International
Virtual
Observatory

Alliance

Astronomical Data Query Language

Version 2.1

IVOA Working Draft 2016-05-02

Working group
Data Access Layer Working Group
This version
http://www.ivoa.net /documents/ADQL /20160502
Latest version
http://www.ivoa.net/documents/ADQL
Previous versions
ADQL-2.0
Author(s)
The IVOA Virtual Observatory Query Language (VOQL) work-
ing group members, The IVOA Data Access Layer (DAL) working
group members
Editor(s)
Dave Morris

Abstract

This document describes the Astronomical Data Query Language (ADQL).
ADQL has been developed based on SQL92. This document describes the
subset, of the SQL grammar supported by ADQL. Special restrictions and
extensions to SQLI92 have been defined in order to support generic and as-
tronomy specific operations.

http://www.ivoa.net/documents/ADQL/20160502
http://www.ivoa.net/documents/ADQL
http://www.ivoa.net/Documents/ADQL/2.0
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaVOQL
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaVOQL
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaDAL
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaDAL
http://wiki.ivoa.net/twiki/bin/view/IVOA/DaveMorris

Status of This Document

This is an IVOA Working Draft for review by IVOA members and other
interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in

progress”.

A list of current IVOA Recommendations and other technical documents

can be found at http://www.ivoa.net/Documents/.

Contents

1 Introduction

1.1 Role within the VO Architecture

2 Astronomical Data Query Language (ADQL)
2.1 Characters, Keywords, Identifiers and Literals

2.1.1 Characters
2.1.2 Keywords and Identifiers
2.1.3 Literals
2.2 Querysyntax
2.2.1 Table subqueries and Joins
2.2.2 Search condition

2.3 Mathematical and Trigonometrical Functions
3 ADQL Type System

4 Optional components

4.1 Service capabilities
4.2 Geometrical Functions00 L.
4.2.1 Overview
4.2.2 Data Type Functions
4.2.3 Predicate Functions
4.2.4 Utility Functions

425 AREA oo
426 BOX
4277 CENTROID.
428 CIRCLE

429 CONTAINS
4210 COORDL
4211 COORD2
4.2.12 COORDSYS

http://www.ivoa.net/Documents/

4.2.13 DISTANCE o o
4.2.14 INTERSECTS
4.2.15 POINT
4.2.16 POLYGON
4.2.17 REGION
4.2.18 Geometry in the SELECT clause
4.3 User Defined Functions
4.3.1 Overview
4.3.2 Metadata
4.4 String functions and operators.
441 LOWER
442 ILIKE 0 o
4.5 Set operators
4.5.1 UNION
4.5.2 EXCEPT
4.5.3 INTERSECT
4.6 Common table expressions
4.6.1 WITH
4.7 Typeoperations. Lo o
4.7.1 CAST
4.8 Unit operations oo
4.81 IN _UNITo o
4.9 Bitwise operators o
491 Bit AND
492 BitOR
493 Bit XOR
494 Bit NOT
4.10 Cardinality
4.10.1 OFFSET

BNF Grammar
Language feature support

Changes from Previous Versions
C.1 Changes from ADQL-2.0

39

55

56

Acknowledgments

The authors would like to acknowledge all contributors to this and previous
versions of this standard, especially: P. Dowler, J. Lusted, M. A. Nieto-
Santisteban, W. O’Mullane, M. Ohishi, I. Ortiz, P. Osuna, Y Shirasaki, and
A. Szalay.

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard, 7.

The Virtual Observatory (VO) is general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

http://www.ivoa.net

1 Introduction

The Astronomical Data Query Language (ADQL) is the language used by the
International Virtual Observatory Alliance (IVOA) to represent astronomy
queries posted to VO services. The IVOA has developed several standardized
protocols to access astronomical data, e.g., STAP and SSAP for image and
spectral data respectively. These protocols might be satisfied using a single
table query. However, different VO services have different needs in terms of
query complexity and ADQL arises in this context.

The ADQL specification makes no distinction between core and advanced
or extended functionalities. Hence ADQL has been built according to a single
language definition (BNF based [1]). Any service making use of ADQL would
then define the level of compliancy to the language. This would allow the
notion of core and extension to be service-driven and it would decouple the
language from the service specifications.

ADQL is based on the Structured Query Language (SQL), especially on
SQL 92. The VO has a number of tabular data sets and many of them are
stored in relational databases, making SQL a convenient access means. A
subset of the SQL grammar has been extended to support queries that are
specific to astronomy. Similarly to SQL, the ADQL language definition is not
semantically safe by design and therefore this specification defines syntactical
correctness only. Type safety has been achieved as far as it can be done in
SQL. The exact meaning of key words indicating requirement levels can be
found in the References section [2].

REC

COMPUTERS
InProgress
USER LAYER .
Script Based
Desktop Apps Apps
USING [EER B
** D
sTC | U ;
R Q ! VO Query fbes : A P
E uages~ Units 3 T R
G | spectumom | [ssap| | A O
VO 4 Naf i T
| Semantics ObsCoreDM | | TAP A o
T A‘PpllcatlonRegEx}l SSLDM§ SLAP c C
R StandardRegExt A SEAP co
| i
Y SimpleDALRegExt Formats E L
,,,,, I [v [s S

; vopipe SHARING

Data and Metadata Collection
RESOURCE LAYER

FEES
20101004
IVOA Architecture 3 PROVIDERS

Figure 1: Architecture diagram for this document

Storage

1.1 Role within the VO Architecture

Fig. 1 shows the role this document plays within the IVOA architecture (?).

2 Astronomical Data Query Language (ADQL)

This section describes the ADQL language specification. We will define in
subsequent sections the syntax for the special characters, reserved and non-
reserved words, identifiers and literals and then, finally, the syntax for the
query expression.

The formal notation for syntax of computing languages is often expressed
in the “Backus Naur Form” BNF. This syntax is used by popular tools for
producing parsers. Appendix A to this document provides the full BNF
grammar for ADQL. The following conventions are used through this docu-
ment:

e Optional items are enclosed in meta symbols [and]

A group of items is enclosed in meta symbols { and }

Repetitive item (zero or more times) are followed by . ..

Terminal symbols are enclosed by < and >

Terminals of meta-symbol characters (=,[,],(,),<,>,*) are sur-
rounded by quotes (‘) to distinguish them from meta-symbols

Case insensitiveness unless otherwise stated

2.1 Characters, Keywords, ldentifiers and Literals
2.1.1 Characters

The language allows simple Latin letters (lower and upper case, i.e.
{aA-zZ}), digits ({0-9}) and the following special characters:

e space
e single quote (?)

e double quote (%)

e percent (%)

e left and right parenthesis
e asterisk (*)

e plus sign (+)

e minus sign (-)

e comma (,)

e period (.)

e solidus (/)

e colon (:)

e semicolon (;)

e less than operator (<)

e cquals operator (=)

e greater than operator (>)
e underscore (_)

e ampersand (&)

e question mark (?)

e vertical bar ()

e circumflex ()

e tilde (7)

2.1.2 Keywords and ldentifiers

Besides the character set, the language provides a list of reserved keywords
plus the syntax description for regular identifiers.

A reserved keyword has a special meaning in ADQL and cannot be used
as an identifier. These keywords must be enforced and should be extensive as
an escaping mechanism is already in place. We can extend the list of SQL92
reserved keywords to accommodate those useful for astronomical purposes
and/or present in a subset of vendor specific languages only (e.g. TOP).
This leads to the following list:

e SQL reserved keywords:

ABSOLUTE, ACTION, ADD, ALL, ALLOCATE, ALTER, AND, ANY, ARE, AS, ASC,
ASSERTION, AT, AUTHORIZATION, AVG, BEGIN, BETWEEN, BIT, BIT_LENGTH, BOTH, BY,
CASCADE, CASCADED, CASE, CAST, CATALOG, CHAR, CHARACTER, CHARACTER_LENGTH,
CHAR_LENGTH, CHECK, CLOSE, COALESCE, COLLATE, COLLATION, COLUMN,

COMMIT, CONNECT, CONNECTION, CONSTRAINT, CONSTRAINTS, CONTINUE, CONVERT,
CORRESPONDING, COUNT, CREATE, CROSS, CURRENT, CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP, CURRENT_USER, CURSOR, DATE, DAY, DEALLOCATE, DECIMAL,
DECLARE, DEFAULT, DEFERRABLE, DEFERRED, DELETE, DESC, DESCRIBE, DESCRIPTOR,
DIAGNOSTICS, DISCONNECT, DISTINCT, DOMAIN, DOUBLE, DROP, ELSE, END, END-EXEC,
ESCAPE, EXCEPT, EXCEPTION, EXEC, EXECUTE, EXISTS, EXTERNAL, EXTRACT,

FALSE, FETCH, FIRST, FLOAT, FOR, FOREIGN, FOUND, FROM, FULL, GET, GLOBAL,

GO, GOTO, GRANT, GROUP, HAVING, HOUR, IDENTITY, IMMEDIATE, IN, INDICATOR,
INITIALLY, INNER, INPUT, INSENSITIVE, INSERT, INT, INTEGER, INTERSECT,
INTERVAL, INTO, IS, ISOLATION, JOIN, KEY, LANGUAGE, LAST, LEADING, LEFT,
LEVEL, LIKE, LOCAL, LOWER, MATCH, MAX, MIN, MINUTE, MODULE, MONTH, NAMES,
NATIONAL, NATURAL, NCHAR, NEXT, NO, NOT, NULL, NULLIF, NUMERIC, OCTET_LENGTH,
OF, ON, ONLY, OPEN, OPTION, OR, ORDER, OUTER, OUTPUT, OVERLAPS, PAD, PARTIAL,
POSITION, PRECISION, PREPARE, PRESERVE, PRIMARY, PRIOR, PRIVILEGES, PROCEDURE,
PUBLIC, READ, REAL, REFERENCES, RELATIVE, RESTRICT, REVOKE, RIGHT, ROLLBACK,
ROWS, SCHEMA, SCROLL, SECOND, SECTION, SELECT, SESSION, SESSION_USER, SET,
SIZE, SMALLINT, SOME, SPACE, SQL, SQLCODE, SQLERROR, SQLSTATE, SUBSTRING,
SUM, SYSTEM_USER, TABLE, TEMPORARY, THEN, TIME, TIMESTAMP, TIMEZONE_HOUR,
TIMEZONE_MINUTE, TO, TRAILING, TRANSACTION, TRANSLATE, TRANSLATION, TRIM,
TRUE, UNION, UNIQUE, UNKNOWN, UPDATE, UPPER, USAGE, USER, USING, VALUE,
VALUES, VARCHAR, VARYING, VIEW, WHEN, WHENEVER, WHERE, WITH, WORK, WRITE,
YEAR, ZONE

e ADQL reserved keywords:

