
Low-level Characterization of Astronomical

DataSets - DRAFT

by Fabien Chéreau

Virtual Observatory System Department, ESO
April 11, 2008

Abstract

This document investigates the definition of a general characterization model for

describing any astronomical observation at a detailed level. It should be read as a comple-

ment and a discussion of [3]. The main goals pursued by this document are:

• to define base concepts and definitions useful for the general low-level characteriza-

tion of DataSets which could lead to a practical implementation of it.

• to use a bottom-up approach to provide feedbacks and refinements on the concepts

defined in the high-level characterization document. This include in particular the

definition of a strict and non ambiguous method for defining high-level meta data.

1 Introduction

We can split characterization of DataSet into two categories: high-level characterization and
low-level characterization. High level characterization meta data are used to describe DataSets
as a whole using simple intuitive descriptors such as central position, or maximum spectral reso-
lution. On the other hand, we will call low-level characterization the most detailed statistical
description of a DataSet that it is possible to produce. High-level descriptor could be considered
as a lossy compression of the low-level characterization.

Many applications such as a search engine or SIA-like service will only use high-level charac-
terization meta data as the ones described in [3]. On the other hand, a detailed science analysis
tool such as a SED builder, an image cut-out service, or a data reduction pipe line will need to
access and manipulate the lowest level of characterization to perform per-pixel operations with
the highest possible precision.

To someone who knows how heterogeneous are most of the astronomical instruments in ser-
vice in the world, defining a general model for low-level characterization of any astronomical
DataSet may sound like an impossible task. However we will show in section 3 that, when
reduced to its fundamental concepts, it is possible to transform the problem to something more
homogeneous and logical. These concepts then naturally lead us in section 3 to adopt a bottom-
up approach to clarify or improve the high-level characterization descriptors. Section 3 is a dis-
cussion on how the previous considerations can explain and solve some of the issues faced with
the high-level model described in [3].

2 Base concepts

2.1 Scope

2.1.1 Characterization meta-data versus other meta-data

It is important to clearly differentiate characterization meta data from other meta data. In this
document we call characterization the description of the physical content of a data set. This
means that for example the name of the instrument or the date of release should not be consid-
ered as characterization while the spatial resolution, the PSF (Point Spread Function) or the
time of acquisition is really a characterization.

2.1.2 Highly reduced data

In this document we investigate only the description of observed (or simulated) DataSets , such
as an image or a spectrum. These data sets can be reduced in the sense that some known data
processing may have been applied on it (e.g. flat fielding etc..). If we push this definition to the
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extreme, it is perfectly valid to consider that e.g. a star catalog derived from a set of images is
also a highly reduced observation DataSet which can be characterized. However it will not be
very efficient (and easy) to use it this way, because it would require that the mapping as
described in section 2.2 contains the description of the whole processing performed to generate
the star catalog. For this kind of usage, an astronomical object data model will be more appro-
priate.

2.1.3 Astronomical Frame and units

Astronomical information in the real world can be described in a large number of reference
frame and units which can be converted from one to another. They are just different ways of
representing the same data. The purpose of the lower level characterization model is not to
describe all the possible frames and units that people use, neither to provide a way to convert
between them, although this could be provided as a helping library provided with the implemen-
tation of the model. In our case, we only need to agree on a common reference system defined as
precisely as possible and understood by everyone. Since we are working on astronomy DataSets,
the ICRS is a good candidate. Similarly, the choice of a unit for each axis can of course be dis-
cussed, the only important point is to choose one and stick to it.

It is important to understand that using a single reference frame and unit is only an internal
simplification and does not prevent to describe data sets which are more naturally described in a
different frame. The description of the main mapping for each DataSet as described in section
2.2 just need to include the conversion from the native frame and unit to ICRS with the proper
units. This part is hidden into the mapping, which allows to keep our model free of any specific
conversion algorithm while being flexible and transparent to the user.

2.2 Definitions: DataSet, Spaces, Axes and Mapping

In this document we will use the term of DataSet very frequently. A DataSet is the base entity
that we want to characterize. and it should be understood as a set of information observed from
the real (or simulated) world using an acquisition device, like a telescope with a CCD camera,
optionally followed by some data processing.

From a statistical signal processing point of view, a DataSet can be perceived as a signal
coming from the real continuous world space (e.g. incoming photons) projected into a set of
digital samples stored in the discrete data space (e.g. image pixel data)1.

