
Mark Cresitello-Dittmar May. 28, 2021

Data Model Workshop
Annotation Session

Annotation
Basis for comparison

• VO-DML Mapping Syntax V1.0 [WD - 20170323]

• Played a small role in the generation of the syntax

• Used the syntax in workshop case implementations

• ModelInstanceInVOT - V1.0 [WD - 20200915]

• Thorough read of the syntax

• Generated element hierarchy diagram to aid comparison

• Both shown to support the workshop use cases

• It is possible other cases would expose limitations in either syntax

Usage within workshop cases
Coverage

VO-DML Mapping Syntax ModelInstanceInVOT Syntax

Includes elements with sub-elements only

VO-DML Mapping Syntax ModelInstanceInVOT Syntax

26 elements + 6 unique attributes = 32 total 16 elements + 14 unique attributes = 30 total

VO-DML Mapping Syntax ModelInstanceInVOT Syntax

* Significant overlap in concepts (no surprise)

* Some consolidation and shuffling of elements to attributes

* ORM elements most different

Annotation
Comments on syntax

• ModelInstanceInVOT

• Reduced to 1 Model_Instance: cannot annotate ‘root’ instances from multiple
models. Example: mango:Source and cube:SparseCube

• Combines role with type: annotation changes when instance becomes a child of
another instance (slightly).

• ORM elements [FILTER|GROUPBY] allow only 1 key: GAIA multi-band case
potentially has srcid + filter

• TABLE_MAPPING: ties annotation too directly to VOTable structure

• SC_*Quantity: elements unnecessary

Annotation
Comments on syntax

• VO-DML Mapping

• Usage of ORM elements was a challenge: syntax provides the components
which can be combined/used in different ways.

• I leaned heavily on test examples to figure out what to do

• Distinction of [COLUMN|CONSTANT|LITERAL] not strictly necessary

• [REFERENCE|COMPOSITION|ATTRIBUTE] can be useful at I/O level, but
distinction possibly more relevant to power users than general usage.

Annotation
Comments on usage

• Had to add IDs to VOTable TABLE/FIELD elements in many cases. They were not contained in the native serialization.

• Used LITERAL instead of CONSTANT for PARAMs, which duplicates the value, but does not modify native serialization.

• Added TABLE to hold primary key values in order to make compact annotation

• Annotating complex PARAMs: time-series case, ssa_location element

• <PARAM name="position" datatype="double" arraysize="2" ref="_icrs" value="123.222 -10.000" />

• Neither syntax allows for annotating into array elements (tag which is longitude and which latitude), nor (I think) permit
annotating the PARAM to represent the complex type coords:SphericalPoint as a whole, leaving the client to interpret
the content.

• instead, this must be annotated with LITERALs, duplicating the individual values in the annotation.

• Data issues - not annotation related

• Trouble handling (RA,DEC) in sexagesimal format: bug in QTable

• pmRA units ’s/yr’ failed conversion to ‘deg’; ’s’ is Time Unit.: bug in data (s/b “arcsec/yr”)

Moving Forward

Completely UNTESTED and UNREVIEWED proposal

To facilitate discussion

Hybrid Solution?

Annotation
Mapping syntax migration possibilities

• Retain multiple model declaration

• More usage of attributes vs elements

• ATTRIBUTE: provides dmrole, remains separate from INSTANCE

• Consolidate COLUMN, CONSTANT, LITERAL, REFERENCE into INSTANCE

• ORM as ‘actions’ FILTER, JOIN, GROUPBY; distributed where applied

• Consolidate KEY handling to KEY element; allow >1

• Postpone OPTIONMAPPING and subelements

Merged Mapping Syntax

11 elements + 11 unique attributes = 22 total

