
International
Virtual
Observatory

Alliance

Utypes: a standard for serializing Data
models instances

Version 0.7

IVOA Working Draft May 23, 2012

This version:
http://www.ivoa.net/Documents/Notes/WD-Utypes-0.7-20120523.pdf

Latest version:
http://www.ivoa.net/Documents/latest/Utypes.html

Previous versions:
0.6

Editor(s):
Mireille Louys, Omar Laurino

Authors:
Mireille Louys, Omar Laurino, Laurent Michel, Doug Tody,
Markus Demleitner, François Bonnarel, Alberto Micol,
Gerard Lemson, Mark Cresitello-Dittmar, Jonathan McDowell, etc.

Abstract

This document discusses the definition, usage, interpretation and implemen-
tation of Utypes in the Virtual Observatory. It defines standard serialization
strategies for representing astronomical datasets according to IVOA stan-
dards in various file formats. Data model extensions using customly designed
objects are also considered.

1

http://www.ivoa.net/Documents/Notes/WD-Utypes-0.7-20120523.pdf
http://www.ivoa.net/Documents/latest/Utypes.html

Status of this document

This document has been produced by the Data Model Working Group. It is
still a draft.

Acknowledgements

Members of the IVOA Data Model Working Group, including representatives
of the US VAO, the Euro-VO, GAVO, VO-France, etc. have contributed to
the present draft.

Contents

1 Introduction 4
1.1 Scope of the document . 4
1.2 Context . 4

1.2.1 Data modeling and its usage in the IVOA 4
1.2.2 Serialisation . 4

1.3 Goals . 6

2 Requirements for interoperable serialisations 6

3 Use Cases 7

4 Utype definition 8
4.1 Utype string properties . 9

4.1.1 Utype string built as a path to a data model element . 9
4.1.2 Restriction on the UML design 10
4.1.3 Link any utype to the corresponding element definition

in the original data model 10

5 Utypes Syntax 11

6 Data model re-use 14
6.1 From Classes of existing IVOA DM 14
6.2 Data model extension via customised Utypes 16

7 Generating Utypes from UML data models via their XML
representation 17

2

8 How are Utypes used? 19
8.1 Publishing data to the VO . 19
8.2 Naming and identifying metadata in VO protocols 20
8.3 Querying data bases . 20

9 Conclusion 21

A Appendix A: Utype serialisation example 23

B Appendix B: Serialisation examples 23

C Appendix C: Example of a data model Registry entry 23

D Appendix D: Updates of the document 23

3

1 Introduction

1.1 Scope of the document

This document is summarizing the practice adopted in the Virtual Obser-
vatory for naming and identifying data models elements. It formulates use-
cases for data model serialisation using data model items representation in
text lists or tables. It defines the Utype concept, the syntax proposed to
represent and publish Utypes-lists in the VO, and finally illustrates how to
use them, in protocols and VO-aware applications.

1.2 Context

Interoperability in the virtual observatory requires to circulate data products
and their metadata via protocols, so that they can be interpreted and used in
VO-aware applications. The IVOA has elaborated data models to represent,
in a logical framework, most kinds of metadata describing the content of
data products in astronomy. We shall recall now how DM are produced in
the IVOA and which representation can be used for circulating metadata
across VO-tools.

1.2.1 Data modeling and its usage in the IVOA

The goal of data models defined in the IVOA project is to express the set of
necessary concepts and their representation for describing astronomical data
sets. The approach to describe metadata is based on object oriented pro-
gramming. A UML representation of the model, namely the class diagram
allows to show the main concepts as classes, their properties as attributes,
relationships from one concept to another and dependencies. IVOA data
models cover various types of astronomical data sets and are currently de-
scribed using :

1. a graphical view as one or more UML class diagram
2. the text description of all data model items consisting in the main core

of the IVOA standard document.
3. a hierarchical view as an XML schema
4. examples of data sets and their metadata description as XML, VOTable

or FITS instance documents.

1.2.2 Serialisation

Serialisation is a process that helps to represent collections of metadata in
a transportable way -that is outside programs, and in compatibility with

4

an IVOA Data Model. Models are designed in UML (Unified Modeling Lan-
guage), using mainly the class diagrams. From these classes descriptions, the
developer can derive a library in Java or C++ or Python, that can operate
on these classes, and re-use them for his/her own application. If we need to
save the content of a set of classes instances in a program , we ’ll use one of
the familiar VO file format: VOTable, FITS, XML or structured ASCII files.
Flat formats In the flat formats , Utypes can be used in order to associate
fields or elements in these files to data model items.

