INTERNATIONAL VIRTUAL OBSERVATORY ALLIANCE US National Virtual Observatory

IVOA Data Access Layer SIAP V2.0 Key Topics and Generic Dataset

D. Tody (NVO, NRAO) A. Richards (Jodrell), F. Bonnarel (CDS)

IVOA Strasbourg, May 26 2009

SIAP V2.0 in Strasbourg

Topics

- Status, recent activities
- Scope revisited
- Key SIAPV2 Topics
- Cube Use Cases (from Anita)
- Query Interface
- Access Functionality
- Grid Capabilities
- Roadmap

Recent Activities

Focus on selected key topics

- Mainly discussion among AR, FB, JS, DT in recent months
- Anita Richards has joined as our radio data cube expert

Community involvement/input

- Mostly concerns radio data cube handling at this point
 - Getting organized for review and implementations
 - Need community involvement where cubes are involved
- European AIDA initiative study group (Anita et.al.)
- In US: primarily ALMA, EVLA, Arecibo

Scope Revisited

Primary capabilities

- 2D images, cubes, grid
 - cube support required for radio community
 - grid required for some image generation cases, scalability

Strategy

- Interface and model is N-D
- An individual service capability may however be 2D
- Basic interface and function comparable to SIAV1
 - but looks more like SSA, follows DAL2 profile and model

Key Topics

Status

- This has been our main focus for past few months

Study Areas

- Polarization, WCS/Mapping (incl FITS time),
- Image Characterisation
- Access functionalities (mainly cubes; reduction etc)
- Service interface

Status

- Most topics understood well enough to proceed with V1
- Largest remaining issues concern cube access functionalities

SIAP extension use cases

AIDA comments (AMSR)

Spectral cubes

- 2 Spatial axes (RA, Dec., Glat, Glon etc.)
- Same observable (e.g. Jy/beam)
 - SNR etc. varies
- Spectral axis N x δ
 - Frequency, wavelength, energy
 - If δv is linearly spaced, $\delta \lambda$ isn't
 - Velocity need convention & line rest v or λ or E
 - May be many lines in the cube
- Possible additional axes
 - Time, polarization...

ALMA/IRAM use case

RA/Dec/Freq CO cube

Aalto &

- Convert to velocity (LSR, radio convention)
- Cutouts, simple squashes VO tools?
- Smoothed spectra, moments with noise cut-off
 - Specialised server-side pipeline controlled via UWS

IVOA Strasbourg, May 26 2009

POS,SIZE

Used for both searching and for access
people often think this is only for searching/discovery
Choice of rectangle is mainly for access
defines "ideal image" footprint on the sky

- used for simple cutouts and image generation
- Multi-position query needed here as with TAP

REGION

- New parameter proposed for all DAL2 interfaces (STC-S)
- Used only for searching or spatial constraint
- Provides a general search region capability

• BAND

- Searching Semantics
 - · defines spectral coverage of data we are looking for
 - fixed wavelength units, or band name as in resource metadata
 - may also need to search by velocity interval?
 - Access Semantics
 - only an issue for spectral data cubes
 - defines cutout or filter on spectral axis
 - probably need to use native units of cube

• VELOCITY, REDSHIFT

- Proposed for conversions of spectral axis
- Probably out of scope for V1; other approaches possible as well

TIME

- Searching Semantics
 - ISO or MJD time or time range, fixed units
- Access Semantics
 - only an issue for time cubes
 - defines cutout or filter on time axis
 - units probably fixed at MJD in native time system of cube

POL

- Searching Semantics
 - any data, only polarized data would be most typical
- Access Semantics
 - select (cutout) polarizations to return

SPECRES or SPECRP

- Defines minimal spectral resolution or resolving power
- Only used for searching
- For SSA we chose SPECRP
- May not be natural choice for radio spectral data cubes

SPATRES

- Defines minimal spatial resolution
- Refers to observed signal, not pixel size

TIMERES

- Defines minimal time resolution (unit? - days or seconds)

TARGETNAME

- As for SSA. Required for non-positional data.

FLUXLIMIT

- Defines minimim allowable image sensitivity

- SSA uses SNR, but this does not work in general for images
- Need a measure of limiting flux such as Jy/unit-area
- Anita suggests Jy/beam as close to what we need, but this is too radio-specific

Calibrations

- ASTCALIB, WAVECALIB, TIMECALIB, FLUXCALIB
- Standard, as in SSA.

Curation

- Standard (dataset identifiers etc.)

Access Params Standard (MAXREC, MTIME, FORMAT, etc.).