ABS, ACOS, ASIN, ATAN, ATAN2, CEILING, COS, DEGREES, EXP, FLOOR, LOG,
L0G10, MOD, PI, POWER, RADIANS, RAND, ROUND, SIN, SQRT, TAN, TOP, TRUNCATE

AREA, BOX, CENTROID, CIRCLE, CONTAINS, COORD1, COORD2, COORDSYS,
DISTANCE, INTERSECTS, POINT, POLYGON, REGION

ILIKE

IN_UNIT

BIT_AND, BIT_NOT, BIT_OR, BIT_XOR

The identifiers are used to express, for example, a table or a column
reference name.

Both the identifiers and the keywords are case insensitive. They SHALL
begin with a letter {aA-zZ}. Subsequent characters shall be letters, under-
scores or digits {0-9} as follows:

<Latin_letter>... [{ <digit> | <Latin_letter> | <underscore> | }...

For practical purposes the language specification should be able to ad-
dress reserved keyword and special character conflicts. To do so the language
provides a way to escape a non-compliant identifier by using the double quote
character as a delimiter.

ADQL allows making use of the same quoting mechanism to handle case
sensitiveness if needed.

2.1.3 Literals

Finally we define the syntax rules for the different data types: string, numeric
and boolean.

A string literal is a character expression delimited by single quotes.

<character_string_literal> ::=
<quote> [<character_representation>...] <quote>

Literal numbers are expressed in BNF as follows:
<signed_numeric_literal> ::= [<sign>] <unsigned_numeric_literal>

<unsigned_numeric_literal> ::=
<exact_numeric_literal>
| <approximate_numeric_literal>
| <unsigned_hexadecimal>

<exact_numeric_literal> ::=
<unsigned_decimal> [<period> [<unsigned_decimal>]]
| <period><unsigned_decimal>

<approximate_numeric_literal> ::= <mantissa> E <exponent>
<mantissa> ::= <exact_numeric_literal>
<exponent> ::= <signed_decimal>

10

<signed_decimal> ::= [<sign>] <unsigned_decimal>

<unsigned_decimal> ::= <digit>...
<digit> ::=0 11 | 2314561671819
<sign> ::= <plus_sign> | <minus_sign>

Hexadecimal literals are expressed using the 'C’ style notation, e.g. 0xFF.

Hexadecimal literals are defined in BNF as follows :

<unsignedyexadecimal >::= 0x < hexgigit > ...

hexgigit ::=< digit > |a|b|c|d|e| f|A|B|C|D|E|F

Hexadecimal literals are NOT case sensitive.

Hexadecimal literals can only be used to create integer data types,
SMALLINT, INTEGER and BIGINT.

Boolean literals are expressed in BNF as follows:

<boolean_literal> ::= True | False

Boolean literals are not case sensitive.

Regarding the usage of other data types like datetime and timestamp,
ADQL can deal with them similarly to how SQL does: using the string
literal construct. As Relation Database Manager Systems (RDBMs) do, a
service should be able to implicitly convert strings to internal (datetime or
timestamp) form using a variety of techniques, where e.g. ISO 8601 is an
acceptable format. Therefore, as with other string representations, it should
be up to the service capability to understand such specific formats.

11

2.2 Query syntax

A full and complete syntax of the select statement can be found in “Appendix
A: BNF Grammar” at the <query_specification> construct. Follows a
simplified syntax for the SELECT statement showing the main constructs for
the query specification:

SELECT
[ALL | DISTINCT]
[TOP unsigned_decimal]

{
* |
{ value_expression [[AS] column_name] },
}
FROM {
{
table_name [[AS] identifier] |
(SELECT) [[AS] identifier] |

table_name [NATURAL]
[INNER | { LEFT | RIGHT | FULL [OUTER] 7} 1
JOIN table_name
[ON search_condition | USING (column_name,...)]

+,
}

[WHERE search_condition]
[GROUP BY column_name, ...]
[HAVING search_condition]
[ORDER BY
{ column_name | unsigned_decimal } [ASC | DESC],

]

The SELECT statement defines a query to some derived table(s) specified
in the FROM clause. As a result of this query, a subset of the table(s) is
returned. The order of the rows MAY be arbitrary unless ORDER BY clause
is specified. The order of the columns to return SHALL be the same as the
order specified in the selection list, or the order defined in the original table if
asterisk is specified. TOP n construct is used to return the first n-rows. The
selection list MAY include any numeric, string or geometry value expression.
In the following sections some constructs requiring further description are
presented.

2.2.1 Table subqueries and Joins

Table subqueries are present and can be used by some existing predicates
within the search condition (IN and BETWEEN most likely) or as an artifact

12

of building derived tables. Among the different types of join, ADQL supports
INNER and OUTER (LEFT, RIGHT and FULL) joins. If none is specified,
the default is INNER. All of these can be NATURAL or not. The join
condition does not support embedded sub joins.

2.2.2 Search condition

The search condition can be part of several other clauses: JOIN, HAVING
and, obviously, WHERE. Standard logical operators are present in its de-
scription (AND, OR and NOT). Five different types of predicates are present
in which different types of reserved keywords or characters are used:

e Standard comparison operators: =, =, <> < > <= >=
e BETWEEN

e LIKE

e NULL

e EXISTS

In addition, some service implementations may also support the optional
ILIKE case-insensitive string comparison operator, defined in section 4.4.2.

e ILIKE

13

2.3 Mathematical and Trigonometrical Functions

ADQL declares a list of reserved keywords (section 2.1.2) which defines a set
of mathematical and trigonometrical function names. Their syntax, usage
and description are detailed in the following tables:

Name Argument | Return Description
data type | data type
abs(x) double double Returns the absolute value of x.
ceiling(x) double double Returns the smallest double value that is not less
than the argument x and is equal to a mathemat-
ical integer.
degrees(x) double double Converts an angle to degrees. Argument x must
be in radians.
exp(x) double double Returns Euler’s number e raised to the power of
X.
floor(x) double double Returns the largest double value that is not
greater than the argument x and is equal to a
mathematical integer.
log(x) double double Returns the natural logarithm (base e) of a double
value. Value x must be greater than zero.
log10(x) double double Returns the base 10 logarithm of a double value.
Value x must be greater than zero.
mod(x, y) double double Returns the remainder of y/x.
pi() n/a double The 7 constant.
power(x, y) x double double Returns the value of the first argument raised to
y double the power of the second argument.
radians(x) double double Converts an angle to radians. Argument x must
be in degrees.
sqrt(x) double double Returns the positive square root of a double value.
rand(x) integer double Returns a random value between 0.0 and 1.0,
where x is a seed value.
round(x, n) x double double Rounds double value x to n number of decimal
n integer places, with the default being to round to the
nearest integer. To round to the left of the deci-
mal point, a negative number should be provided.
truncate(x, n) x double double Returns the result of truncating the argument x
n integer to n decimal places.

Table 1: Mathematical functions

14

Name Argument | Return Description
data type | data type

acos(x) double double Returns the arc cosine of an angle, in the range
of 0 through 7 radians. Absolute value of x must
be lower or equal than 1.0.

asin(x) double double Returns the arc sine of an angle, in the range of
-7/2 through 7 /2 radians. Absolute value of x
must be and lower or equal than 1.0.

atan(x) double double Returns the arc tangent of an angle, in the range
of - /2 through 7/2 radians.

atan2(y,x) double double Converts rectangular coordinates x,y to polar an-
gle. It computes the arc tangent of y/x in the
range of —w through 7 radians.

cos(x) double double Returns the cosine of an angle, in the range of
-1.0 through 1.0. Argument x must be in radians.

sin(x) double double Returns the sine of an angle, in the range of -1.0
through 1.0. Argument x must be in radians.

tan(x) double double Returns the tangent of an angle. Argument x

must be in radians.

Table 2: Trigonometrical functions

15

3 ADQL Type System

ADQL defines no data definition language (DDL). It is assumed that table
definition and data ingestion are performed in the underlying database’s
native language and type system.

However, column metadata needs to give column types in order to al-
low the construction of queries that are both syntactically and semanti-
cally correct. Examples of such metadata includes VODataService’s TAPType
(VODataService-1.1, ?) or TAP’s TAP_SCHEMA (TAP-1.0, ?).

Services SHOULD, if at all possible, try express their column metadata
in these terms even if the underlying database employs different types. Ser-
vices SHOULD also use the following mapping when interfacing to user data,
either by serializing result sets into VOTables or by ingesting user-provided
VOTables into ADQL-visible tables. Where non-ADQL types are employed
in the underlying database, implementors SHOULD make sure that all oper-
ations that are possible with the recommended ADQL type are also possible
with the type used in the backend engine. For instance, the ADQL string
concatenation operator | | should be applicable to all columns resulting from
VOTable char-typed columns.