More precisely, there are 4 ways of using/exporting the data model struc-
tural organisation :

• implement the data model classes in an object oriented language. Then
metadata associated with a 2D image for instance, are described by a
set of classes within the Observation DM. To publish the metadata
values of such an image, one just need to instantiate the corresponding
classes of the data model and use the setters and getters functions of
these classes to load or export the attribute values.

• derive an XML schema from the data model UML class diagram. Every
class and every class’s attribute will be translated as an element. Nested
classes will produce a tree like structure in XML schema. The metadata
for a specific dataset, for instance a spectrum of Vega, is then an XML
instance document following the XML schema structure.

• define Utypes as data model labels that point to their associated data
model element. Include them as tags in one of this file format:

– a (keyword,value) list of metadata, for instance in ASCII
– a text structured format like VOTable [7] or JSON [2] allowing for

a nesting strategy to bring back the hierarchy.

Every serialisation format has its advantages:

• XML provides a hierarchy of nested objects and can directly use XML
searching tools like XPath.

• The ASCII list of (keyword,value) pairs is the simplest most compact
representation.

• VOTable encodes object nesting within GROUP elements and supports
large collections of similar objects.

Hence all three should co-exist within the VO. The translation from one rep-
resentation to the other should be bijective which implies that the Utype
string must encode the nesting structure of the objects in the model.
Whereas the graph structure of the UML class diagram is richer than the

5

XML tree projection, the translation can still be organized both ways, pro-
vided some rules are adopted for the UML design as explained in Section
5.

1.3 Goals

Data models organise the metadata in classes and offer a logical way to un-
derstand and interpret their specific roles. It synthetises knowledge about
the way the data were obtained, can be used, combined, accessed, etc. The
design of classes and their relationships implicitely encodes some prioritisa-
tion on the metadata, driven by the use-cases the data models are built for.
This is the reason why the detailed documentation of data model in IVOA
standards is important in order to apply and use a data model in the best
conditions.

When serializing complex, structured objects in tabular format, the struc-
ture and logical binding get lost in a flattened, unstructured set of table
header definitions and cells. File readers don’t have any means of recon-
structing the original structure, unless they are provided with additional
metadata that describes how the different columns and header parameters
are meant to be bundled together.

This document describes how to serialize complex metadata structures in
tabular formats or lists, so that the structure can be reconstructed by the
reader and re-interpreted in a data model framework during deserialization,
despite the flat nature of a table representation (or list). It explains the
relationship between the various types of serialisation of data model instances
using examples.

2 Requirements for interoperable serialisations

Here is a list of requirements for serialisation of data models in the VO.

1. A standard serialization strategy must allow clients to build a hierar-
chical representation of a dataset stored in a tabular format, according
to an arbitrary data model, which is assumed to be unknown to the
reader.

2. A standard serialization must refer to the data model it relies on and
allow pointing to its documentation in an automatic fashion but also
interactively.

3. A standard serialization strategy must allow clients to identify and
extract objects from datasets stored in a tabular format, or a list, ac-

6

cording to a data model that is assumed to be in the client’s conceptual
domain.

4. The standard serialization strategy adopted to meet the previous re-
quirements must be independent from the particular file format and
the particular data models.

3 Use Cases

By meeting the aforementioned requirements, the serialization strategy de-
scribed in this document enables, at least, the following use cases:

1. A user loads a VO-compliant dataset stored in a tabular format us-
ing any VO-enabled application and is presented with a structured,
browseable representation of the elements stored in the dataset. This
use case is independent from the particular data model represented in
the file. This corresponds to a portal or a standard display tool, like
TopCat for instance, where for each data in the table the application
can pull-up a brief description of a field and show it to the user.