Cube/Image Generation Parameters - Specify geometry and WCS of output image.

- One of our key topics.

Access Functionality

Status

Another of our key topics.

- Basics are understood, but some functionality such as reduction (squashing an axis) are still not scoped.

Possible Functionality

- Whole image, cutout, resample, reduce, transform

Cutout

- Range of POS, SIZE, BAND, TIME, POL

Access Functionality

Resample (various options)

- Specify WCS and geometry of desired output image

Reduce

- An axis gets smaller or goes away (reduced to single value)

- Issue is what algorithms to support
 - sum, mean, spectral index, fractional polarization, POLA, etc.
 - potentially many options here...
- May also incorporate filtering of spectral or time axis

Transform

- Probably out of scope for first version, but still under discussion
- Examples are convert freq to velocity, Stokes to POLI, POLA, etc.

Grid Capabilities

Status

- Should be easy after this is done in TAP

Async/UWS

- Highest priority; required for advanced use cases
- Based upon concept of stageData operation
 - POST of params to standard UWS /async endpoint
- Job produces virtual images as described by QueryData
 - probably use access reference as ID tag
 - Any number of images can be produced in one job
- A standard acref GET can be used to retrieve each final image
 - Putting images in a co-located VOSpace also possible

Roadmap

Status

- Still working toward first working draft
- Hard to schedule more precisely until we have this
- Splinter meeting in Strasbourg

Tasks

- Define strawman interface
 - discuss and agree within author team
 - $\boldsymbol{\cdot}$ review and iterate within DAL WG
- Produce V0.1 WD
 - discuss and iterate
- Initial Implementations
 - reference, prototype

Roadmap

Initial Implementations

- Reference implementations of 2D service
 - Should be quite straightforward
 - Basically what we have now updated to DAL2

Prototype of cube access capabilities

- Both service and client (viewer) implementations require
 - e.g., Aladin and CASA viewer (ALMA) on client side
 - use largely existing software for cube access on server

Generic Dataset (GDS)

Parameter	Sample value	Physical unit	Datatype
POS	52,-27.8	degrees; defaults to ICRS	string
SIZE	0.05	degrees	double
BAND	2.7E-7/0.13	meters	string
TIME	1998-05-21/1999	ISO 8601 UTC	string
FORMAT	votable		string

Parameter	Sample value		Req	Datatype
SPECRP	2000	$\lambda/d\lambda$	REC	double
SPATRES	0.05	degrees	REC	double
TIMERES	31536000 (=1yr)	seconds	OPT	double
TARGETNAME	mars		OPT	string
TARGETCLASS	star		OPT	string
ASTCALIB	absolute		OPT	string
WAVECALIB	absolute		OPT	string
FLUXCALIB	relative		OPT	string
PUBDID	ADS/col#R5983		REC	string
CREATORDID	ivo://auth/col#R1234		REC	string
COLLECTION	SDSS-DR5		REC	string
	IVOA Strasbourg, May 26 200	9		24

GDS Schema

Datasets

- GDS data model (a type of index table)
- Usually a subset with local additions
- Records may be associated using Association model

Links

- Table of data links
- Uses ID from Dataset table as a key

Associations

Usage

- Normally these are stored as table fields

- In VOTable, constant values can be PARAMs
- A record can belong to more than one assocation

Model

•

- Association.Type
 - Type of association (a string)
- Association.ID
 - Unique ID identifying the association instance
- Association.Key
 - Unique key different for each element of association

Data Links

Usage

- Link an object (e.g. table record) to some other object
- An object can have a number of such links
- Some standard link types are defined but set is extensible
- GDS uses a table representation but others are possible (RDF)

Model (Strawman)

- Linkld

– URL

- LinkType
- Used as the link reference in Dataset table Type of link (standard or local extension) URL of data object, service, etc.

Sample Link Types

- File of some kind (table, image, spectrum, etc., or custom)
- A standard service which can be used to access the data
- A custom service which can be used to access the data
- HTML page, etc.

GDS Queries

Strategy

- GDS would normally be stored in tables using schema
- Hence it can be queried with TAP
- TAP param query (PQL) extension to support GDS query
- ADQL could also be used once we have UTYPE support in TAP
 - this is essentially a TAP subclass

Custom Index Tables

- Site may have arbitrary local index tables
- Can extend these with GDS metadata or data links
- Use standard VO tools to browse and access data

Usage

- Client tools can browse and query data, follow links,
- invoke services and display the result, download data,
- link data to a vospace, invoke pipeline, etc.