VOTable ADQL
datatype arraysize xtype type
boolean 1 - BOOLEAN
short 1 - SMALLINT
int 1 - INTEGER
long 1 - BIGINT
float 1 - REAL
double 1 - DOUBLE
(numeric) > 1 - implementation defined
char 1 - CHAR(1)
char n - CHAR(n)
char n* - VARCHAR(n)
unsignedByte | n - BINARY (n)
unsignedByte | n* - VARBINARY (n)
unsignedByte | n, *, n* adql:BLOB BLOB
char n, * n* adql: CLOB CLOB
char n, * n* adql: TIMESTAMP TIMESTAMP
char n, * n* adql:POINT POINT
char n, * n* adql:REGION REGION

Table 3: VOTable/ADQL type mapping

"I'mplementation defined” in the above table means that an implemen-
tation is free to reject attempts to (de-)serialize values in these types. They
are to be considered unsupported by ADQL, and the language provides no
means to manipulate "native” representations of them.

References to REGION-typed columns must be valid wherever the ADQL

16

region nonterminal is allowed. References to POINT-typed columns must be
valid wherever the ADQL point nonterminal is allowed.

Comparing the equality of a boolean value or expression with another
boolean returns a boolean result.

When comparing the size of a boolean with another boolean, the value
True is greater than the value False.

Unless explicitly stated, the result of any other operation on boolean
values is undefined.

17

4 Optional components

In addition to the core components, the ADQL language also includes sup-
port for optional features and functions.

The following sections define the optional features that are part of the
the ADQL language, but are not required in order to meet the standard for
a basic ADQL service.

It is up to each service implementation to declare which optional or ad-
ditional features it supports.

If a service does not declare support for an optional or additional feature,
then a client SHOULD NOT assume that the service supports that feature,
and SHOULD NOT make use of that feature in any ADQL queries that it
sends.

4.1 Service capabilities

The TAPRegExt-1.0 standard (?) defines an XML schema that a service
SHOULD use to declare which optional or additional features it supports.

In general, each group of langauge features is identified by a type URI,
and each individual feature within the group is identified by the feature
name.

Appendix B contains examples of how to declare support for each of
the langauge features defined in this document using the TAPRegExt XML
schema.

For full details on the XML schema and how it can be used, please refer
to the TAPRegExt (?) standard.

4.2 Geometrical Functions
4.2.1 Overview

In addition to the mathematical functions, ADQL provides a set of geomet-
rical functions to enhance the astronomical usage of the language.

e AREA
e BOX
CENTROID

o CIRCLE
CONTAINS

COORD1

18

e COORD2

e COORDSYS
e DISTANCE

o INTERSECTS
e POINT

e POLYGON

e REGION

A special attention has to be paid to the REGION function. As can
be seen more in detail in Section 2.4.14, this construct is a general purpose
function and it takes a string value expression as argument. The format of
the string is to be specified by a service that accepts ADQL by referring to a
standard format. Currently STC/s (See [3] and [4]) is the only standardized
string representation a service can declare.

As can also be seen in the following sections, all these functions have
arguments being a geometrical, a string and/or a numerical value expression.
When these values represent spherical coordinates the units MUST be in
degrees (square degrees for area). If the cartesian coordinate system is used,
the vector coordinates MUST be normalized.

Regarding the legal ranges, for spherical coordinates, these SHOULD
be [0, 360] and [-90, 90]. In a cartesian coordinate system, there are no
inherent limits but the already mentioned constraint that vectors should be
normalized. It remains up to the service making use of ADQL to define the
errors that should be raised when using values outside these ranges.

For historical reasons, the geometry constructors (BOX, CIRCLE,
POINT, POLYGON) require a string-valued first argument. It was intended
to carry information on a reference system or other coordinate system meta-
data. As of this version of the specification (2.1), this parameter has been
marked as deprecated. Services are permitted to ignore this parameter and
clients are advised to pass an empty string here. Future versions of this
specification may remove this parameter from the listed functions.

Generally speaking, all these geometrical functions cover three different
topics: data types, predicates and utility calculations. Each of these are
covered below.

4.2.2 Data Type Functions

Certain functions represent geometry data types. These data types are BOX,
CENTROID, CIRCLE, POINT and POLYGON together with the general-
ized REGION data type. The functions are similarly named and return a

19

variable length binary value. The semantics of these data types are based
on the corresponding concepts from the STC data model (See [3]).

Geometry data types are centered around the BNF construct <value_expression>
which is central to data types within SQL.

<value_expression> ::=
<numeric_value_expression>
| <string_value_expression>
| <boolean_value_expression>
| <geometry_value_expression>

A <geometry_value_expression> does not simply cover data type func-
tions (POINT, CIRCLE etc) but must also allow for user defined functions
and column values where a geometry data type is stored in a column.

Therefore, <geometry_value_expression> is expanded as

<geometry_value_expression> ::=
<value_expression_primary>
| <geometry_value_function>

, Where

<geometry_value_function> ::=
<box>

| <centroid>

| <circle>

| <point>

| <polygon>

| <region>

| <user_defined_function>
and <value_expression_primary> makes possible to use a column ref-

erence.

4.2.3 Predicate Functions

Language feature :

Functions CONTAINS and INTERSECTS each accept two geometry
data types and return 1 or 0 according to whether the relevant verb (e.g.:
"contains") is satisfied against the two input geometries; 1 represents true
and 0 represents false. Fach of these functions can be assembled into a
predicate:

SELECT * FROM SDSS as s WHERE CONTAINS(POINT(...), CIRCLE(...)) =1

20

, where the ... would represent the constituent parts of a CIRCLE and
POINT geometry.

One would expect later additions to ADQL to add to this range of func-
tions. For example: equals, disjoint, touches, crosses, within, overlaps and
relate are possibilities.

4.2.4 Utility Functions

Function COORDSYS extracts the coordinate system string from a given
geometry. To do so it accepts a geometry expression and returns a calculated
string value.

This function has been included as a string value function because it
returns a simple string value. Hence

<string_value_function> :: =
<string_geometry_function> | <user_defined_function>

<string_geometry_function> ::= <extract_coordsys>

<extract_coordsys> ::=
COORDSYS <left_paren> <geometry_value_expression> <right_paren>

Note - as of this version of the specification (2.1), the COORDSYS func-
tion has been marked as deprecated. This function may be removed in future
versions of this specification.

Functions like AREA, COORD1, COORD2 and DISTANCE accept a
geometry and return a calculated numeric value.

The specification defines two versions of the DISTANCE function, one
that accepts accept two geometries, and one that accepts four separate nu-
meric values, both forms return a numeric value.

The Predicate and most of the Utility functions have been included as
numeric value functions because they return simple numeric values. Thus

<numeric_value_function> ::=
<trig_function>
| <math_function>
| <numeric_geometry_function>
| <user_defined_function>

, where
<numeric_geometry_function> ::=

<predicate_geometry_function>
| <non_predicate_geometry_function>

21

and

<non_predicate_geometry_function> ::=
AREA <left_paren> <geometry_value_expression> <right_paren>
| COORD1 <left_paren> <coord_value> <right_paren>
| COORD2 <left_paren> <coord_value> <right_paren>
| DISTANCE <left_paren>
<coord_value> <comma>
<coord_value>
<right_paren>
| DISTANCE <left_paren>
<numeric_value_expression> <comma>
<numeric_value_expression> <comma>
<numeric_value_expression> <comma>
<numeric_value_expression>
<right_paren>

and

<predicate_geometry_function> ::= <contains> | <intersects>

22

The following sections provide a detailed description for each geometrical
function. In each case, the functionality and usage is described rather than
going into the BNF grammar details as above.

4.2.5 AREA

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: AREA

This function computes the area, in square degrees, of a given geometry.
For example, the area of a circle of one degree radius centered on a
position of (25.4, -20.0) degrees would be written as follows:

AREA(CIRCLE(‘’, 25.4, -20.0, 1))

The coordinates of the circle center could also be directly derived from
either a POINT function (See 2.4.12) or the coordinate’s column references:

AREA(CIRCLE(¢’, t.ra, t.dec, 1))

, where ¢ would be the table and 7a, dec the column references for the
circle centre.

Inappropriate geometries for this construct (e.g. POINT) SHOULD ei-
ther return zero or throw an error message, the later to be defined by the
service making use of ADQL.

42.6 BOX

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo

name: BOX

This function expresses a box on the sky. A box is a special case of
Polygon, defined purely for convenience, and it corresponds semantically
to the STC Box region ([3|, section 4.5.1.5). It is specified by a center
position and size (in both coordinates) defining a cross centered on the center
position and with arms extending, parallel to the coordinate axes at the
center position, for half the respective sizes on either side. The box’s sides
are line segments or great circles intersecting the arms of the cross in its end
points at right angles with the arms.

The function arguments specify the coordinate system, the center posi-
tion and both the width and height (arms) values, where

23

e the coordinate system is a string value expression as defined in Section
2.4.1.

e the center position is a comma separated numeric duple, with units
and legal ranges as defined in Section 2.4.1.

e and the arms are numeric value expressions in degrees.

For example, a function expressing a box of ten degrees centered on a
position (25.4, -20.0) in degrees would be written as follows:

BOX(¢’, 25.4, -20.0, 10, 10)

As another example, the coordinates of the center position could also
be extracted from either a POINT function (See 2.4.12) or the coordinate’s
column references:

BOX(¢’, t.ra, t.dec, 10, 10)

, where ¢ would be the table and 7a, dec the column references for the
center position.

To see what this function would return when listed in the select clause,
see Section 2.4.15.

4.2.7 CENTROID

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: CENTROID

This function computes the centroid of a given geometry and returns a
POINT (See 2.4.11).

