
International
Virtual
Observatory

Alliance

IVOA DataLink

Version 1.1

IVOA Working Draft 2020-05-05

Working group
DAL

This version
http://www.ivoa.net/documents/DataLink/20200505

Latest version
http://www.ivoa.net/documents/DataLink

Previous versions
This is the first public release

Author(s)
Patrick Dowler, François Bonnarel, Laurent Michel, Markus Dem-
leitner, Mark Taylor

Editor(s)
Patrick Dowler

Version Control
Revision 28d7ebb, 2020-05-05 12:46:35 -0700

Abstract
This document describes the linking of data discovery metadata to ac-

cess to the data itself, further detailed metadata, related resources, and to
services that perform operations on the data. The web service capability
supports a drill-down into the details of a specific dataset and provides a set
of links to the dataset file(s) and related resources. This specification also
includes a VOTable-specific method of providing descriptions of one or more
services and their input(s), usually using parameter values from elsewhere
in the VOTable document. Providers are able to describe services that are
relevant to the records (usually datasets with identifiers) by including service
descriptors in a result document.

http://www.ivoa.net/documents/DataLink/20200505
http://www.ivoa.net/documents/DataLink
http://www.ivoa.net/twiki/bin/view/IVOA/PatrickDowler
http://www.ivoa.net/twiki/bin/view/IVOA/FrancoisBonnarel
http://www.ivoa.net/twiki/bin/view/IVOA/LaurentMichel
http://www.ivoa.net/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/twiki/bin/view/IVOA/MarkTaylor
http://www.ivoa.net/twiki/bin/view/IVOA/PatrickDowler

Status of this document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in
progress”.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents/.

Contents

1 Introduction 4
1.1 The Role in the IVOA Architecture 4
1.2 Motivating Use Cases . 5

1.2.1 Multiple Files per Dataset 5
1.2.2 Progenitor Dataset . 6
1.2.3 Alternate Representations 6
1.2.4 Standard Services . 6
1.2.5 Free or Custom Services 7
1.2.6 Access Data Services 7
1.2.7 Recursive DataLink 7
1.2.8 Datasets linked to an astronomical source 7
1.2.9 Metadata and data related to provenance entities . . . 8

2 The {links} endpoint 8
2.1 Parameters on {links} endpoints 8

2.1.1 ID . 8
2.1.2 RESPONSEFORMAT 9

2.2 Registering {links} endpoints 9

3 {links} Response 10
3.1 DataLink MIME Type . 10
3.2 List of Links . 10

3.2.1 ID . 11
3.2.2 access_url . 11
3.2.3 service_def . 12
3.2.4 error_message . 12
3.2.5 description . 12
3.2.6 semantics . 12
3.2.7 content_type . 13
3.2.8 content_length . 13

2

http://www.ivoa.net/documents/

3.3 Successful Requests . 14
3.3.1 VOTable output . 14
3.3.2 Other Output Formats 14

3.4 Errors . 15

4 Service Descriptors 15
4.1 Service Resources . 16
4.2 Example: Service Descriptor for the {links} Capability 17
4.3 Example: Service Descriptor for an SIA-1.0 Service 18
4.4 Example: Service Descriptor for VOSpace-2.0 19
4.5 Example: Custom Access Data Service 20
4.6 Example: Self-Describing Service 22

5 New “datalink” content-type for the LINK element in VOTable 24

6 Changes 24
6.1 PR-DataLink-1.0-20150413 24
6.2 PR-DataLink-1.0-20140930 24
6.3 PR-DataLink-20140530 . 25
6.4 WD-DataLink-20140505 . 25
6.5 WD-DataLink-20140212 . 26

Acknowledgments

The authors would like to thank all the participants in DAL-WG discussions
for their ideas, critical reviews, and contributions to this document.

