consider for instance a specific version
of the Characterisation data model whose classes integrates coordinates and
regions from the STC v1.33 data model, we get a simpler notation by just
browsing down the attributes chain as shown in the syntax section.

SpatialAxis.Coverage.location.coord;stc:Position2D.Value2D.C1

would simply become

SpatialAxis.Coverage.location.Position2D.Value2D.C1

Such a notation does not show the limit between the two models but
is consistent with the XML schema import mecanism. Parsing the Utype
string and resolving the name space will point to the specific version of the
CharDM with the specific STC v1.33 data model version. This provides
a fixed binding between the two data model versions. Although the string
is not much shorten, it allows to pick up any single value in a data model
instance and browse down the nested classes to build up the corresponding
Utype string.

5.1 Short abbreviations for Utypes

From the building approach, Utypes are prone to be long due to the object
oriented design that encourages nested classes and package re-use. However,
even if it is a drawback for display in applications, long strings are easier
to interpret by data providers and VO programmers, avoid ambiguities and

12

foster uniqueness.
Inside an application, a data base or or a server, where Utypes are only

machine-interpreted, alias to short names can be build and used internally.
For instance a mapping table between Characterisation Utypes and local
abbreviations are generated in the SaadaDB system [4].

6 Generating Utypes from UML data models
via their XML representation

The syntax rules proposed in Section 4 above can be implemented from an
XML schema representing the data model, using the XPATH mechanism
[5] to build up a path from the root of the schema down to the finer grain
elements corresponding to attributes’ class in the model. XPATH is not
directly used in Utype generation , but its properties are indirectly applied
in the approach described here.
Suppose now that we have an XML schema fully mapping the UML model
content, with all classes represented as elements in the model, nested elements
for aggregation, references and basic types.
For the sake of clarity, we do avoid substitution groups and choice patterns
and on the contrary prefer the XML extension mechanism. Such a rule
helps to guarantee that for one XML element at any level, its name can
be mapped to only one sub-structure and therefore allow for direct class
encoding. Nested classes will be organized as XML trees, then browsing
down the tree to leaves elements and concatenating the names provides a
path which is similar to the Utypes construction mentioned in the previous
section(cf 4).

In order to achieve a proper mapping from UML to XML serialisation, and
derive object code or Utype list from the generated XML, some requirements
on the style of UML design as well as the XML schema construction should
be met.

• UML : For any association , each class connected should have a role
name in order to clearly identify references. Template classes provide a
same name for different typed structures and are difficult to translate
in XML; hence they should be avoided.

• XML Classes, should be converted as XML elements and class at-
tributes as included sub-elements. The XML attributes are more or
less providing context for the XML translation and are not used to
describe the data model structures(only valid for charac. simdb has a
diff. strategy).

13

Most of the UML modeling commercial tools like RationalRose, Magic-
Draw, Objecteering , etc... have an internal XML representation of a UML
model encoded in a proprietary XMI format. When simplifying this rep-
resentation, one can apply XSLT transformation rules to directly generate
output products like :

• an XML schema
• an example of XML document instance
• a Utype list with documentation
• a set of hyperlinked webpages for the datamodel documentation

Such an approach has been implemented with success by G. Lemson and
L. Bourges in the Theory interest group. see http://volute...

UML allows various designs for a specific project and fully integrates the
properties of graphs, with association links between classes while on the con-
trary XML emphasizes the hierarchy of elements. Therefore the translation is
not straightforward. Some modeling rules should be imposed in UML design
in order to simplify translation and produce robust XML schema and Utypes
list. The Theory interest group [?] has tried to come up with a minimal, nec-
essary set of rules to produce a string that uniquely represents any of the
fundamental syntactic elements in the model. These rules are the following:

• Property names are unique in a Class. Note there are three types of
properties: An Attribute is a property the data type of which is a value
type (NOT an object type,/class), though it need not be primitive but
may be structured (i.e. have attributes of its own). A Collection is a
named, 1-to-many composition relation of a parent to a child class. A
Reference is a named, many-to-one shared association to another class.