For example, the centroid of a circle of one degree radius centered in a
position of (25.4, -20.0) degrees would be written as follows :

CENTROID(CIRCLE (¢’, 25.4, -20.0, 1))

4.2.8 CIRCLE

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: CIRCLE

This function expresses a circular region on the sky (a cone in space)
and corresponds semantically to the STC Circle region ([3], section 4.5.1.2)..
The function arguments specify the coordinate system, the center position,
and the radius, where:

24

e the coordinate system is a string value expression as defined in Section
2.4.1.

e the center position is a comma separated numeric duple, with units
and legal ranges as defined in Section 2.4.1.

e and the radius is a numeric value expression in degrees.

For example, a function expressing a circle of one degree radius centered
on a position of (25.4, -20.0) degrees would be written as follows:

CIRCLE(‘’, 25.4, -20.0, 1)

The coordinates of the center position could also be derived from either
a POINT function (See 2.4.12) or the coordinate’s column references:

CIRCLE(‘’, t.ra, t.dec, 1)

, where ¢ would be the table and 7a, dec the column references for the
center position.

To see what this function would return when listed in the select clause,
see Section 2.4.15.

4.2.9 CONTAINS

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: CONTAINS

This numeric function determines if a geometry is wholly contained
within another. This is most commonly used to express the "point-in-shape"
condition.

For example, to determine if a point with right ascension of 25 degrees and
declination of -19.5 degrees is within a circle of one degree radius centered in a
position of (25.4, -20.0) degrees and defined according to the same coordinate
system, we would make use of the CONTAINS function as follows:

CONTAINS(
POINT(¢’, 25.0,-19.5),
CIRCLE(‘’, 25.4, -20.0, 1)
)

, where the CONTAINS function returns 1 (true) if the first argument is

in or on the boundary of the circle and 0 (false) otherwise. Thus, contains
is not symmetric in the meaning of the arguments. When used in the where

25

clause of a query, the value must be compared to 0 or 1 to form an SQL
predicate:

CONTAINS(
POINT(¢’, 25.0,-19.5),
CIRCLE(‘’, 25.4, -20.0, 1)
) =1

for "does contain" and

CONTAINS(
POINT(¢’, 25.0,-19.5),
CIRCLE(‘’, 25.4, -20.0, 1)
) =0

for "does not contain".

The arguments to the CONTAINS function can be (literal) values created
from the geometry types or they can be single column names or aliases (for
geometry stored in a database table). Since the two argument geometries
may be expressed in different coordinate systems, the function is responsible
for converting one (or both). If it cannot do so, it SHOULD throw an error
message, to be defined by the service making use of ADQL.

4.2.10 COORD1

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: COORD1

This function extracts the first coordinate value, in degrees, of a given
POINT (See 2.4.12) or column reference.

For example, the right ascension of a point with position (25, -19.5) in
degrees would be obtained using the following expression:

COORD1(POINT(¢’, 25.0,-19.5))

, being the result a numeric value of 25.0 degrees. The first coordinate
could also be derived directly from a column reference as follows:

COORD1 (t.point)

, where ¢ is the table and point the column reference for the POINT
geometry stored in the database table.

26

4.2.11 COORD2

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: COORD2

This function extracts the second coordinate value, in degrees, of a given
POINT (See 2.4.12) or column reference.

For example, the declination of a point with position (25, -19.5) in de-
grees, would be obtained using the following expression:

COORD2(POINT(¢’, 25.0,-19.5))

, being the result a numeric value of -19.5 degrees. The second coordinate
could also be derived directly from a column reference as follows:

COORD2(t.point)

, where ¢ is the table and point the column reference for the POINT
geometry stored in the database table.

4.2.12 COORDSYS

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: COORDSYS

Note - as of this version of the specification (2.1), the COORDSYS func-
tion has been marked as deprecated. This function may be removed in future
versions of this specification.

This function extracts the coordinate system string value from a given
geometry.

As described in section 2.4.1, the allowed return values must be defined
by any service making use of ADQL, and a list of standard coordinate system
literals can be found in the STC specification [3].

For example, a function extracting the coordinate system of a point with
position (25, -19.5) in degrees according to the ICRS coordinate system with
GEOCENTER reference position, would be written as follows:

COORDSYS(POINT(“ICRS GEOCENTER’, 25.0,-19.5))

, returning the ‘ICRS GEOCENTER’ string literal. As other samples
above, the coordinate system could also be derived from a column referencing
any other geometry data type:

COORDSYS(t.circle)

27

, where t is the table and circle the column reference for the CIRCLE
geometry stored in the database table.

4.2.13 DISTANCE

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: DISTANCE

The DISTANCE function computes the arc length along a great circle
between two points and returns a numeric value expression in degrees.

The specification defines two versions of the DISTANCE function, one
that accepts accept two geometries, and one that accepts four separate nu-
meric values.

If an ADQL service implementation declares support for DISTANCE,
then it must implement both the two parameter and four parameter forms
of the function.

For example, a function computing the distance between two points of
coordinates (25,-19.5) and (25.4,-20) would be written as follows:

DISTANCE(
POINT(¢’, 25.0, -19.5),
POINT(¢’, 25.4, -20.0)
)

, where all numeric values and the returned arc-length are in degrees.
The equivalent call to the four parameter form of the function would be:

DISTANCE(
25.0,
-19.5,
25.4,
-20.0
)

The distance between two points could also be derived from two columns
referencing POINT geometries stored in the database tables as follows:

DISTANCE(
t.pl,
t.p2
)

, where ¢t would be the table and p1, p2 the column references for the
POINT geometries.

28

If the two arguments to the two parameter form are expressed in different
coordinate systems, the function is responsible for converting one (or both).
If it cannot do so, it SHOULD throw an error message, to be defined by the
service making use of ADQL.

It is assumed that the arguments for the four parameter form all use the
same coordinate system.

4.2.14 INTERSECTS

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: INTERSECTS

This numeric function determines if two geometry values overlap. This
is most commonly used to express a "shape-vs-shape" intersection test.

For example, to determine whether a circle of one degree radius centered
in a position of (25.4, -20.0) degrees overlaps with a box of ten degrees
centered in a position (20.0, -15.0) in degrees, we would make use of the
INTERSECTS function as follows:

INTERSECTS (
CIRCLE(‘’, 25.4, -20.0, 1),
BOX(¢’, 20.0, -15.0, 10, 10)
)

, where the INTERSECTS function returns 1 (true) if the two arguments
overlap and 0 (false) otherwise. When used in the where clause of a query,
the value must be compared to 0 or 1 to form an SQL predicate:

INTERSECTS(CIRCLE(¢’, 25.4, -20.0, 1),
BOX(¢’, 20.0, -15.0, 10, 10)
) =1

for "does intersect" and

INTERSECTS (
CIRCLE(‘’, 25.4, -20.0, 1),
BOX(¢’, 20.0, -15.0, 10, 10)
) =0

for "does not intersect".

The arguments to the INTERSECTS function can be (literal) values
created from the geometry types or they can be single column names or
aliases (for geometry stored in a database table).

Since the two argument points may be expressed in different coordinate
systems, the function is responsible for converting one (or both). If it cannot

29

do so, it SHOULD throw an error message, to be defined by the service
making use of ADQL.

The arguments to INTERSECTS SHOULD be geometric expressions
evaluating to either BOX, CIRCLE, POLYGON, or REGION. Previous ver-
sions of this specification allow POINTs as well and require servers to in-
terpret the expression as a CONTAINS with the POINT moved into the
first position. Servers SHOULD still implement that behaviour, but clients
SHOULD NOT expect it. This behaviour will be dropped in the next major
version of this specification.

4.2.15 POINT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: POINT

This function expresses a single location on the sky, and corresponds
semantically to an STC SpatialCoord ([3|, section 4.4.2). The arguments
specify the coordinate system and the position, where:

e the coordinate system is a string value expression as defined in Section
2.4.1.

e the position is a comma separated numeric duple, with units and legal
ranges as defined in Section 2.4.1.

For example, a function expressing a point with right ascension of 25
degrees and declination of -19.5 degrees would be written as follows:

POINT(¢’>, 25.0,-19.5)

, where numeric values are in degrees. The coordinates of the POINT
could also be derived from the coordinate’s column references:

POINT(¢’, t.ra, t.dec)

, where ¢ would be the table and ra, dec the column references for the
position.

The coordinates of a POINT could also be individually extracted using
the COORD1 and COORD2 functions (See 2.4.7 and 2.4.8).

To see what this function would return when listed in the select clause,
see Section 2.4.15.

30

4.2.16 POLYGON

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: POLYGON

This function expresses a region on the sky with sides denoted by great
circles passing through specified coordinates. It corresponds semantically to
the STC Polygon region ([3], section 4.5.1.4). The arguments specify the
coordinate system and three or more sets of 2-D coordinates, where:

e the coordinate system is a string value expression as defined in Section
2.4.1.

e the coordinate sets are comma separated numeric duples, with units
and legal ranges as defined in Section 2.4.1.

For example, a function expressing a triangle, whose vertices are (10.0,
-10.5), (20.0, 20.5) and (30.0,30.5) in degrees would be written as follows:

POLYGON(¢’>, 10.0, -10.5, 20.0, 20.5, 30.0, 30.5)

, where all numeric values are in degrees,
As for other geometries like BOX, CIRCLE and POINT, one could also
derive the coordinates from database column references instead:

POLYGON(¢’, t.ra, t.dec, 20.0, 20.5, 30.0, 30.5)

, where t would be the table and ra, dec the column references for one of
the triangle’s corner position.

Thus, the polygon is a list of vertices in a single coordinate system, with
each vertex connected to the next along a great circle and the last vertex
implicitly connected to the first vertex.

4.2.17 REGION

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-geo
name: REGION

This function provides a generic way of expressing a region represented
by a single string input parameter. The format of the string MUST be
specified by a service that accepts ADQL by referring to a standard format.
Currently STC/s is the only standardized string representation a service can
declare.