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard RFC2119 (Bradner, 1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

3

http://www.ivoa.net

1 Introduction

This specification defines mechanisms for connecting data items discovered
via one service to related data products, and web services

The links web service capability is a web service capability for drilling
down from a discovered data item such as an identifier, a source in a cata-
log or any other data item. In the first case (typically an IVOA publisher
dataset identifier) it allows to find details about the data files that can be
downloaded, alternate representations of the data that are available, and
services that can act upon the data (usually without having to download
the entire dataset). The expected usage is for DAL (Data Access Layer)
data discovery services (e.g. a TAP service (Dowler and Rixon et al., 2010)
with the ObsCore (Louys and Tody et al., 2017) data model or one of the
simple DAL services) to provide an identifier that can be used to query the
associated DataLink capability. The DataLink capability will respond with
a list of links that can be used to access the data. Here we specify the call-
ing interface for the capability and the response, which lists the links and
provides both concrete metadata and a semantic vocabulary so clients can
decide which links to use.

The service descriptor resource uses the metadata features of VOTable to
embed service metadata along with tabular data, such as would be obtained
by querying a simple DAL data discovery service or a TAP service. This
service metadata tells the client how to invoke a service and, for those regis-
tered in an IVOA registry, how to lookup additional information about the
service. The service provider can use this mechanism to tell clients about
services that can be invoked to access the discovered data item in some
way: get additional metadata, download the data, or invoke services that
act upon the data files. These services may be IVOA standard services or
custom services from the data providers. The current version provides no
way to describe the output of a service, but this may be added in a future
(minor) revision of this specification.

We expect that the service descriptor resource mechanism will be the
primary way that clients will find and use the links capability from data
discovery responses.

1.1 The Role in the IVOA Architecture

DataLink is a data access protocol in the IVOA architecture whose purpose
is to provide a mechanism to link resources found via one service to resources
provided by other services.

Although not shown in Figure 1, any implementation of an access pro-
tocol could make use of DataLink to expose resources. DataLink services
conform to the Data Access Layer Interface specification (DALI, Dowler and

4

Users Computers

Providers

R
eg

is
tr

y
D

ata A
ccess

 P
ro

to
co

ls

User Layer

Using

Resource Layer

Sharing

VO

Core

F
in

di
n

g G
etting

Desktop Apps

In-Browser
Apps

User
Programs

Data and Metadata Collection
Storage Computation

Semantics
Data

Models

VO Query
Languages

Formats
VODataService

StandardsRegExt

VOTable

DALI

DataLink

VOSI

Figure 1: Architecture diagram for this document

Demleitner et al. (2013)), including the Virtual Observatory Support Inter-
faces resources (VOSI, Graham and Rixon et al. (2011)). DataLink services
use VOTable (Ochsenbein and Taylor et al., 2013) as the default output
format both for successful output and to return error documents.

DataLink specifies a standardID for itself, as defined in VODataService
(Plante and Stébé et al., 2010), to be used in a StandardsRegExt record
(Harrison and Burke et al., 2012). It also specifies how to include standardID
values in the response to describe links to services.

DataLink includes a description of how data discovery services can in-
clude the link to the associated DataLink service in VOTable. VOTable is
also the default output format for the DataLink web service capability.

1.2 Motivating Use Cases

Below are some of the more common use cases that have motivated the
development of the DataLink specification. While this is not complete, it
helps to understand the problem area covered by this specification.

1.2.1 Multiple Files per Dataset

It is very common for a single dataset to be physically manifest as multiple
files of various types. With a DataLink web service, the client can drill down
using a discovered dataset identifier and obtain links to download one or

5

more data files. For static data files, the DataLink service will be able to
provide a URL as well as the content-type and content-length (file size) for
each download.

1.2.2 Progenitor Dataset

In some cases, the data provider may wish to provide one or more links
to progenitor (input) datasets; this would enable the users to drill down to
input data in order to better understand the content of the product dataset,
possibly reproduce the product to evaluate the processing, or reprocess it
with different parameters or software.

1.2.3 Alternate Representations

For some datasets (large ones) it is useful to be able to access preview
data (either precomputed or generated on-the-fly) and use it to determine if
the entire dataset should be downloaded (e.g. in an interactive session). A
DataLink service can provide links to previews as a URL with a specific re-
lationship to the dataset and include other metadata like content-type (e.g.
image/png) and content-length to assist the client in selecting a preview;
multiple previews with different sizes (content-length) could be returned in
the list of links. Plots derived from the dataset could also be linked as pre-
views. Some previews may be of the same content-type as the complete
dataset, but reduced content in some fashion (e.g. a representative image or
spectrum derived from a large data cube).