2. A user loads a VO-compliant file stored in a tabular format and com-
ing from any VO-compliant service or application into a VO-enabled
application tailored for a specific set of science cases. The reading ap-
plication will find the list of business objects represented in the dataset
and use them to provide the user with the relevant data, according
to the application specific use cases. As an example, a service getting
observation datasets compatible to ObsCoreDM, extracts the footprint
information and displays it on an image . Note that the original VO-
compliant file might have been originated from any VO-compliant ser-
vice or application, not necessarily a service or application specifically
tailored to provide files directly readable by the other application.1

3. A user can ask a VO-enabled application A, tailored for a specific set of
science cases, to save a file using a tabular representation and according
to a data model specific to the use case. The user then loads the file
using a VO-enabled application B, tailored for a different set of use
cases: the user is thus presented by B with the information relevant to
its specific use cases.2

1For example, the original file contained photometry obtained from a TAP query and
the client application is an SED builder. Also, neither application is aware of each each
other, (but they support a common set of metadata each of them can recognise. Mireille

2For example, the user builds a SED in a SED builder, beams it to a fitting application
using SAMP and the fitting application presents him with a dialog box that asks him to
select which axes to fit and with which models. Note that the fitting program automatically

7

4 Utype definition

The UML class diagram is navigable, therefore any data model part is reach-
able from a main data model element using a logical path through classes and
attributes. This is stored as a string and called a ”Utype”. This is uniquely
defined for each piece of metadata described in the model and works as a
semantic type, underlining the role of this piece of metadata with respect to
the defined classes and attributes in a specific model. Such a path in the
data model structure needs to be fully consistent to the data model piece it
points to. This is illustrated in Fig. 1.

Figure 1: Binding Utype labels to data model items: Excerpt from the Ob-
servation Core Components DM : Utypes work as path from major elements
(here SpectralAxis) into the UML class diagram, designed as an acyclic graph.

Therefore any IVOA data model item can be used by applications and
protocols, if we provide for each:

identifies the data axes and their metadata (units, errors), homogenize them, for example
converting the units to the same one, and then presents the user with a choice among the
only relevant information: the axis names. If the application is specifically tailored for
astronomical datasets, it might even recognize spectral axis and flux axis and simplify the
user choices.

8

• a data type
• a utype
• a unit (explicit or implicit following the data model field definition)
• a mandatory status for this item (mandatory or optional)

Here are two examples:
In the SpectralDM, we identify a Target with its name and must specify the
data type as “string”, utype as “Target.Name”, unit as “unitless”, status as
“optional”. In ObsTAP, the data model item describing how a data product
is calibrated is described in the data model summary as a table row like :

name utype units UCD data type description status

calib_level Obs.calibLevel unitless meta.code; enum int Calibration level of MAN
obs.calib 0,1,2,3 the observation:

Table 1: Calibration level as defined in the ObsCore data model

Other semantic tags, like UCDs already exist to classify metadata, they
can categorise physical quantities but are not precise enough to uniquely
identify a piece in a data model. As long as new data collections appear
with many different metadata organisation, the need to bind one piece of
metadata with its corresponding representation in an IVOA Data model (e.g.
in SpectrumDM) is crucial to promote interoperability and make protocols
and applications easier for the user.

4.1 Utype string properties

The Utype purpose is essentially to point to the simplest atoms of a data
model, i.e attributes within a class, so that it can be used in any serialisation
document to parametrize metadata values.

4.1.1 Utype string built as a path to a data model element

Composing a name for atomic elements is just using a string composition
in most object programming language. For example, in Characterisation
DM, pointing to the number of bins along the Spectral axis will be Spec-
tralAxis.numbins. Most of attributes in data models are themselves classes,
that can be browsed down in order to reach the lowest level of encap-
sulation and point to single value elements. This is the case for Spec-
tralAxis.coverage.location.unit with 2 levels of nesting.

If a data model gets more complex, like for the Simulation DM ([5]),
groups of classes involved in the same use-cases (functionalities) are identi-
fied and organised in packages. See the Simulation DM overview at :

9

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IVOATheorySimDBDM. This should
also be reflected in the string structure of Utypes.

Because of the graphical structure of UML, linking classes with each
other, a path inside the data model is not always unique. In order to be able
to build-up Utypes names directly from a UML data model, we propose the
following rules for UML design, and developed a Utype syntax from it.

4.1.2 Restriction on the UML design

In order to facilitate translation to XML, the UML class diagram need to
be acyclic , then to avoid too many associations between classes and exclude
loops. Templates constructs are not supported. Collections of data models
elements and references are allowed. Some rules have been designed during
the Simulation data model elaboration and available in the VO-URP project.
[?].(insert link for VO-URP)

4.1.3 Link any utype to the corresponding element definition in the
original data model

The Utype string should be clearly related to its data model therefore any
Utype string should begin with the data model name as a prefix, like for in-
stance stc:AstroCoordSystem or obs:Observation.dataproductype. This pre-
fix string can be interpreted as a data model name abbreviation. As defined
in the StandardRegExt specification, we could extend the mechanism to reg-
ister data model definitions in the IVOA registries. This would imply that:

• a data model can be registred
• the prefix can be interpreted to point to the data model registry entry
• a uri can be generated from the utype string to point to the related

data model item documentation part.