31

For example, given a string serialization of an STC region, the REGION
function just embeds such literal within parenthesis in the following way:

REGION(‘Convex ... Position ... Error ... Size?)

A detailed description on how to use STC/s can be seen in the referenced
document [4]. Inappropriate geometries for this construct SHOULD throw
an error message, to be defined by the service making use of ADQL.

4.2.18 Geometry in the SELECT clause

Geometry values (literals or columns containing geometry values) may be
listed in the select clause, in which case they must be converted into a text
form.

This text form will be identical to the way a literal value would be spec-
ified in a query, including the geometry type (POINT, CIRCLE, BOX, or
POLYGON) and all the required numeric arguments.

Previous versions of this specification requred the text form to include
the coordinate system string. However, as the coordinate system has been
marked as deprecated in this version of the specification (2.1), the text form
should contain an empty string ’’ in place of the coordinate system. Future
versions of this specification may remove the coordinate system parameter
from the text form.

SELECT circle(’’, 1, 2, 0.5)

could return

CIRCLE(’’, 1.0, 2.0, 0.5)

or equivalent. The output may alter the numeric format by converting
whole numbers to floating point (as in the example above) but should not
gratuitously add digits. Otherwise, numeric output must conform to the
rules for numeric expressions in the ADQL BNF.

4.3 User Defined Functions

4.3.1 Overview

ADQL also provides a placeholder to define user specific functions. Such
construct supports a variable list of parameters as input in the following
way:

<user_defined_function> ::=
<user_defined_function_name> <left_paren>

[

32

<user_defined_function_param>
L
{

<comma> <user_defined_function_param>

...

]

<right_paren>

The function names can be qualified with a prefix to ease parsing of the
ADQL statement

<user_defined_function_name> ::=
[<default_function_prefix>] <regular_identifier>

, while the function parameters are generic enough to support string,
numeric and geometrical expressions

<user_defined_function_param> ::= <value_expression>

If metadata on a user defined function is available, this should be used.
For example function names and cardinality of arguments should be checked
against metadata where available.

4.3.2 Metadata

The URI for identifying the language feature for a user defined function is
defined as part of the TAPRegExt-1.0 standard (?).

ivo://ivoa.net/std/TAPRegExt#features-udf

For user defined functions, the form element of the language feature
declaration must contain the signature of the function, written to match the
signature nonterminal in the following grammar:

signature ::= <funcname> <arglist> "->" <type_name>
funcname ::= <regular_identifier>

arglist ::= "(" <arg> { "," <arg> } ")"

arg ::= <regular_identifier> <type_name>

For example, the following fragment declares a user defined function that
takes two TEXT parameters and returns an integer, zero or one, depending
on the regular expression pattern matching.

<languageFeatures type="ivo://ivoa.net/std/TAPRegExt#features-udf">

<feature>
<form>match(pattern TEXT, string TEXT) -> INTEGER</form>

33

<description>
match returns 1 if the POSIX regular expression pattern
matches anything in string, O otherwise.
</description>
</feature>
</languageFeatures>

See the TAPRegExt standard for full details on how to use the XML
schema to declare user defined functions.
4.4 String functions and operators

An ADQL service implementation MAY include support for the following
optional string manipulation and comparison operators.

e LOWER() Lower case conversion

e ILIKE Case insensitive comparison

441 LOWER

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-string
name: LOWER

The LOWER function converts its string parameter to lower case.

Since case folding is a nontrivial operation in a multi-encoding world,
ADQL requires standard behaviour for the ASCII characters, and recom-
mends following algorithm R2 described in section 3.13, "Default Case Al-
gorithms" of 7 for characters outside th ASCII set.

LOWER(’Francis Albert Augustus Charles Emmanuel’)

=>
’francis albert augustus charles emmanuel’

4.4.2 ILIKE

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-string
name: ILIKE

The ILIKE string comparison operator performs a case insensitive com-
parison of its string operands.

’Francis’ LIKE ’francis’ => False

’Francis’ ILIKE ’francis’ => True

34

Since case folding is a nontrivial operation in a multi-encoding world,
ADQL requires standard behaviour for the ASCII characters, and recom-
mends following algorithm R2 described in section 3.13, "Default Case Al-
gorithms" of ? for characters outside th ASCII set.

4.5 Set operators

An ADQL service implementation MAY include support for the following
optional set operators:

e UNION
e EXCEPT

e INTERSECT

4.5.1 UNION

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-sets
name: UNION

“The UNION clause combines the results of two SQL queries into a single
table of all matching rows. Any duplicate records are automatically removed
unless UNION ALL is used."!

For a UNION operation to be valid in ADQL, the following criteria
MUST be met:

e The two queries MUST result in the same number of columns

e The corresponding columns in the operands MUST have the same data
types

e The corresponding columns in the operands SHOULD have the same
metadata, e.g. units, UCD etc.

e The metadata for the results SHOULD be generated from the left-hand
operand

Note that the comparison used for removing duplicates is based purely
on the column value only and does not take into account the units. This
means that row with a numeric value of 2 and units of m and a row with a
numeric value of 2 and units of km will be considered equal.

"https://en.wikipedia.org/wiki/Set_operations_%28SQL%29UNION_operator

35

https://en.wikipedia.org/wiki/Set_operations_%28SQL%29UNION_operator

452 EXCEPT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-sets
name: EXCEPT

“The EXCEPT operator takes the distinct rows of one query and re-
turns the rows that do not appear in a second result set. The EXCEPT
ALL operator does not remove duplicates. For purposes of row elimination
and duplicate removal, the EXCEPT operator does not distinguish between
NULLs."?

For an EXCEPT operation to be valid in ADQL, the following criteria
MUST be met:

e The two queries MUST result in the same number of columns

e The corresponding columns in the operands MUST have the same data
types

e The corresponding columns in the operands SHOULD have the same
metadata, e.g. units, UCD etc.

e The metadata for the results MUST be generated from the left-hand
operand

Note that the comparison used for identifying matching rows and for
removing duplicates is based purely on the column value only and does not
take into account any units declared in the metadata.

This means that row with a numeric value of 2 and units of m and a row
with a numeric value of 2 and units of km will be considered equal.

45.3 INTERSECT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-sets
name: INTERSECT

“The INTERSECT operator takes the results of two queries and returns
only rows that appear in both result sets. For purposes of duplicate removal
the INTERSECT operator does not distinguish between NULLs. The IN-
TERSECT operator removes duplicate rows from the final result set. The
INTERSECT ALL operator does not remove duplicate rows from the final
result set."?

*https://en.wikipedia.org/wiki/Set_operations_%28SQLY%29#EXCEPT operator
Shttps://en.wikipedia.org/wiki/Set_operations_%28SQL%29#INTERSECT_
operator

36

https://en.wikipedia.org/wiki/Set_operations_%28SQL%29#EXCEPT_operator
https://en.wikipedia.org/wiki/Set_operations_%28SQL%29#INTERSECT_operator
https://en.wikipedia.org/wiki/Set_operations_%28SQL%29#INTERSECT_operator

For an INTERSECT operation to be valid in ADQL, the following criteria
MUST be met:

e The two queries MUST result in the same number of columns

e The corresponding columns in the operands MUST have the same data
types

e The corresponding columns in the operands SHOULD have the same
metadata, e.g. units, UCD etc.

e The metadata for the results MUST be generated from the left-hand
operand

Note that the comparison used for identifying matching rows and for
removing duplicates is based purely on the column value only and does not
take into account the units.

This means that row with a numeric value of 2 and units of m and a row
with a numeric value of 2 and units of km will be considered equal.

4.6 Common table expressions

An ADQL service implementation MAY include support for the following
optional support for common table expressions :

e WITH

4.6.1 WITH

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-common-table
name: WITH

“A Common Table Expression, or CTE, is a temporary named result set,
derived from a simple query and defined within the execution scope of a
SELECT statement."*

Using a common table expression can make queries easier to understand
by factoring subqueries out of the main SQL statement.

Example

WITH alpha_subset AS

(
SELECT
*

4https ://en.wikipedia.org/wiki/Hierarchical_and_recursive_queries_in_SQL#
Common_table_expression

37

https://en.wikipedia.org/wiki/Hierarchical_and_recursive_queries_in_SQL#Common_table_expression
https://en.wikipedia.org/wiki/Hierarchical_and_recursive_queries_in_SQL#Common_table_expression

FROM
alpha_source

WHERE
id 4 10 =0

)
SELECT

*
FROM

alpha_subset
WHERE

ra BETWEEN 10 AND 20

4.7 Type operations

An ADQL service implementation MAY include support for the following
optional type conversion functions:

e CAST(O)

471 CAST

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-type
name: CAST

The CAST() function returns the value of the first argument converted to
the data type specified by the second argument.

The ADQL CAST() function does not replicate the full functionality and
range of types supported by common RDBMS implementations of CAST.

The ADQL CAST() function only supports type conversion between the
standard numeric data types. The CAST() function does not support casting
to or from the character, binary, datetime or geometric data types.

Type Numeric Character Binary Datetime Geometric
Numeric Y N N N N
Character N N N N N
Binary N N N N N
Datetime N N N N N
Geometric | N N N N N

Table 4: CAST type groups

The ADQL CAST() function supports type conversion between the nu-
meric data types.

When converting from floating point value (REAL or DOUBLE) to an
integer value (SHORTINT, INTEGER or BIGINT) the rounding mechanism
used is implementation dependent.

38

Type SHORTINT| INTEGER | BIGINT REAL DOUBLE
SHORTINT] - Y Y Y Y
INTEGER | Y - Y Y Y
BIGINT Y Y - Y Y

REAL Y Y Y - Y
DOUBLE Y Y Y Y -

Table 5: CAST numeric types

When converting a numeric value to a data type that is too small to
represent the value, this SHOULD be treated as an error. However, the
mechanism for reporiting the overflow condition is implementation depen-
dent.