Links to alternate representations may be to pre-generated resources or
may be computed on the fly, using either an opaque URL or a custom pa-
rameterised service (see 1.2.5 below).

Other alternate representations that are not previews could also be in-
cluded in the list of links. For example, one could provide an alternate
download format for a data file with different content-type (e.g. FITS and
HDF).

1.2.4 Standard Services

Data providers often implement services that can access a dataset or its files
using standard service interfaces or provide alternate representations of the
dataset. For example, the links for a dataset discovered via a TAP service
could be to an SSA service, allowing the caller to get an SSA query response
that describes the same dataset with metadata specific to the SSA service.

Providers should be able to link to current and future data access ser-
vices that perform filtering and transformations as these services are defined
and implemented (without requiring a new DataLink specification). For

6

IVOA standard services, the DataLink response would use the VODataSer-
vice standardID as the service type to tell the client which standard (and
version) the linked service complies to. The client can select services they
understand and use the link to invoke the service (with additional service
parameters added by the client).

1.2.5 Free or Custom Services

Data providers often implement custom services that can access a dataset or
its files or provide alternate representations of the dataset. The availability
of such services should be conveyed to clients/users in the same fashion as
for standard services. This allows services defined within the VO to be used
in conjunction with services defined outside the VO to deliver features to
users.

1.2.6 Access Data Services

In many access scenarios, server-side processing of data is highly desirable,
typically to reduce the amount of data to be transferred. Examples for
such operations are cutouts, slicing of cubes, and re-binning to a coarser
grid. Other examples for server-side operations include on-the-fly format
conversion or recalibration. For the purpose of this specification, we call
such services access data services. DataLink should let providers declare
such access data services in a way that a generic client can discover what
operations are supported, their semantics, and the domains of the operations’
parameters. This lets clients operate multiple independent access services
behind a common user interface, allowing scenarios like “give me all voxels
around positions X in wavelength range Y of all spectral cubes from services
Z_1, Z_2, and Z_9”.

Access data services may also be standard services or custom services; at
the time of writing, the definition of standard access service capabilities is
in progress in separate specifications.

1.2.7 Recursive DataLink

In some cases, a dataset may contain many files (as in 1.2.1 above) and
the provider may wish to make some files directly accessible and other (less
important) files only accessible via additional calls. Such organisation of
links could be accomplished by including a link to another DataLink service
in the initial DataLink response (e.g. recursive DataLink). This service link
would be described with both a service type (as in 1.2.4) and content type.

7

1.2.8 Datasets linked to an astronomical source

There are a lot of catalogs of astronomical sources made available using
VO services such as ConeSearch (Plante and Williams et al., 2008) or TAP
services. For some catalogs “associated data” are available. These data
include images from which sources have been extracted, or imaging the object
in case of extended objects, as well as additional observations such as Spectra
or Time Series of the source and even spectral cubes and Time Series of
images for extended or varying objects. The {links}response obtained for
the source id can allow to easilly retrieve all these associated data in one
shot.

1.2.9 Metadata and data related to provenance entities

The IVOA Provenance datamodel (Servillat and Riebe et al., 2019) repre-
sents metadata tracing the history of data. This information can be retrieved
through ProvTAP (Bonnarel, 2019) or ProvSAP (Riebe, 2018) DAL services.
The Entity instances represent the state of the data items between various
steps of the data processing flow. “Entities” can be hooked to the more
complete data they represent using the {links}endpoint.

2 The {links} endpoint

Most commonly, DataLink link lists are retrieved from {links} endpoints.
These are DALI-sync endpoints with implementor-defined names. As speci-
fied by DALI-sync, the parameters for a request may be submitted using an
HTTP GET (query string) or POST action. Any service may offer zero or
more datalink endpoints.

2.1 Parameters on {links} endpoints

On {links} endpoints, the ID and RESPONSEFORMAT parameters as de-
fined below are mandatory.

2.1.1 ID

The ID parameter is used by the client to specify one or more identifiers.
The service will return at least one link for each of the specified values. The
ID values are found in data discovery services and may be readable URIs or
opaque strings.