Figure 1. Representation of the world and data space

1. We will assume in this document that a DataSet is stored in a digital way although it should be possible
to extend it to analogical data
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In the world space we assume that information is carried by incoming particles (photons)
whose flux is defined on a set of (fixed once for all) axes: space, time, wavelength, intensity,
polarization2,3. In the data space, the only two axes are the samples indice and their values
(e.g. a C array of integers). See tables 1 and 2 for a detailed description of the axes in both
spaces.

Axis Unit Description

Space (2D) deg (α, δ), ICRS orientation from which comes the photons*

Time JDay t, time at which the photons arrive on the sensor

Wavelength m λ,wavelength

Intensity W I, intensity of the photon flux

Polarization -, rad, rad (p, ψ, χ), degree of polarization, azimuth angle, ellipticity angle**

Table 1. Axes of the world space. Value on all axes are continuous.

* ICRS orientation is equivalent to BCRS or GCRS orientations. The orientation is implicitly defined

at the observer position and speed which should therefore be provided in the high-level meta data.

** An alternative would be to use the Stokes Parameters Q, U and V

Axis Type Description

Sample Index (1D,2D,..) integer uni or multi-dimensional index of the data element

Sample Value various types scalar value of the data element

Table 2. Axes of the data space. Elements have no physical units since the data space doesn’t directly

represent something physical.

This set of axes must be defined and consistent for all astronomical DataSets because it
defines the common reference frame in which we can compare and manipulate all of them. It is
very important to understand that the (arbitrary) choice of the axes defining our world space
practically restricts the model to observations of (incoherent) source of photons only. For char-
acterization of more exotic DataSets such as gravitational waves, another world space has to be
defined with different axes, and it will not be possible to manage them in a consistent way with
photon-based DataSets because they cannot be expressed in a consistent space.

The acquisition device can be modeled by a projection function, or mapping, which trans-
forms an input signal in world space to an output signal in the data space. The input signal is a
multi-dimensional continuous function defined on each axes of the world space. The output
signal is a discrete probability distribution defined on the data space. It forms a k-dimensional
random vector X = (X0, X1, ..., Xk -1) which is a collection of random variables, one for each of
the k samples of the data set. The joint distribution of this random vector can be described by a
k-dimensional probability mass function (pmf) giving the probability that the samples of the
DataSet take the corresponding values for a given input signal.

The complex mapping function should ideally contain everything we know about the
DataSet acquisition chain. However, in practice, it does not necessarily need to be perfect or
complete but only as good and detailed as we need or can. The lack of knowledge of the acquisi-
tion system is naturally reflected in the statistical dispersion (variance) of the pmf of X for a
given input signal4.

2. We want to describe here only the information coming into the sensor in an objective way. Therefore axes
such as distance, redshift or other astrometric parameters cannot be defined in this space because they are not
directly observed, but derived from a (subjective) interpretation of the observation, which goes beyond the scope
of the characterization. Therefore the space motion of the source, parallax, light deflection aberration etc.. are at
this point not extracted from the signal.

3. The utility of the phase axis has to be discussed. It may have a meaning for coherent flux of photons.

4. And we will see in section 3 that it is itself an inseparable element to take into account for computing
high-level characterization meta data.
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We just saw that providing a mapping function for a DataSet allows to compute the statis-
tical distribution of the projection of a defined input signal into the data space. Similarly, the
reversed mapping, or backward transformation allows to compute the statistical back-projection
of a given DataSet into the world space. In this case, the input of the reverse mapping is a
vector in the data space and the output a random process in the world space. The reverse map-
ping can be computed using the basic inverse image formula although it may be very tricky in
practice. These two considerations lead to the conclusion that the knowledge of a mapping func-
tion for a DataSet is a full model of the acquisition device and constitutes the lowest level char-
acterization of a DataSet.

3 A bottom-up approach for deriving high-level meta data

For many usage such as SIA/SSA like services, we are only interested in high-level meta-data,
such as the position, the spatial resolution or the spectral coverage of a DataSet. However there
is today no standard agreed upon way of defining them. For example, the spatial central posi-
tion of a DataSet will be in some case given as the position in the sky of the central pixel of the
data, sometimes as its barycenter, and even sometimes as the position of the observed source (in
the case of spectrum). To this confusion must also be added the one caused by the use of many
different coordinate systems and units. As a result of this complexity, it is today still very diffi-
cult to use high-level descriptors in a program in a fully automatic way and with guarantees of
validity and completeness.