Here is an example of what could be designed for instance for the Photometry
data model or any other.

Examples of serialisation in various formats can be gathered in a directory
as instance documents

This example suggests that all related documents are gathered under a
specified directory and fully accessible, either for humans for data model
browsing and interpretation or for machines to reuse datamodel components
in applications.

The utype list in simple ’tsv’ or other simple text format can be used by
applications for syntax checking or utype validation. The URI mechanism

10

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IVOATheorySimDBDM

datamodel.name phot
datamodel.uri http://www.ivoa.net/Documents/PHOTDM

datamodel.std http://www.ivoa.net/Documents/PHOTDM/REC-PhotDM-1.0-2012xx.pdf

datamodel.doc http://www.ivoa.net/Documents/PHOTDM/PhotDM-1.0.html

datamodel.version 1.0
datamodel.xsd PhotDM-v1.0.xsd
datamodel.utypelist PhotDM-v1.0.utype.tsv
datamodel.examples http://www.ivoa.net/Documents/PHOTDM/examples

Table 2: Gathering information in a registry entry or the like

described by N.Gray can be used to point to the dedicated section of docu-
mentation related to the appropriate data model element. At the same time
users and developpers can check in the data model, the meaning of a Utype,
data type, etc.

5 Utypes Syntax

The building-up of a Utype string has been discussed extensively within and
between the Data Model WG, the DAL WG and Theory IG and at various
IVOA Interoperability meetings. Here is a proposed syntax we have agreed
on for a simple valued element. See also the Utype section in the Simulation
data model IVOA standard [5].

The Theory interest group has come up with a minimal, necessary set of
rules to produce a string that uniquely represents any of the fundamental
syntactic elements in the model. These rules are the following:

• Property names are unique in a Class. Note there are three types of
properties:

- An Attribute is a property the datatype of which is a value type
(NOT an object type/class), though it need not be primitive but
may be structured (i.e. have attributes of its own).

- A Collection is a named, 1-to-many composition relation of a parent
to a child class.

- A Reference is a named, many-to-one shared association to another
class.

• Class names are unique in a Package.
• Package names are unique in either an enclosing parent package, or in

the set of models adopted in the IVOA.

11

So a name like (in a pseudo regexp notation)

<model-name>:[<package-name>/]*<class-name>.<attribute-name>[.<attribute-name>]*

is a unique pointer to an attribute in a data model. Note that most of data
models in the IVOA include all their necessary classes in only one package,
then the package name can simply be ommitted. Similarly

<model-name>:[<package-name>/]*<class-name>.<reference-name>

<model-name>:[<package-name>/]*<class-name>.<collection-name>

are unique pointers to the reference and collection properties of a class. When
classes are embedded, there may be attributes before the reference.How do we
handle this?

The rule allows for an arbitrary nesting of packages, which is necessary
to ensure a unique encoding. Since attributes can be structured, we allow
for chaining these until the final primitive attribute is reached, i.e one which
carries a single value.

The reference name (resp. collection-name) is an explicit name for a link,
or pointer to a target class, as shown in fig. 2 where
SimDM:/resource/experiment/Experiment.protocol, is a reference to the pro-
tocol used to realize this particular Experiment.
to improve ...

In the Utype string construction, references and collections are NOT fol-
lowed further. Only the pointing mechanism is expressed in the Utype. The
referenced (target) class will be encoded normally and pointers will be im-
plemented to it.

Each serialisation mode can support this:

• XML will use the ID/IDREF mechanism to set a link from the class
to the referenced one provided the two connected classes are defined in
the same document.

• VOTable applied the same mechanism.

Reference could be implemented in the (Utype,value) pair list, but XML
and VOTable are much more convenient for that. Therefore the Utype list
serialisation should be reserved for small sets of metadata consisting in single
value attributes, as used in the various VO protocols.

The path can be stopped at any level in the UML acyclic graph, which
allow a Utype to refer to a class, and not only to a lower level attribute,

12

Figure 2: UML diagram excerpt of the Simulation data model. This illustrates
the reference mechanism between classes. Here ObjectType is the name of
a class, that can be accessed from the ObjectCollection via a link or pointer
called objectType. This means that the class ObjectCollection gathers ob-
jects whose types are described in the ObjectType class, allowing to consider
any new types of objects.