If an ID value specified by the client is not understandable by the
DataLink service, the service must include a single link in the output with
the ID and an error message (see below).

8

If the client submits more ID values than a service is prepared to process,
the service should process ID values up to the limit and must include an
overflow indicator in the output as described in DALI. The service must
not truncate the output within the set of rows (links) for a single ID value
if the request exceeds such an input limit.

If the client submits no ID values, the service must respond with a normal
response (e.g. an empty results table for VOTable output). The service may
include service descriptors (see 4) for related services and a service descriptor
describing itself (see 4.6).

2.1.2 RESPONSEFORMAT

The RESPONSEFORMAT parameter is described in DALI; support for RE-
SPONSEFORMAT is mandatory.

The only output format required by this specification is VOTable with
TABLEDATA serialization; services must support this format. Clients that
want to get the standard (VOTable) output format should simply ignore this
parameter.

To comply with this standard, a {links} endpoint only needs to strip off
MIME type parameters and understand the following:

• no RESPONSEFORMAT

• RESPONSEFORMAT=votable

• RESPONSEFORMAT=application/x-votable+xml

All of these result in the standard output format.
Service implementers may support additional output formats but must

follow the DALI specification if they chose any formats described there.

2.2 Registering {links} endpoints

Since normal datalink operations do not involve the Registry, this specifi-
cation poses no requirements to register {links} endpoints. Datalink clients
also generally have no reason to inspect VOSI capabilities endpoints, and
hence there are no requirements on mentioning {links} endpoints in any
VOSI capability documents.

Operators still wishing to declare {links} endpoints can do this by giving
a capability with a standardID of

ivo://ivoa.net/std/DataLink#links-1.0

This specification does not constrain the capability type used in such
declarations. The access URL of the {links} endpoint must be given in a
vs:ParamHTTP-typed interface element.

9

Hence, a single datalink capability could be declared as follows within
either a VOResource record or a VOSI capabilities element:

<capability standardID="ivo://ivoa.net/std/DataLink#links-1.0"
xmlns:vs="http://www.ivoa.net/xml/VODataService/v1.1">
<interface xsi:type="vs:ParamHTTP" role="std" version="1.0">
<accessURL use="base">
http://example.com/datalink/mylinks

</accessURL>
<queryType>GET</queryType>
<queryType>POST</queryType>
<resultType>
application/x-votable+xml;content=datalink

</resultType>
<param std="true" use="required">
<name>ID</name>
<description>publisher dataset identifier</description>
<ucd>meta.id;meta.main</ucd>
<dataType>string</dataType>

</param>
<param std="true" use="required">
<name>RESPONSEFORMAT</name>
<description>Return the links in this tabular format (defaults
to VOTable).</description>

</param>
</interface>

</capability>

3 {links} Response

All responses from the {links} endpoint follow the rules for DALI-sync re-
sources, except that the {links} response allows for error messages for indi-
vidual input identifier values.

3.1 DataLink MIME Type

In some data discovery responses (e.g. ObsCore, Louys and Tody et al.
(2017)), there are columns with a URL (access_url in ObsCore) and a
content type (access_format in ObsCore). If the implementation uses a
DataLink service to implement this data access, it should include a complete
(including the ID parameter) DataLink URL and a parameterised VOTable
MIME type:

application/x-votable+xml;content=datalink

to denote that the response from that URL is a DataLink response. This is
also the MIME type for the {links} response (see 3.3) unless the caller has

10

explicitly requested a specific value via the RESPONSEFORMAT parame-
ter (see 2.1.2). Services may include other MIME type parameters in the
response.

3.2 List of Links

The list of links that is returned by the {links} endpoint can be represented
as a table with the following columns:

name description required UCD
ID Input identifier yes meta.id;meta.main
access_url link to data or service meta.ref.url
service_def reference to a service

descriptor resource
one only meta.ref

error_message error if an access_url
cannot be created

meta.code.error

description human-readable text
describing this link

yes meta.note

semantics Term from a con-
trolled vocabulary de-
scribing the link

yes meta.code

content_type mime-type of the con-
tent the link returns

no meta.code.mime

content_length size of the download
the link returns

no phys.size;meta.file

Table 1: Required Fields for Links

All fields must be present in the output table; values must be provided
(or null) as described in Table 1. Each row in the table represents one link
and must have exactly one of:

• an access_url

• a service_def

• an error_message

If an error occurs while processing an ID value, there should be at least
one row for that ID value and an error_message. For example, if an input ID
value is not recognised or found, one row with an error_message to that effect
is sufficient. If some links can be created (e.g. download links) but others
cannot due to some temporary failure (e.g. service outage), then one could
have one or more rows with the same ID and different error_message(s).