4.8 Unit operations

An ADQL service implementation MAY include support for the following
optional unit conversion functions:

e IN_UNITQ)

4.8.1 IN_UNIT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-unit
name: IN_UNIT

The IN_UNIT() function returns the value of the first argument trans-
formed into the units defined by the second argument.

The second argument MUST be a string literal containing a valid unit
description using the formatting defined in the VOUnits specification (7).

e If the second argument is not a valid unit description, then the query
is rejected as erroneous.

e If the translator does not know how to convert the value into the re-
quested units, then the query is rejected as erroneous.

4.9 Bitwise operators

An ADQL service implementation MAY include support for the following
optional bitwise operators:

e not 7 x

eandx &y

39

eorx | y

e XOrx "y

4.9.1 Bit AND

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-bitwise
name: BIT_AND

The ampersand, &, operator performs a bit wise AND operation on two
integer operands.

x&y

The the bitwise AND operation is only valid for integer numeric values,
SMALLINT, INTEGER or BIGINT. If the operands are not integer values,

then the result of the bitwise AND operation is undefined.

4.9.2 Bit OR

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-bitwise
name: BIT_OR

The vertical bar, |, operator performs a bit wise OR operation on two
integer operands.

x|y

The the bitwise OR operation is only valid for integer numeric values,
SMALLINT, INTEGER. or BIGINT. If the operands are not integer values,
then the result of the bitwise OR operation is undefined.

4.9.3 Bit XOR

Language feature :

type: ivo://ivoa.net/std/TAPRegExt#features-adql-bitwise
name: BIT_XOR

The circumflex, =, operator performs a bit wise XOR (exclusive or) op-
eration on two integer operands.

Xy

The the bitwise XOR operation is only valid for integer numeric values,
SMALLINT, INTEGER or BIGINT. If the operands are not integer values,
then the result of the bitwise XOR operation is undefined.

40

49.4 Bit NOT

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-bitwise
name: BIT_NOT

The tilde, ~, operator performs a bit wise NOT operation on an integer
operand.

X

The the bitwise NOT operation is only valid for integer numeric values,
SMALLINT, INTEGER or BIGINT. If the operand is not an integer value,
then the result of the bitwise NOT operation is undefined.

4.10 Cardinality

An ADQL service implementation MAY include support for the following
optional clauses to modify the cardinality of query results.

4.10.1 OFFSET

Language feature :
type: ivo://ivoa.net/std/TAPRegExt#features-adql-offset
name: OFFSET

An ADQL service implementation MAY include support for the OFFSET
clause which limits the number of rows returned by removing a specified
number of rows from the beginning of the result set.

If a query contains both an ORDER BY clause and an OFFSET clause,
then the ORDER BY is applied before the specified number of of rows are
dropped by the OFFSET clause.

If the total number of rows is less than is less than the value specified by
the OFFSET clause, then the result set is empty.

If a query contains both an OFFSET clause and a TOP clause, then the
OFFSET clause is applied first, dropping the specified number of rows from
the begining of the result set before the TOP clause is applied to limit the
number of rows returned.

A BNF Grammar

An easier to navigate version of the BNF grammar can be found at
http://www.ivoa.net/internal/IV0A/IvoaVOQL/adql-bnf-v2.0.html

41

http://www.ivoa.net/internal/IVOA/IvoaVOQL/adql-bnf-v2.0.html

<ADQL_language_character> ::

<simple_Latin_letter>
<digit>
<SQL_special_character>

<ADQL_reserved_word> ::=

ABS

ACOS
AREA
ASIN
ATAN
ATAN2
BIT_AND
BIT_NOT
BIT_OR
BIT_XOR
BOX
CEILING
CENTROID
CIRCLE
CONTAINS
COORD1
COORD2
COORDSYS
Ccos
DEGREES
DISTANCE
EXP
FLOOR
ILIKE
INTERSECTS
IN_UNIT
LOG
LOG10
MOD

PI

POINT
POLYGON
POWER
RADTIANS
REGION
RAND
ROUND
SIN

SQRT

TOP

TAN
TRUNCATE

42

<SQL_embedded_language_character> ::=

<left_bracket> | <right_bracket>

<SQL_reserved_word> ::=

ABSOLUTE | ACTION | ADD | ALL

ALLOCATE | ALTER | AND

ANY | ARE

AS | ASC

ASSERTION | AT

AUTHORIZATION | AVG

BEGIN | BETWEEN | BIT | BIT_LENGTH

BOTH | BY

CASCADE | CASCADED | CASE | CAST

CATALOG

CHAR | CHARACTER | CHAR_LENGTH
CHARACTER_LENGTH | CHECK | CLOSE | COALESCE
COLLATE | COLLATION

COLUMN | COMMIT

CONNECT

CONNECTION | CONSTRAINT

CONSTRAINTS | CONTINUE

CONVERT | CORRESPONDING | COUNT | CREATE | CROSS
CURRENT

CURRENT_DATE | CURRENT_TIME
CURRENT_TIMESTAMP | CURRENT_USER | CURSOR
DATE | DAY | DEALLOCATE

DECIMAL | DECLARE | DEFAULT | DEFERRABLE
DEFERRED | DELETE | DESC | DESCRIBE | DESCRIPTOR
DIAGNOSTICS

DISCONNECT | DISTINCT | DOMAIN | DOUBLE | DROP
ELSE | END | END-EXEC | ESCAPE

EXCEPT | EXCEPTION

EXEC | EXECUTE | EXISTS

EXTERNAL | EXTRACT

FALSE | FETCH | FIRST | FLOAT | FOR

FOREIGN | FOUND | FROM | FULL

GET | GLOBAL | GO | GOTO

GRANT | GROUP

HAVING | HOUR

IDENTITY | IMMEDIATE | IN | INDICATOR
INITIALLY | INNER | INPUT

INSENSITIVE | INSERT | INT | INTEGER | INTERSECT
INTERVAL | INTO | IS

ISOLATION

JOIN

KEY

LANGUAGE | LAST | LEADING | LEFT

LEVEL | LIKE | ILIKE | LOCAL | LOWER

43

MATCH | MAX | MIN | MINUTE | MODULE

MONTH
NAMES | NATIONAL | NATURAL | NCHAR | NEXT | NO
NOT | NULL

NULLIF | NUMERIC

OCTET_LENGTH | OF

ON | ONLY | OPEN | OPTION | OR

ORDER | OUTER

OUTPUT | OVERLAPS

PAD | PARTIAL | POSITION | PRECISION | PREPARE
PRESERVE | PRIMARY

PRIOR | PRIVILEGES | PROCEDURE | PUBLIC

READ | REAL | REFERENCES | RELATIVE | RESTRICT
REVOKE | RIGHT

ROLLBACK | ROWS

SCHEMA | SCROLL | SECOND | SECTION

SELECT

SESSION | SESSION_USER | SET

SIZE | SMALLINT | SOME | SPACE | SQL | SQLCODE
SQLERROR | SQLSTATE

SUBSTRING | SUM | SYSTEM_USER

TABLE | TEMPORARY

THEN | TIME | TIMESTAMP

TIMEZONE_HOUR | TIMEZONE_MINUTE

TO | TRAILING | TRANSACTION

TRANSLATE | TRANSLATION | TRIM | TRUE

UNION | UNIQUE | UNKNOWN | UPDATE | UPPER | USAGE
USER | USING

VALUE | VALUES | VARCHAR | VARYING | VIEW

WHEN | WHENEVER | WHERE | WITH | WORK | WRITE
YEAR

ZONE

<SQL_special_character> ::=

<space>
<double_quote>
<percent>
<ampersand>
<quote>
<left_paren>
<right_paren>
<asterisk>
<plus_sign>
<comma>
<minus_sign>
<period>
<solidus>
<colon>
<semicolon>

44

<less_than_operator>
<equals_operator>
<greater_than_operator>
<question_mark>
<underscore>

<vertical_bar>
<ampersand> ::= &
<approximate_numeric_literal> ::= <mantissa>E<exponent>
<area> ::= AREA <left_paren> <geometry_value_expression> <right_paren>
<as_clause> ::= [AS] <column_name>
<asterisk> ::= %
<between_predicate> ::=
<value_expression> [NOT] BETWEEN
<value_expression> AND <value_expression>
<bitwise_expression> ::=
<bitwise_not> <numeric_value_expression>
| <numeric_value_expression> <bitwise_and> <numeric_value_expression>

| <numeric_value_expression> <bitwise_or> <numeric_value_expression>
| <numeric_value_expression> <bitwise_xor> <numeric_value_expression>

<bitwise_and> ::= <ampersand>

<bitwise_not> ::= <tilde>

<bitwise_or> ::= <vertical_bar>

<bitwise_xor> ::= <circumflex>
<boolean_factor> ::= [NOT] <boolean_primary>

<boolean_function> ::=

<boolean_literal> True | False
<boolean_primary> ::=
<left_paren> <search_condition> <right_paren>
| <predicate>
| <boolean_value_expression>

<boolean_term> ::=
<boolean_factor>

| <boolean_term> AND <boolean_factor>

<boolean_value_expression> ::=
<boolean_literal>

45

| <boolean_function>
| <user_defined_function>

<box> ::=
BOX <left_paren>
<coord_sys>
<comma> <coordinates>
<comma> <numeric_value_expression>
<comma> <numeric_value_expression>
<right_paren>

<catalog_name> ::= <identifier>

<centroid> ::=
CENTROID <left_paren>
<geometry_value_expression>
<right_paren>

<character_factor> ::= <character_primary>
<character_primary> ::=

<value_expression_primary>
| <string_value_function>

<character_representation> <nonquote_character> | <quote_symbol>

<character_string_literal>

<quote> [<character_representation>...] <quote>
<character_value_expression> ::= <concatenation> | <character_factor>
<circle> ::=