13

with a single value. These constructs are interesting in hierarchical VOTable
serialisation, where by using a GROUP structure we can fully encode nested
objects. See the VOTable Example in Appendix B and coordinates seriali-
sation in [3].

6 Data model re-use

6.1 From Classes of existing IVOA DM

In the VO there are common structures that are needed everywhere, like
IVOA identifiers, or coordinates. Coordinates are defined in a separate
model: STC, http://www.ivoa.net/Documents/latest/STC.html and identifiers
are standardised in http://www.ivoa.net/Documents/latest/IDs.html. Data iden-
tification and curation metadata are also reused from VOResource, Spectral
DM, etc., so we enconter situations where a class or a set of classes, defined
in one DM are re-used in another one.

In object oriented programs, classes of these packages are simply linked
using libraries, and can then be used as types (primitive classes) for other
models. For serialisation, we need an explicit mechanism to mention that
attributes in a class re-use basic structures from another DM, as STC classes
for instance.

In order to clearly trace back the definition of classes re-used from a data
model we opted for the re-definition of these inside the new model, like a copy
of existing classes. This first allows to properly define the re-used elements in
one version of the model especially if they underwent several evolution steps
through various versions of the models. This also supports class derivations
or associations explicitely.

Therefore the UML class diagram explicitely show re-used classes from
data models, either as advanced datatypes for attributes or as referenced
class. For instance in the ObsCore DM [6], DataID and Curation classes
are re-used from SpectralDM as classes and pointed to from the Observation
class. The AstroCoordArea class from STC is re-used as a data type for
the ’area’ attribute in the ’Support’ class. The XML schema definition for a
DM1 including and/or re-using elements of DM2 will import the necessary
XML schema for DM2 and refer to the re-used parts via the XML name
space mechanism. See Obscore XML schema definition at http://www.ivoa.

net/xml/ObsCore .
The Utype list list definition on the contrary, does not need to materialise

the border between both models. It is built up from the natural concatena-

14

http://www.ivoa.net/Documents/latest/STC.html
http://www.ivoa.net/Documents/latest/IDs.html
http://www.ivoa.net/xml/ObsCore
http://www.ivoa.net/xml/ObsCore

tion of the utype string in the top level DM (Characterisation DM in fig. 3)
below with the utype of the re-used element from the second data model (
STC in the example).

Figure 3: Utypes are simply built by recording the path while browsing the
XML tree down to the leaves.

The concatenation is supposed to happen only once which means the
rightest part of the Utype string belonging to DM2 and showing the finest
levels of nesting are some kind of VO types described consistently and self
sufficiently in some data model. This makes the assumption that VO models
are properly organised in nested packages and are cooperative enough to
cover the whole field of astronomical metadata with a minimum of overlap.

If we consider for instance a specific version of the Characterisation data
model whose classes integrates coordinates and regions from the STC v1.33
data model, we get a simple notation by just browsing down the attributes
chain as shown in the syntax section.

char:SpatialAxis.Coverage.location.Position2D.Value2D.C1

Such a notation does not show the limit between the two models but is
consistent with the XML schema import mecanism. Interpreting the data-
model name ’char:’ by parsing the Utype string and resolving the corre-
sponding data model link will point to the specific version of the CharDM
with the specific STC v1.33 data model version. This provides a tight bind-
ing between the two data model versions. From the Utype string, the nested
classes involved in both models can be rebuilt.

15

In the special case of VOTable serialisation, widely used in VO tools and
astronomical applications, specific rules have been defined to reference STC
coordinates using the GROUP construct. See [3] for details on the STC
Utypes in VOTable GROUP structures. STC components are gathered in
groups with their Utype stating explicitely the ’stc:’ prefix. This allows STC-
aware tools to deal with coordinates independantly of the outer structure and
facilitates library support in code generation.

Generalising the usage of GROUP is a way to identify re-used data model
components.