11

Services may include additional columns; this can be used to include
values that can be referenced from service descriptor input parameters (see
4.1).

3.2.1 ID

The ID column contains the input identifier value.

3.2.2 access_url

The access_url column may contain a URL to download a single resource.
This URL can be a link to a dynamic resource (e.g. preview generation).

Beside dereferencable URL, it is allowed to use URI-fragments to link the
intial resource to a specific part of the retrievable resource, with its specific
semantics and description. Examples of this are section in an html page or
paths in an archive file or extensions in a MEF. The interpretation of the
fragment will depend from the content type of the retrievable resource. No
other additional parameters or client handling are allowed.

3.2.3 service_def

The service_def column contains a reference from the result row to a sep-
arate resource. This resource describes a service as specified in section 4.
For example, if the response document includes this resource to describe a
service:

<RESOURCE type="meta" utype="adhoc:service" ID="srv1">
...
</RESOURCE>

then the service_def column would contain srv1 to indicate that a resource
with XML ID srv1 in the same document describes the service. Note that
service descriptors do not always require an XML ID value; it is only the
reference from service_def that warrants adding an ID to the descriptor.

3.2.4 error_message

The error_message column is used when no accessURL can be generated
for an input identifier. If an error_message is included in the output, the
only other columns with values should be the ID column and the semantics
column; all others should be null.

12

3.2.5 description

The description column SHOULD contain a human-readable description of
the link; it is intended for display by interactive applications and very im-
portant to help user distinguish links with same semantics (see below).

3.2.6 semantics

The semantics column contains a single term from an external RDF vo-
cabulary that describes the meaning of this linked resource relative to the
identified dataset. The semantics column is intended to be machine-readable
and assist automating data retrieval and processing.

The core DataLink vocabulary defines a special term for the concept of
this; this term is used to describe links used for retrieval of the dataset file(s).
Since null values are not permitted, the semantics value in cases where only
an error_message is supplied should be the most appropriate for the link the
service was trying to generate.

The value is always interpreted as a URI; if it is a relative URI, it is
resolved (Berners-Lee and Fielding et al., 2005) against the base URI of the
core DataLink vocabulary:

http://www.ivoa.net/rdf/datalink/core

The value used in the semantics column is normally the URI of the vocab-
ulary, followed by a fragment (#), followed by a predicate from the specified
vocabulary. For example, if the {links} table contains a link to a preview of
a dataset, the ID column will contain the dataset identifier, the access_url
column will contain the URL to the preview, and the semantics column could
contain this predicate:

http://www.ivoa.net/rdf/datalink/core#preview

or this relative URI:

#preview

For predicates outside the core DataLink vocabulary, the full URI is required.
The core DataLink vocabulary is published at:

http://www.ivoa.net/rdf/datalink/core

and the latest version is available as a human readable document and an
RDF XML document. Services are encouraged to use the core vocabulary
as much as possible, but may use a custom vocabulary as long as they use a
custom vocabulary namespace (base URI); the base URI should be resolvable
to a human-readable document describing the terms.

13

http://www.ivoa.net/rdf/datalink/core

3.2.7 content_type

The content_type column tells the client the general file format (mime-type)
they will receive if they use the link (access_url or invoking a service). For
recursive DataLink links, the content_type value should be as specified in
section 3.1. This field may be null (blank) if the value is unknown.

3.2.8 content_length

The content_length column tells the client the size of the download if they
use the link, in bytes. For VOTable, the FIELD must be datatype="long"
with unit="byte". The value may be null (blank) if unknown and will typi-
cally be null for links to services.

3.3 Successful Requests

Successfully executed requests should result in a response with HTTP status
code 200 (OK) and a response in the format requested by the client or in
the default format for the service. The content of the response (for tabular
formats) is described above, with some additional details below.