• Class names are unique in a Package (name space).
• Package names are unique in either an enclosing parent package, or in

the Model (the root of all).

7 How are Utypes documented?

The documentation for a Utype is defined when the data model is build up
and stored in the XMI representation of a UML Model. Most case tools
provide a documentation generator that produces an HTML hyperlinked set
of pages. These may contain just a set of few lines or a full illustrated text if
necessary. N. Gray has proposed an URI generation function for each Utype
in a DM, that could be used to point to the corresponding anchors of the
on-line documentation of a data model.

14

8 How are Utypes published?

For each version of the VO data models, an explicit set of Utype strings
is built up in an XML Schema enumerating the various Utypes strings. In
VOTable documents or Utype-list, a name space definition should be included
for Utypes validation.

Services /applications to describe, assign and parse all Utypes defined
from a data model should be developed, similarly to the UCD tools avail-
able at http://cdsweb.u-strasbg.fr/UCD/ for instance. As a (training) ex-
ample, the revised version of Characterisation DM, version 2.0 has a new
XML schema and an updated set of Utypes available at http://ivoa.net/DM/

UTypeListCharacterisationDM/UtypeListCharacterisationDM-V0.2-20090522.xsd...

.

9 How are Utypes used?

9.1 Publishing data to the VO

Data Providers can use Utypes to label the metadata attached to their data
collections. The process will be the following:

• select a data model which covers the domain of these data
• map proprietary metadata (FITS, Archive, Etc..) to VO DM Utypes
• generate metadata as serialised documents (VOtable, Utypelists, oth-

ers?)

Different scenarios can be explored : to be developed: To publish data with
the CharacterisationDM-v1.11 , one can use the CAMEA VO Tool (http:
//eurovotech.org/twiki/bin/view/VOTech/CharacEditorTool) to check the Utype
assignation, and verify if the Utype serialisation is compliant to this model.
other strategy?

At the data collection level , tools have been developed to help for keyword
mapping from FITS keywords to Utypes list: Here is a list of the first tools
developed for that:

• FITS to DAL interface or data model Utypes:
• MEX (ESO) DAL interface link...
• DM-Mapper (ESA) DAL interface link...
• Interactive mapping tool (CDS) (prototype) link... This tools takes

a data model description and helps the data provider to interactively
build a map table from FITS keywords to Utypes.

15

http://cdsweb.u-strasbg.fr/UCD/
http://ivoa.net/DM/UTypeListCharacterisationDM/UtypeListCharacterisationDM-V0.2-20090522.xsd
http://ivoa.net/DM/UTypeListCharacterisationDM/UtypeListCharacterisationDM-V0.2-20090522.xsd
http://ivoa.net/DM/UTypeListCharacterisationDM/UtypeListCharacterisationDM-V0.2-20090522.xsd
http://eurovotech.org/twiki/bin/view/VOTech/CharacEditorTool
http://eurovotech.org/twiki/bin/view/VOTech/CharacEditorTool

Such a tool is under development and should be stabilized and tested for
different data models. It would help data providers to map their metadata
to a standardized VO Utype description.

9.2 Naming metadata in VO protocols

The SSA query response consists of a number of fields, identified by Utypes,
grouped into component data models of the form ¡component-name¿.¡field-
name¿. This is used in the Simple spectra access (SSA) protocol with a
specific list of ’hand-carved ’ keywords list representing objects structure
. See Appendix D of the Simple Spectral Access Protocol V1.04 standard
document at http://www.ivoa.net/Documents/latest/SSA.html

.
Similarly the SLAP protocol defines its own set of Utypes in the Ap-

pendix D of the Simple Spectral Line Access Protocol V0.9 standard doc-
ument(http://www.ivoa.net/Internal/IVOA/SpectralLinesListDocs/WD-SLAP-0.