Because the low-level characterization provides the most detailed description of a DataSet, it
should be possible to use it for generating automatically and generically a set of high-level
descriptors. A DataSet described by such a low-level characterization would then guarantee to
have high-level descriptors which are consistent and complete because computed strictly the
same way. The choice of which high-level descriptors to define and the full and non-ambiguous
definition of them could be one of the main task of the characterization working group. Using
fixed units and reference frames as defined in 2.1.3 would also much simplify the processing by
avoiding all the programs to re-implement all kind of unit and frame conversions. In this section
we will attempt to give a formal definition of more or less intuitive high-level characterization
concepts such as coverage, resolution and error.

3.1 Coverage

Intuitively, it is pretty easy to imagine what the coverage of a DataSet means on all the axes. It
is usually broadly understood as “the region in the world space for which the DataSet contains
some valuable information”. However, we will see that although this notion is quite intuitive, it
is not easily formally described.

To understand the problem, let us consider the simple example of a 2D image as shown on
figure 2. The rectangle on the figure represents the intuitive “image border” obtained by back-
projecting the pixels position in the sky using a WCS-like transformation. We see that the sky
position B (Ra2, Dec2) is clearly “inside” the “image borders”. We also see that there is a bright
star at point A (Ra1, Dec1) which is slightly outside the “image borders” and that the Point
Spread Function (PSF) is overlapping the image. In this case, if we know a model of the PSF,
we can in theory compute an estimate of the position and brightness of the bright star from the
image pixels. We therefore see that the DataSet really contains some valuable information about
a point which lays “outside” the “image border”. We also see that the spatial distance to
the “image border” from which a source still can be partially observed depends on the shape of
the PSF and of the brightness of this source, i.e. on the flux axis. We can even go further if we
imagine that our PSF model also depends on the wavelength and on the time. We then see that
the coverage becomes a complex function of many axes.
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Figure 2. The definition should say whether A and B are included into the coverage support or not.

In the general case, what we need is a function giving for each point of the world space a
scalar “sensitivity” value. This sensitivity function could be assumed to be the multi-dimen-
sional equivalent to the sensitivity as defined in [3]. Then, by triggering, bounding and averaging
it, it also automatically provides the multi-dimensional equivalent to the support, bounds and
location as defined in [3]. From these multi-dimensional descriptors it is also easy to define the
mono-dimensional (or bi-dimensional for the spatial axis) support, bounds and location for each
axis by simply projecting them on each axis. The filling factor can also be defined by dividing
the support area by the bound area.

We have now seen that the coverage descriptors on all axis can all be simply derived from
the multi-dimensional sensitivity function. This sensitivity function is by nature a multi-dimen-
sional function of all the axes of the world space. It should reflect the value or quality of the
information that the DataSet contains for each of these points. In the next section, we will
attempt to formally define the sensitivity using the concepts from section 2.

3.2 Sensitivity, Resolution and Error

We intuitively feel that the sensitivity function should be totally independent of the actual pixel
content of the DataSet. Indeed, it should describe the sensitivity of the acquisition device for
any input signal from the world space which obviously does not depends on what was observed
on a specific DataSet. This is a hint that it must be possible to define it from the mapping only.
Also, beyond what has been said in the previous section, the sensitivity function must have
specific properties so that it corresponds to the intuitive idea that we have from coverage.
Notably, the sensitivity value associated to a very faint signals totally lost into random noise or
to a saturated signal should be close to zero because the DataSet contains no valuable informa-
tion about it. Similarly the sensitivity value associated to signal which spatially lays far outside
the field of view should also be close to zero, and will bound the coverage on the spatial axis.
Another example is the case of a fully saturated detector, e.g. when observing a very bright
object, which should have a sensitivity exactly equal to zero, and will actually give the higher
bound of the coverage on the flux axis.

These considerations let us think that the SNR (Signal to Noise Ratio) should be taken into
account for the definition of the sensitivity. However, the last example shows that the SNR
taken as-is is not enough because the SNR of a saturated signal is very high (because the vari-
ance is very low) while the sensitivity should be null. We propose in the next section an idea for
a function defining the sensitivity.