6.2 Data model extension via customised Utypes

The Utype definition should support data model extensibility. We identified
several cases where some metadata handled in an archive or an application
are partly covered by an IVOA data model and some other metadata are
not covered at all by any IVOA model. Then the data model could be ex-
tended for a specific purpose, on a case to case basis. The data provider or
application developer should find a possibility to reuse the data model parts
and add new features. These customized features should be added in a cus-
tomized version of the model , by inheritance as much as possible , and not
overlap with existing properties. The developer could define new Utypes for
the customized data model fields. New utypes should be built with the same
procedure as for recommended data model (syntax, object inheritance, sym-
bols). They can be distinguished from the original model by a customized
data model name like in the following example. Suppose we want to reuse
concepts of the SED DM , concerning the flux value: the DM has

sed:Data.FluxAxis.value

but for some specific data centers like NED, a slightly different quantity is
computed specifically and provided. The NED service can then extend the
SED service and produce a new data element with utype for instance like:
sedNED : Data.FluxAxis.publishedValue

sedNED:Data.FluxAxis.publishedValue

This allows to identify immediately that a metadata tagged like this belongs
to another model and hook to its particular definition. This also needs to
produce some documentation about the value type, units, ucd, etc., attached
to this new data model element.

These two examples of data model reusability suppose that data models
in the IVOA are properly documented and can offer machine-readable infor-

16

mation for implementers. It is desirable for a (utype,value) pair to be able
to recognize the utype in a data model, to point to the data model element
definition and check or interpret units, data type, etc., in order to use the
value in a compliant fashion.

We can then derive that a datamodel should have :

1. a utype list published together with the IVOA standards document
2. an on-line documentation where the description of each data model

item is specified as required in section 4.

When an application uses a utype-based serialisation instance, it should
:

• Check the correctness of the Utype string , by searching it in the simple
Utype text list. String matching is more effective in small case to avoid
mis-spelling . However the CamelCase adopted in the early definition
of Utypes (Spectral DM, CharacterisationDM) make them easier to
read for the user or implementer.

• Use the Utype as an anchor in an on-line HTML document to provide
help functionalities and point to the data model element description.

This is implemented for instance in the Simulation data model documenta-
tion available at
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/

html/SimDM.html and follows a suggestion by N.Gray [4] which offers a way to
go for integrating more automatic metadata identification.

7 Generating Utypes from UML data models
via their XML representation

The syntax rules proposed in Section 5 above can be implemented from an
XML schema representing the data model, using the XPATH mechanism
[8] to build up a path from the root of the schema down to the finer grain
elements corresponding to attributes’ class in the model. XPATH is not
directly used in Utype generation , but its properties are indirectly applied
in the approach described here.
Suppose now that we have an XML schema fully mapping the UML model
content, with all classes represented as elements in the model, nested elements
for aggregation, references and basic types.
For the sake of clarity, we do avoid substitution groups and choice patterns
and on the contrary prefer the XML extension mechanism. Such a rule

17

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html

helps to guarantee that for one XML element at any level, its name can
be mapped to only one sub-structure and therefore allow for direct class
encoding. Nested classes will be organized as XML trees, then browsing
the tree down to leaves elements and concatenating the names at each level
provides a path which is similar to the Utypes construction mentioned in the
previous section(cf 5).

In order to achieve a proper mapping from UML to XML serialisation, and
derive object code or Utype list from the generated XML, some requirements
on the style of UML design as well as the XML schema construction should
be met.

• UML : For any association , each class connected should have a role
name in order to clearly identify references. Template classes provide a
same name for different typed structures and are difficult to translate
in XML; hence they should be avoided.

• XML Classes, should be converted as XML elements and class at-
tributes as included sub-elements. The XML attributes are more or
less providing context for the XML translation and are not used to
describe the data model structures(only valid for charac. simdb has a
diff. strategy).

Most of the UML modeling commercial tools like RationalRose, Magic-
Draw, Modelio , etc... have an internal XML representation of a UML model
encoded in a proprietary XMI format. When simplifying this representa-
tion, one can apply XSLT transformation rules to directly generate output
products like :

• a set of hyperlinked webpages for the datamodel documentation
• an XML schema
• an example of XML document instance
• a Utype list with documentation

Such an approach has been implemented with success by G. Lemson and
L. Bourges in the Theory interest group. see http://volute... and described
as the VO-URP project.

It provides a pipe-line of transformations starting from the ’.xmi’ file and
producing the various artefacts: Utype list, documentation, XML schema.

UML allows various designs for a specific project and fully integrates the
properties of graphs, with association links between classes while on the con-
trary XML emphasizes the hierarchy of elements. Therefore the translation
is not straightforward. Some modeling rules should be imposed in UML de-
sign in order to simplify translation and produce robust XML schema and
Utypes list.

18

However, although they rely on XML language, each commercial tools
defines its own profile for the definition of its XMI formats. Therefore the
tuning of the VO-URP tools for a different framework needs a carefull ad-
justment and is not straightforward. Portability from MagicDraw to Modelio
was particularly painful.