9-20090518.pdf

).
The protocols generally use Utypes pointing to leaves of a data model:

9.3 Querying data bases

Queries in ADQL or SQL use column names to ask for information. For a
data base to be compliant with a data model, only the mapping between
existing columns and Utypes must be defined. Unfortunately Utypes strings
may be longer than the allowed length for a column string content in the Data
base systems, therefore Utypes cannot be used directly in queries. Using a
mapping table allow to build up a service where: -

1. the client application ask a server for its list of supported metadata
and Utypes

2. the server exposes the metadata
3. The user selects the metadata he/she requires by browsing the Utypes

and the documentation.
4. the client translates each Utype in the query into a column name and

submits the query
5. the server parses and resolves the query and sends back the results

columns
6. the client translates each column name in Utypes when possible and

display the results.

16

http://www.ivoa.net/Documents/latest/SSA.html
http://www.ivoa.net/Internal/IVOA/SpectralLinesListDocs/WD-SLAP-0.9-20090518.pdf
http://www.ivoa.net/Internal/IVOA/SpectralLinesListDocs/WD-SLAP-0.9-20090518.pdf

Such a scenario is interesting as if offers a general vocabulary to the user
, whatever the data base content and needs few steps of re-engineering.

10 Conclusion

Utypes are useful to convey the role, the structure and the normalized name
for each piece of metadata involved in a service or a protocol. It is an im-
portant factor in interoperability. A compromise between long descriptive
strings and usability has been found in developing simple mapping mecha-
nism at the client side.

References

[1] Tody D. Et al. Simple spectral access protocol.
http://www.ivoa.net/Documents/latest/SSA, 2007.

[2] D. Crockford. The application/json media type for javascript object no-
tation (json). http: // tools. ietf. org/ html/ rfc4627 , 2007.

[3] Louys M. et al. Utype list for the characterisation data model v1.11.
http: // www. ivoa. net/ Documents/ Notes/ UTypeListCharacterisationDM/

UtypeListCharacterisationDM-20070522. pdf , 2007.

[4] Michel L. et al. Saada : an astronomical data base generator. http:

// amwdb. u-strasbg. fr/ saada/ spip. php? article32 , 2009.

[5] W3C. Xml path language (xpath) 2.0. http: // www. w3. org/ TR/ xpath ,
2007.

17

http://tools.ietf.org/html/rfc4627
http://www.ivoa.net/Documents/Notes/UTypeListCharacterisationDM/UtypeListCharacterisationDM-20070522.pdf
http://www.ivoa.net/Documents/Notes/UTypeListCharacterisationDM/UtypeListCharacterisationDM-20070522.pdf
http://amwdb.u-strasbg.fr/saada/spip.php?article32
http://amwdb.u-strasbg.fr/saada/spip.php?article32
http://www.w3.org/TR/xpath

A Appendix A: Utype serialisation example

include a simbd or snap simulation serialisation??

18

B Appendix B: VOTable serialisation example

Figure 4: Identifying pieces of a data model: SSA service. Here is a short
extract of the Query response of an SSA protocol implementation. A VOTable
document is returned, each of metadata being mapped to a Utype name in the
SSA Utype data model.

19

C Appendix C: Updates of the document

• version 0.3 to 0.4

– introduce canonical and alternative notations
– update fig.1 and fig.2

20

	Status of this document
	Introduction
	Scope of the document
	Context and definition

	 What are Utypes for?
	Serialisation
	Requirements for Utypes construction

	Utypes Syntax
	 Building-up the string

	Data model re-use
	Canonical notation
	Alternative Utypes representation

	Short abbreviations for Utypes

	Generating Utypes from UML data models via their XML representation
	 How are Utypes documented?
	 How are Utypes published?
	 How are Utypes used?
	Publishing data to the VO
	Naming metadata in VO protocols
	Querying data bases

	Conclusion
	Appendix A: Utype serialisation example
	 Appendix B: VOTable serialisation example
	 Appendix C: Updates of the document