3.2.1 A sensitivity function

Let a mapping M defining our acquisition chain and a multi-dimensional Dirac signal δx defined
in the world space, as well as δx+dx, being the same signal to which is added a small delta on
the x axis (for example the x axis could be the spatial or time axis). We can call S = E[M(δx)]
the mean of the distribution of the projection of δx and S ′ =E[M(δx+dx)] the one of the projec-
tion of δx+dx.

A bottom-up approach for deriving high-level meta data 5



An example of a sensitivity function could be the sum of a differential signal to noise ratio
on all the pixels for all the axis.

Sensitivity=
∑

x∈axes

∑

i

(
∆Sxi

σi

)2 (1)

with ∆Sxi = |Si
′ − Si| the difference between the value of S and S’ at pixel i and

σi the variance at pixel i when δ is varying on axis x. With this formula, we see that in the case
the distribution of the projections of δx and δx+dx are similar, M(δx) = M(δx+dx) we obtain
Sensitivity = 0. This will happen as wished when the signal is completely dominated by noise

(which happens when the signal is fully “outside” the coverage of the DataSet), and also when
the signal is fully saturated for all samples, i.e when the value on the flux axis is ‘above” the
coverage bound (in this case the joint distribution is a Dirac with all pixels at the saturation
value).

This is just an example of a sensitivity function and could probably be defined differently.
The advantage of using only the mean and variance of the distribution in the data space is that
the values can be practically computable. Other sensitivity functions could be derived using for
example a more information-theory based approach, by computing for example the Kullback-
Leibler divergence of the distributions.

3.2.2 Resolution and Error

As suggested by previous studies reported in [1], the measure of this differential SNR can in fact
also be considered as a measure of the resolution as well as of the error for a given axis. Work
by Falconi [2] showed that the angular precision with which a single target position can be mea-
sured is equal to the ratio of some constant (of the order of the Rayleigh limit), which is called
the resolution scale, to the SNR. With SNR defined as in equation 1 by

SNRx =
∑

i

(
∆Sxi

σi

) 2 (2)

We could therefore define the resolution limit on a given axis as the value of the small delta |dx|
for which the SNRx = 1, i.e. when the small change is likely to be detected.

Of course such a definition of resolution is quite different from the classical Rayleigh resolu-
tion but it has the big advantage to be generical enough to be consistently defined on all the
axes. It has notably the property of depending only on the random error (SNR) and on the
accuracy of the knowledge of the mapping which introduces systematics. Consequently, the
actual spatial resolution of a DataSet can be much higher than the Rayleigh one5.

It is also important to note that this definition of resolution inherently includes the noise
caused by sampling and quantization (which can be modeled by a convolution by a sinc func-
tion), and therefore renders the one defined as a high-level descriptor in [3] useless.

3.3 Summary of high-level descriptors

Table 3 show a summarized list of all the high-level descriptors and how to compute them from
the low-level characterization.

5. This can be understood if we take the example of a noiseless data set for which we know perfectly the
mapping. In this case, a maximum likelihood method could be used to reconstruct the input signal with a preci-
sion as good as we want, i.e that the resolution is infinite.
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Descriptor How to Compute

axis:Location Barycenter of Sensitivity

axis:Bounds Min/Max box for area where sensitivity>threshold

axis:Support Polygons where sensitivity>threshold

axis:Filling Factor Bounds/Support

axis:Resolution Limit* Resolution limit for the given axis as defined in section 3.2.1

Observer Position pos and speed in ICRS

Table 3. List of high-level descriptors. The ones starting with “axis:” are defined for all of the axis of the World Space.

The sensitivity function itself can not be stored into the high-level descriptor and is therefore only implicitly

contained in the low-level descriptor.

* With the definition of resolution given in section 3.2.1, Minimum Error and Resolution Limit are in fact

the same thing.

4 Features of a low-level characterization and implications
on high-level descriptors

In [3] as well as in email exchanges, a number of problematic points have been mentioned which
seem not to fit nicely into the high-level characterization model. We show in this section that
some of these issues can be solved when considering a low-level characterization model based on
the concepts explained in section 2 and deriving from it the high-level descriptors as described
in section 3.