CIRCLE <left_paren>
<coord_sys>
<comma> <coordinates>
<comma> <radius>
<right_paren>

<circumflex> ::= ~

<colon> ::=

<column_name> ::= <identifier>

<column_name_list> ::= <column_name> [{ <comma> <column_name> }...]
<column_reference> ::= [<qualifier> <period>] <column_name>

<comma> ::= ,

46

<comment> ::= <comment_introducer> [<comment_character>...] <newline>

<comment_character> ::= <nonquote_character> | <quote>
<comment_introducer> ::= <minus_sign><minus_sign> [<minus_sign>...]
<comp_op> ::=

<equals_operator>
<not_equals_operator>
<less_than_operator>
<greater_than_operator>
<less_than_or_equals_operator>
<greater_than_or_equals_operator>

<comparison_predicate> ::=
<value_expression> <comp_op> <value_expression>

<concatenation> ::=
<character_value_expression>
<concatenation_operator>
<character_factor>

<concatenation_operator> ::= ||

<contains> ::=
CONTAINS <left_paren>
<geometry_value_expression> <comma> <geometry_value_expression>
<right_paren>

<coordl> ::= COORD1 <left_paren> <coord_value> <right_paren>
<coord2> ::= COORD2 <left_paren> <coord_value> <right_paren>
<coord_sys> ::= <string_value_expression>

<coord_value> ::= <point> | <column_reference>

<coordinatel> ::= <numeric_value_expression>

<coordinate2> ::= <numeric_value_expression>

<coordinates> ::= <coordinatel> <comma> <coordinate2>
<correlation_name> ::= <identifier>
<correlation_specification> ::= [AS] <correlation_name>

<default_function_prefix> ::=

47

<delimited_identifier> ::=
<double_quote> <delimited_identifier_body> <double_quote>

<delimited_identifier_body> <delimited_identifier_part>...

<delimited_identifier_part>
<nondoublequote_character> | <double_quote_symbol>

<delimiter_token> ::=
<character_string_literal>
| <delimited_identifier>
| <SQL_special_character>
| <not_equals_operator>
| <greater_than_or_equals_operator>
| <less_than_or_equals_operator>
| <concatenation_operator>
| <double_period>
| <left_bracket>
| <right_bracket>

<derived_column> ::= <value_expression> [<as_clause>]
<derived_table> ::= <table_subquery>
<digit> ::=0 | 12314156161 71819

<distance_function> ::=
DISTANCE <left_paren>

<coord_value> <comma>
<coord_value>
<right_paren>

| DISTANCE <left_paren>
<numeric_value_expression> <comma>
<numeric_value_expression> <comma>
<numeric_value_expression> <comma>
<numeric_value_expression>
<right_paren>

<double_period> ::=
<double_quote> ::= "
<double_quote_symbol> ::= <double_quote><double_quote>

<equals_operator> ::= =

<exact_numeric_literal> ::=
<unsigned_decimal> [<period> [<unsigned_decimal>]]

48

| <period> <unsigned_decimal>
<exists_predicate> ::= EXISTS <table_subquery>
<exponent> ::= <signed_integer>

<extract_coordsys> ::=
COORDSYS <left_paren>
<geometry_value_expression>
<right_paren>

<factor> ::= [<sign>] <numeric_primary>

<from_clause> ::=
FROM <table_reference>
[{ <comma> <table_reference> }...]

<general_literal> ::= <character_string_literal>

<general_set_function> ::=
<set_function_type> <left_paren>
[<set_quantifier>] <value_expression>
<right_paren>

<geometry_value_expression> ::=
<value_expression_primary > | <geometry_value_function>

<geometry_value_function> ::=
<box>

<centroid>

<circle>

<point>

<polygon>

<region>
<user_defined_function>

<greater_than_operator> ::= >

<greater_than_or_equals_operator> ::= >=

<group_by_clause> ::= GROUP BY <grouping_column_reference_list>
<grouping_column_reference> ::= <column_reference>

<grouping_column_reference_list> ::=
<grouping_column_reference>
[{ <comma> <grouping_column_reference> }...]

<having_clause> ::= HAVING <search_condition>

49

<hex_digit> ::=<digit> |l a |l b |l c |l dlel|l £l AIBICIDIEITF
<identifier> ::= <regular_identifier> | <delimited_identifier>

<in_predicate> ::=
<value_expression> [NOT] IN <in_predicate_value>

<in_predicate_value> ::=
<table_subquery> | <left_paren> <in_value_list> <right_paren>

<in_value_list> ::=
<value_expression> { <comma> <value_expression> }

<intersects > ::=
INTERSECTS <left_paren>
<geometry_value_expression> <comma> <geometry_value_expression>
<right_paren>

<join_column_list> ::= <column_name_list>
<join_condition> ::= ON <search_condition>
<join_specification> ::= <join_condition> | <named_columns_join>

<join_type> ::=
INNER | <outer_join_type> [OUTER]

<joined_table> ::=
<qualified_join> | <left_paren> <joined_table> <right_paren>

<keyword> ::= <SQL_reserved_word> | <ADQL_reserved_word>
<left_bracket> ::= [
<left_paren> ::= (
<less_than_operator> ::= <
<less_than_or_equals_operator> ::= <=
<like_predicate> ::=
<match_value> [NOT] LIKE <pattern>
| <match_value> [NOT] ILIKE <pattern>

<mantissa> ::= <exact_numeric_literal>

<match_value> ::= <character_value_expression>

50

<mat

<min

<nam

<new

<non

<non

<non

<non

h_function> ::=
ABS <left_paren> <numeric_value_expression> <right_paren>
CEILING <left_paren> <numeric_value_expression> <right_paren>
DEGREES <left_paren> <numeric_value_expression> <right_paren>
EXP <left_paren> <numeric_value_expression> <right_paren>
FLOOR <left_paren> <numeric_value_expression> <right_paren>
LOG <left_paren> <numeric_value_expression> <right_paren>
L0OG10 <left_paren> <numeric_value_expression> <right_paren>
MOD <left_paren>

<numeric_value_expression> <comma> <numeric_value_expression>
<right_paren>
PI <left_paren><right_paren>
POWER <left_paren>

<numeric_value_expression> <comma> <numeric_value_expression>
<right_paren>
RADIANS <left_paren> <numeric_value_expression> <right_paren>
RAND <left_paren> [<unsigned_decimal>] <right_paren>
ROUND <left_paren>

<numeric_value_expression> [<comma> <signed_integer>]
<right_paren>
SQRT <left_paren> <numeric_value_expression> <right_paren>
TRUNCATE <left_paren>

<numeric_value_expression>

[<comma> <signed_integer>]
<right_paren>

us_sign> ::= -

ed_columns_join> ::=

USING <left_paren>
<join_column_list>

<right_paren>

line> ::=

_predicate_geometry_function> ::=
<area>

<coordi1>

<coord2>

<distance>

delimiter_token> ::=
<regular_identifier>
<keyword>
<unsigned_numeric_literal>

doublequote_character> ::=

quote_character> ::=

o1

<not_equals_operator> ::= <not_equals_operatorl> | <not_equals_operator2>

<not_equals_operatorl> <>

<not_equals_operator2> ::= I=

<non_join_query_expression> ::=
<non_join_query_term>
| <query_expression> UNION [ALL] <query_term>
| <query_expression> EXCEPT [ALL] <query_term>

<non_join_query_primary> ::=
<query_specification>
| <left_paren> <non_join_query_expression> <right_paren>

<non_join_query_term> ::=
<non_join_query_primary>
| <query_term> INTERSECT [ALL] <query_expression>

<null_predicate> ::= <column_reference> IS [NOT] NULL

<numeric_geometry_function> ::=
<predicate_geometry_function> | <non_predicate_geometry_function>

<numeric_primary> ::=
<value_expression_primary>
| <numeric_value_function>

<numeric_value_expression> ::=
<term>
| <bitwise_expression>
| <numeric_value_expression> <plus_sign> <term>
| <numeric_value_expression> <minus_sign> <term>

<numeric_value_function> ::=
<trig_function>
| <math_function>
| <numeric_geometry_function >
| <user_defined_function>

<offset_clause> ::= OFFSET <unsigned_decimal>
<order_by_clause> ::= ORDER BY <sort_specification_list>
<ordering_specification> ::= ASC | DESC
<outer_join_type> ::= LEFT | RIGHT | FULL

52

<pattern> = <character_value_expression>
<percent> ::= Y
<period> ::=

Il
+

<plus_sign>

<point> ::=
POINT <left_paren>
<coord_sys> <comma> <coordinates>
<right_paren>

<polygon> ::=
POLYGON <left_paren>
<coord_sys>
<comma> <coordinates>
<comma> <coordinates>
{ <comma> <coordinates> } 7
<right_paren>

<predicate> ::=
<comparison_predicate>
<between_predicate>
<in_predicate>
<like_predicate>
<null_predicate>

<exists_predicate>
<predicate_geometry_function> ::= <contains> | <intersects>
<qualified_join> ::=
<table_reference> [NATURAL] [<join_type>] JOIN
<table_reference> [<join_specification>]
<qualifier> ::= <table_name> | <correlation_name>
<query_expression> ::=
<non_join_query_expression>
| <joined_table>
<query_term> ::=
<non_join_query_term>
| <joined_table>

<query_name> ::= <identifier>

<query_specification> :=
WITH <with_query> [, ...]

93

<select_query>

<question_mark> ::= 7

<quote> ::= "’

<quote_symbol> ::= <quote> <quote>
<radius> ::= <numeric_value_expression>
<region> ::=

REGION <left_paren> <string_value_expression> <right_paren>
<regular_identifier> ::=
<simple_Latin_letter>...