The documentation for a Utype is defined when the data model is built
up and stored in the XMI representation of a UML Model. Most case tools
provide a documentation generator that produces an HTML hyperlinked set
of pages for the datamodel documentation including UML diagrams. These
may contain just a set of few lines or a full illustrated text if necessary. N.
Gray has proposed an URI generation function for each Utype in a DM, that
could be used to point to the corresponding anchors of the on-line documen-
tation of a data model.

8 How are Utypes used?

8.1 Publishing data to the VO

Up to now, data models like SpectrumDM, CharacterisationDM, SimDB
data model help to define, represent and manipulate metadata. They provide
UML diagrams, XML serialisations and Utypes lists for the model classes.

Within the DAL WG, protocols such as SSA also make use of Utypes.
The SSA protocol version 1.04 has its own Utype serialisation attached in
Appendix D: ’SSA Data Model Summary’ of the standard document [1] .

Data Providers can use Utypes to label the metadata attached to their
data collections. The process will be the following:

• select a data model which covers the usage domain of these data
• map proprietary metadata (FITS, Archive, Etc..) to the Utypes of the

selected model
• generate metadata as serialised documents (VOTable, Utypelists, oth-

ers?)

Different scenarios can be explored : to be developed: To publish data with
the CharacterisationDM-v1.11 , one can use the CAMEA VO Tool (http:
//eurovotech.org/twiki/bin/view/VOTech/CharacEditorTool) to check the Utype
assignation, and verify if the Utype serialisation is compliant to this model.

At the data collection level, tools have been developed to help for keyword
mapping from FITS keywords to Utypes list: Here is a list of the first tools
developed for that:

• FITS to DAL interface or data model Utypes:

19

http://eurovotech.org/twiki/bin/view/VOTech/CharacEditorTool
http://eurovotech.org/twiki/bin/view/VOTech/CharacEditorTool

• MEX (ESO) DAL interface link...
• DM-Mapper (ESA) DAL interface link...
• Interactive mapping tool (CDS) (prototype) link...

These tools take a data model description from the IVOA and help the data
provider to interactively build a map table from FITS keywords to Utypes.
The mechanism is extensible to any kind of data model supporting the docu-
menation and utype list required. It would help data providers to map their
metadata to a standardized VO Utype description and let VO tools operate
access to them.

8.2 Naming and identifying metadata in VO protocols

Broadly used protocols like SSA or ObsTAP include Utype mapping. The
SSA query response consists of a number of fields, identified by Utypes, as
defined in the data model summary part of these standards. See standard
documents at http://www.ivoa.net/Documents/latest/SSA.html , Appendix D
and Appendix B in http://www.ivoa.net/Documents/ObsCore/index.html,
.

Similarly the SLAP protocol defines its own set of Utypes in the Ap-
pendix D of the Simple Spectral Line Access Protocol V0.9 standard doc-
ument(http://www.ivoa.net/Internal/IVOA/SpectralLinesListDocs/WD-SLAP-0.

9-20090518.pdf

). More widely the VAMDC project also provides the same kind of mecha-
nism to refer to its data model items. Check at
http://dictionary.vamdc.eu/restrictables/ .

8.3 Querying data bases

Queries in ADQL or SQL use column names to ask for information. For a
data base to be compliant with a data model, only the mapping between
existing columns and Utypes must be defined. Thi can be done internally
inside the data base tables , but also via a mapping table as used in the
TAP_SCHEMAtable definitions. A simple scenario could be the following:

1. the client application asks a server for its list of supported metadata
and Utypes (mapping table)

2. the server exposes the mapping
3. The user selects the metadata he/she requires by browsing the Utypes

and the accessible documentation.
4. the client translates each Utype in the query into a column name and

submits the query

20

http://www.ivoa.net/Documents/latest/SSA.html
http://www.ivoa.net/Documents/ObsCore/index.html
http://www.ivoa.net/Internal/IVOA/SpectralLinesListDocs/WD-SLAP-0.9-20090518.pdf
http://www.ivoa.net/Internal/IVOA/SpectralLinesListDocs/WD-SLAP-0.9-20090518.pdf
http://dictionary.vamdc.eu/restrictables/

5. the server parses and resolves the query and sends back the results
columns

6. the client translates each column name in Utypes when possible and
displays the results.

Such a scenario is interesting as if offers a general vocabulary to the user,
whatever the data base content and needs few steps of re-engineering.