4.1 Dependency between axes

One of the main issue mentioned in [3] is the handling of dependent axes. For example an
optical system with optical aberration presents a dependence between the spatial and the wave-
length axes. This means that at a certain level of precision, there is no correct formula pro-
jecting the position (in world space) of an incident light ray to a position in the data space (e.g
pixel in an image) if this formula doesn’t take into account the wavelength as an input param-
eter. If we extend this analogy to the other axes, we realize that in the general case we should
not assume that any axis is independent of the others. The fact that this is sometimes the case
for a given precision should therefore just be considered as a specialization (or an optimization
for faster computing). In our lower level characterization, this fact is naturally taken into
account because the main mapping function which project from world space to data space takes
into input a function of all the axes. What is done internally in the mapping can or not include
inter-axis dependency without breaking the model.

The high-level descriptors obtained in section 3 take naturally this fact into account because
they are derived from a multi-dimensional low-level characterization.

4.2 Characterize group of DataSet as well as subset of DataSet

Another important issue is the validity of the model for a group of DataSet as well as for any
arbitrary subset of a DataSet . If the model is correct, it should indeed be able to treat a collec-
tion of DataSet or even 1 single pixel of a DataSet exactly the same way since both can be
viewed as DataSets as well. To understand how this can be easily expressed using the concepts
of the previous section, let’s imagine that we have 2 DataSets and that for each of them we
know the main mapping from world space to data space. Now if we want to consider both
DataSets as a single composite one, it is enough to append the samples from one to the other,
and to create a new global mapping by encapsulating the 2 mappings into the new one (see
figure 3). Each of the 2 previous mappings will apply the projection function to the related sub-
part of the data space. Similarly, it is possible to create a new DataSet from the subset of
another one simply by using its main mapping applied to a subset only of the data space.
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Figure 3. Creating a new DataSet by composing 2 other

4.3 Accuracy, errors and completeness of calibration

Error management is one of the fundamental point of the characterization. We saw in the first
section that the output of the mapping in the data space is not a single value for each sample,
but a discrete probability joint distribution (it is a random vector). This means that for a given
input signal, we know for each sample of the data space the probability that it takes a given
scalar value. This probability is given by the pmf of the distribution. This distribution function
reflects not only the modeled random error caused e.g. by thermal noise, but also the lack of
accuracy in the description of the observing device. The main mapping for a DataSet therefore
contains the modeling of all errors and knows how to propagate them into the data space. It
can therefore be considered as the lowest level characterization of the errors for a DataSet.

To make things clearer, let’s suppose for example that we have an image described by its
associated main mapping. If we know the astrometric calibration of the image, we know that a
point source in the sky will be projected at a given position P in the data space. However the
calibration is never perfect and follows in reality an error distribution. If the error is Gaussian,
the mapping function will describe that the projection of the point source is a Gaussian proba-
bility distribution centered on P. In this case the values of the samples around P in the data
space will have their joint pmf modified accordingly. We therefore see that an random estima-
tion error on the spatial axis is reflected as another random error on the value and indice axes of
the data space. It is also very important not to assimilate this distribution as the one of the
intensity (flux) axis. This axis exist only in the world space, but we are now describing distribu-
tions functions in the data space.

Because we assume that our observed signal comes from the world space, it exists by defini-
tion on all of the axes. If the observing device ignores some of the axes (like an imaging device
usually ignores the polarization axis), it is reflected in the main mapping by the fact that the
inputs for these axes has no incidence on the projected result in the data space. Furthermore, if
the calibration of DataSet is partially known for some of the axes, this must also be reflected in
the main mapping by increasing the resulting standard deviation of the value and indice axes in
the projected data space. If some part of the calibration is totally missing (which is normal if we
don’t need it for science purposes) the mapping should simply introduce infinite errors. The last
point is very important to ensure completeness of the lower level characterization for all
described DataSets. Having a complete characterization with a valid error distribution model
ensures that algorithms can safely use all the DataSet in a generic way without making assump-
tions on the value of missing data.

Bibliography

[1] A. J. den Dekker and A. van den Boss. Resolution: a survey. J. Opt. Soc. Am. A, 14:547–557, 1997.

[2] O. Falconi. Maximum sensitivities of optical direction and twist measuring instruments. J. Opt. Soc.

Am., 54:1315–1320, 1964.

8 Section



[3] IVOA Data Model Working Group. Data model for astronomical dataset characterisation, version 1.12.

IVOA Recommendation, 2007.

Bibliography 9


