Units: Perspectives & Controversies

- Is it so difficult to deal with SI and derived units?
 - the writing rules:
 - in astronomical publications (greek, exponent, space: m s-1=m/s versus ms-1=1kHz)
 - as ASCII strings (no exponent, μ → u, avoid space → period: m.s-1=m/s)
 - the multiple/submultiple symbols (dynamic 10±24)
- How far do we accept 'exotic' units?

http://www.iau.org/science/publications/proceedings_rules/units/

Units: an Example

 $mW/m2 \Leftrightarrow mW.m-2$

```
1. Find operator \Rightarrow mW.m-2
```

2. Interpret single_Units

mW does not exist ⇒ magnitude_prefix + Unit

m-2 power -2 applied to UnitSymbol m

⇒ exactly like an arithmetic expression!

Units: demo built on BNF

- Examples using a code following these rules: http://cdsarc.u-strasbg.fr/viz-bin/Unit/w
- Extension to non-SI units (angles, times, astronomical units like Lsun, AU, pc,)
 - value have to be known; problem of the AU which may have to change?
 - values which can't be related to SI (Crab)
 - extension to mag (magnitudes)
- Extension to physical constants (c G h e ...)?
- Extension to sexagesimal or iso8601 time ...?
- Extension to user-defined units?

Can user-defined units be useful?

In some circumstances, user-defined may be useful:

- results in some well-defined instrumental units, but these units can't be easily related to SI (e.g. wavelength dependencies)
- values depends on some value of a parameter's model (e.g. Ho?)

... *BUT* ...

- reduces the interoperability
- requires an unambiguous way of specifying such units?