[{ <digit> | <simple_Latin_letter> | <underscore> }...]

<right_bracket> ::=]

I
~

<right_paren>

<schema_name> [<catalog_name> <period>] <unqualified_schema name>

<search_condition> ::=
<boolean_term>
| <search_condition> OR <boolean_term>

<select_list> ::=
<asterisk>
| <select_sublist> [{ <comma> <select_sublist> }...]

<select_query> ::=
SELECT
[<set_quantifier>]
[<set_limit>]
<select_list>
<table_expression>
<select_sublist> ::= <derived_column> | <qualifier> <period> <asterisk>
<semicolon> ::= ;
<set_function_specification> ::=
COUNT <left_paren> <asterisk> <right_paren>
| <general_set_function>

<set_function_type> ::= AVG | MAX | MIN | SUM | COUNT

<set_limit> ::= TOP <unsigned_decimal>

54

<set_quantifier> ::= DISTINCT | ALL

<sign> ::= <plus_sign> | <minus_sign>

<signed_integer> ::= [<sign>] <unsigned_decimal>

<simple_Latin_letter> ::=
<simple_Latin_upper_case_letter>

| <simple_Latin_lower_case_letter>

<simple_Latin_lower_case_letter> ::=
alblcldlelfiglhliljlkllimInlolplqlrisltlulviwlxlylz

<simple_Latin_upper_case_letter> ::=
A|IBICIDIEIFIGIHITIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

<solidus> ::= /
<sort_key> ::= <column_name> | <unsigned_decimal>

<sort_specification> ::=
<sort_key> [<ordering_specification>]

<sort_specification_list> ::=

<sort_specification> [{ <comma> <sort_specification> }...]
<space> ::=
<string_geometry_function> ::= <extract_coordsys>
<string_value_expression> ::= <character_value_expression>

<string_value_function> ::=
<string_geometry_function> | <user_defined_function>

<subquery> ::= <left_paren> <query_expression> <right_paren>

<table_expression> ::=
<from_clause>
[<where_clause>]
[<group_by_clause>]
[<having_clause>]
[<order_by_clause>]
[<offset_clause>]

<table_name> ::= [<schema_name> <period>] <identifier>

<table_reference> ::=

95

<table_name> [<correlation_specification>]
| <derived_table> <correlation_specification>
| <joined_table>

<table_subquery> ::= <subquery>
<term> ::=
<factor>
| <term> <asterisk> <factor>

| <term> <solidus> <factor>

<tilde> ::= 7~

<token>
<nondelimiter_token> | <delimiter_token>

<trig_function> ::=
ACOS <left_paren> <numeric_value_expression> <right_paren>
| ASIN <left_paren> <numeric_value_expression> <right_paren>
| ATAN <left_paren> <numeric_value_expression> <right_paren>
| ATAN2 <left_paren>
<numeric_value_expression> <comma> <numeric_value_expression>
<right_paren>
COS <left_paren> <numeric_value_expression> <right_paren>
COT <left_paren> <numeric_value_expression> <right_paren>
SIN <left_paren> <numeric_value_expression> <right_paren>
TAN <left_paren> <numeric_value_expression> <right_paren>

<underscore> ::= _

<unqualified_schema name> ::= <identifier>
<unsigned_decimal> ::= <digit>...
<unsigned_hexadecimal> ::= Ox<hex_digit>...

<unsigned_literal> ::=
<unsigned_numeric_literal>
| <general_literal>

<unsigned_numeric_literal> ::=
<exact_numeric_literal>
| <approximate_numeric_literal>
| <unsigned_hexadecimal>

<unsigned_value_specification> ::= <unsigned_literal>

<user_defined_function> ::=
<user_defined_function_name> <left_paren>

56

<user_defined_function_param>

L
{
<comma> <user_defined_function_param>
oo
]
]

<right_paren>

<user_defined_function_name> ::=
[<default_function_prefix>] <regular_identifier>

<user_defined_function_param> ::= <value_expression>

<value_expression> ::=
<numeric_value_expression>
| <string_value_expression>
| <boolean_value_expression>
| <geometry_value_expression>

<value_expression_primary> ::=
<unsigned_value_specification>
| <column_reference>
| <set_function_specification>
| <left_paren> <value_expression> <right_paren>

<vertical_bar> ::= |

<where_clause> ::= WHERE <search_condition>

<with_query> :=
<query_name>
[(<column_name> [,...])] AS (<query_specification>)

B Language feature support

Within the TAPRegExt (?7) XML schema, each group of features is described
by a languageFeatures element, which has a type URI that identifies the
group, and contains a form element for each individual feature from the
group that the service supports.

For example, the following XML fragment describes a service that sup-
ports the POINT and CIRCLE functions from the set of geometrical functions
identified by the URI ivo://ivoa.net/std/TAPRegExt#features-adql-geo.

<languageFeatures

o7

type="ivo://ivoa.net/std/TAPRegExt#features-adql-geo"

>

<feature>
<form>POINT</form>
</feature>
<feature>
<form>CIRCLE</form>
</feature>
</languageFeatures>

C Changes from Previous Versions

C.1 Changes from ADQL-2.0

e Typo fixes to the ADQL grammar.

e Changes from ?

— Added boolean type (svn version 3364).

— Removed bitwise functions and updated the operators (svn ver-
sion 3365).

— Changed ’hierarchical queries’ to ’common table expressions’ (svn
version 3366).

— Added OFFSET clause (svn version 3367).
— Added four parameter DISTANCE (svn version 3370).
— Added hexadecimal literals (svn version 3374).

e Changes from ?

2.1.1.

(done) The Separator Nonterminal

* Imported changes from 7

2.1.2.
2.1.4.
2.1.5.
2.2.2.
2.2.3.
2.2.4.
2.2.5.
2.2.6.
2.2.7.

ne) Type System

ne) Empty Coordinate Systems

done) Explanation of optional features

done) No Type-based Decay of INTERSECTS
) Generalized User Defined Functions

done) Case-Insensitive String Comparisons

done) Set Operators

TODO) Boolean Type

done) Casting to Unit

(do
(do
(
(
(done
(
(
(
(

2.2.10. (done) Bitwise operators

o8

— 2.2.10. (TODO) Hexadecimal literals
— 2.2.11. (done) CAST operator
— 2.NN (done) WITH

e Created |Optional components| section.
e Moved [Geometrical Functions| into [Optional components|.

e Added [Language feature| information.

References

Arviset, C., Gaudet, S. and the IVOA Technical Coordination Group (2010),
‘IVOA architecture’, IVOA Note.
URL: http://www.ivoa.net/documents/Notes/IVOA Architecture

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
URL: http:/ /www.ietf.org/rfc/rfc2119.txt

Demleitner, M., Derriere, S., Gray, N., Louys, M. and Ochsenbein, F. (2014),
‘Units in the VO, version 1.0°, IVOA Recommendation.
URL: http://www.ivoa.net/documents/ VO Units/index.html

Demleitner, M., Dowler, P., Plante, R., Rixon, G. and Taylor, M. (2012),
‘TAPRegExt: a VOResource schema extension for describing TAP ser-
vices, version 1.0’, IVOA Recommendation.

URL: http://www.ivoa.net/documents/TAPRegExt

Demleitner, M., Harrison, P. and Taylor, M. (2013), ‘TAP Implementation
Notes, Version 1.0’, IVOA Note.

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table access protocol version
1.0’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/TAP

Molinaro, M. (2014), ‘Adql 2.0 erratum 1: remove nonterminal separator
grammar token’, IVOA Note.

Ortiz, 1., Lusted, J., Dowler, P., Szalay, A., Shirasaki, Y., Nieto-Santisteba,
M. A., Ohishi, M., O’Mullane, W., Osuna, P., the VOQL-TEG and the
VOQL Working Group (2015), ‘IVOA astronomical data query language,
version 2.1 (wd), 2015-06-01’, IVOA Working draft.

URL: http:/ /wiki.ivoa.net/internal /IVOA/ADQL/WD-ADQL-2.1-
20150601.pdf

99

Plante, R., Stébé, A., Benson, K., Dowler, P., Graham, M., Greene, G., Har-
rison, P., Lemson, G., Linde, T. and Rixon, G. (2010), ‘VODataService: a
VOResource schema extension for describing collections and services ver-
sion 1.1°, IVOA Recommendation.

URL: http://www.ivoa.net/documents/VODataService/

The Unicode Consortium (2012), ‘The Unicode standard, version 6.1 core
specification’.
URL: http://www.unicode.org/versions/Unicode6.1.0

60

	Introduction
	Role within the VO Architecture

	Astronomical Data Query Language (ADQL)
	Characters, Keywords, Identifiers and Literals
	Characters
	Keywords and Identifiers
	Literals

	Query syntax
	Table subqueries and Joins
	Search condition

	Mathematical and Trigonometrical Functions

	ADQL Type System
	Optional components
	Service capabilities
	Geometrical Functions
	Overview
	Data Type Functions
	Predicate Functions
	Utility Functions
	AREA
	BOX
	CENTROID
	CIRCLE
	CONTAINS
	COORD1
	COORD2
	COORDSYS
	DISTANCE
	INTERSECTS
	POINT
	POLYGON
	REGION
	Geometry in the SELECT clause

	User Defined Functions
	Overview
	Metadata

	String functions and operators
	LOWER
	ILIKE

	Set operators
	UNION
	EXCEPT
	INTERSECT

	Common table expressions
	WITH

	Type operations
	CAST

	Unit operations
	IN_UNIT

	Bitwise operators
	Bit AND
	Bit OR
	Bit XOR
	Bit NOT

	Cardinality
	OFFSET

	BNF Grammar
	Language feature support
	Changes from Previous Versions
	Changes from ADQL-2.0