9 Conclusion

Utypes are useful to convey the role, the structure and the normalized name
for each piece of metadata involved in an IVOA service or protocol. It sup-
ports the various use-cases The syntax is derived from the UML design of
the related data model. It is an important factor in interoperability. A
compromise between long descriptive strings and usability has been found in
developing simple mapping mechanism at the client side.

References

[1] Tody D. Et al. Simple spectral access protocol.
http://www.ivoa.net/Documents/latest/SSA, 2007.

[2] D. Crockford. The application/json media type for javascript object no-
tation (json). http: // tools. ietf. org/ html/ rfc4627 , 2007.

[3] M. Demleitner, F. Ochsenbein, J. McDowell, and Rots A. Referencing stc
in VOTable. http://http://www.ivoa.net/Documents/Notes/VOTableSTC/, 2010.

[4] Norman Gray. Utype proposal. http: // nxg. me. uk/ note/ 2009/

utype-proposals/ , 2009.

[5] G. Lemson, H. Wozniak, and al. Simulation data model version 1.0.
http: // http: // www. ivoa. net/ Documents/ SimDM/ 20120302/ , 2012.

[6] M. Louys, F. Bonnarel, D. Schade, P. Dowler, A. Micol, D. Durand,
D. Tody, L. Michel, J. Salgado, I. Chilingarian, B. Rino, J. de Dios
Santander, and P. Skoda. IVOA Recommendation: Observation Data
Model Core Components and its Implementation in the Table Access
Protocol Version 1.0. ArXiv e-prints, November 2011.

[7] Francois Ochsenbein and Roy Williams. VOTable format definition ver-
sion 1.2. http://www.ivoa.net/Documents/VOTable/20091130/, 2009.

21

http://tools.ietf.org/html/rfc4627
http://nxg.me.uk/note/2009/utype-proposals/
http://nxg.me.uk/note/2009/utype-proposals/
http://http://www.ivoa.net/Documents/SimDM/20120302/

[8] W3C. Xml path language (xpath) 2.0. http: // www. w3. org/ TR/ xpath ,
2007.

22

http://www.w3.org/TR/xpath

A Appendix A: Utype serialisation example

include Omar examples for serialisations

B Appendix B: Serialisation examples

TBC Try to have a data set described with 3 serialisation format:
“utype+value” liste, VOtable, XML instance
Example: CADC ObsTAP service query response to a the query “SE-

LECT TOP 10 * FROM ivoa.ObsCore “ The query response to this query is
returned in a VOTable, with all fields tagged with Obscore Utypes. See an
extract of this VOtable here :
http://www.ivoa.net/internal/IVOA/Utypes/ObsTAPQueryExample.xml

C Appendix C: Example of a data model Reg-
istry entry

Here is a possible example of data model entry, in XML , inspired from the
StandardregExt service record. This could be used as introductory part for
any instance document containing a serialisation of the related data model.
This is a complete reference to IVOA documentation for a data model so
usable in any serialisation format.

An example of a registry record defined for the Photometry data model
is available at:
http://www.ivoa.net/internal/IVOA/Utypes/PhotDMRegistryRecord.xml

D Appendix D: Updates of the document

• version 0.3 to 0.4

– introduce canonical and alternative notations
– update fig.1 and fig.2

23

http://www.ivoa.net/internal/IVOA/Utypes/ObsTAPQueryExample.xml
http://www.ivoa.net/internal/IVOA/Utypes/PhotDMRegistryRecord.xml

	1 Introduction
	1.1 Scope of the document
	1.2 Context
	1.2.1 Data modeling and its usage in the IVOA
	1.2.2 Serialisation

	1.3 Goals

	2 Requirements for interoperable serialisations
	3 Use Cases
	4 Utype definition
	4.1 Utype string properties
	4.1.1 Utype string built as a path to a data model element
	4.1.2 Restriction on the UML design
	4.1.3 Link any utype to the corresponding element definition in the original data model

	5 Utypes Syntax
	6 Data model re-use
	6.1 From Classes of existing IVOA DM
	6.2 Data model extension via customised Utypes

	7 Generating Utypes from UML data models via their XML representation
	8 How are Utypes used?
	8.1 Publishing data to the VO
	8.2 Naming and identifying metadata in VO protocols
	8.3 Querying data bases

	9 Conclusion
	A Appendix A: Utype serialisation example
	B Appendix B: Serialisation examples
	C Appendix C: Example of a data model Registry entry
	D Appendix D: Updates of the document