Unless the incoming request included a RESPONSEFORMAT parame-
ter requesting a different format, the content-type header of the response
MUST be “application/x-votable+xml” with the “content” parameter set
to “datalink”, with the canonical form given in 3.1 strongly recommended.
Contrary to all other uses of the string given in 3.1, clients wishing to
evaluate the content type of the response must, however, perform a full
parse of header value. This specification cannot and does not outlaw
content types with additional parameters (e.g. “application/x-votable+xml;
content=datalink;charset=iso-8859-1”) or with extra spaces or quotes (as al-
lowed for MIME types, Freed and Borenstein (1996)).

If the incoming request includes a DALI RESPONSEFORMAT parame-
ter, content-type follows the DALI rules.

3.3.1 VOTable output

The table of links must be returned in a RESOURCE with type="results".
The tablemust be in TABLEDATA serialization unless another serialization
is specifically requested (see 2.1.2) and supported by the implementation.
The name attribute for FIELD elements in the VOTable (and the units in
one case) are specified above (see 3.2).

The DALI specification states that a standardID INFO element with
name "standardID" and the actual standardID string as a value SHOULD
be provided. It is recommended to include such an element to help users and
applications to identify VOTAbles as results of DataLink services this way :

14

<RESOURCE type="results"

...

<INFO name="standardID" value="ivo://ivoa.net/std/DataLink#links-1.?"/>

...

</RESOURCE>

3.3.2 Other Output Formats

This specification does not describe any other output formats, but allows
(via the RESPONSEFORMAT in section 2.1.2) implementations to provide
output in other formats.

3.4 Errors

The error handling specified for DALI-sync resources applies to service failure
(where no links can be generated) and to the usage error where no ID param-
eter is specified. Services should return the document format requested by
the client (see 2.1.2). For the standard output format (VOTable) the error
document must also be VOTable.

For errors that occur while generating individual links, each identifier
may result in a link with only an error_message as described above. In
either case (error document or per-link error_message), the error message
must start with one of the strings in Table 2, in order of specificity.

Error Meaning

NotFoundFault Unknown ID value
UsageFault Invalid input (e.g. invalid ID value)
TransientFault Service is not currently able to function
FatalFault Service cannot perform requested action
DefaultFault Default failure (not covered above)

Table 2: Error Messages

In all cases, the service may append additional useful information to the
error strings above. If there is additional text, it must be separated from the
error string with a colon (:) character, for example:

NotFoundFault: ivo://example.com/data?foo cannot be found

UsageFault: foo:bar is invalid, expected an ivo URI

15

4 Service Descriptors

The DataLink service interface is designed to add functionality to data dis-
covery services by providing the connection between the discovered datasets
and the download of data files and access to services that act on the data.
When the {links} capability returns links to services, the response document
also needs to describe the services so that clients can figure out how to in-
voke them. This is done by including an additional metadata resource in the
response document to describe each type of service that can be used.

The same mechanism can also be used in any VOTable document, such
as a data discovery response from a TAP query or one of the simple DAL
query protocols, to enable clients to find and use the {links} capability itself.

Here we describe how to construct a resource that describes a service and
add it to a VOTable document. The mechanism is general and can be used
wherever a VOTable document is created.

4.1 Service Resources

In a data discovery response, one RESOURCE element (usually the first) will
have an attribute type="results" and tabular data; this resource contains the
query result.

To describe an associated service, the VOTable would also contain one
or more resources with attribute type="meta" and

utype="adhoc:service" (or utype="adhoc:this" in case of a Self-Describing
service -see below ??).

A short name attribute, and a more verbose DESCRIPTION subelement,
MAY be added to the service descriptor RESOURCE to provide the user
with information about the service’s purpose or semantics. This SHOULD
be done if the semantics are not obvious, and especially in the case of multiple
sibling service descriptors, or non-standard services.

A resource of this type has no tabular data, but may include a rich
set of metadata. The utype attribute makes it easy for clients to find the
RESOURCE elements that describe services.

In case a response contains several “descriptor” RESOURCES and sev-
eral “results” RESOURCES these RESOURCES MAY be nested in order to
better display correct association.

A service resource contains PARAM elements to describe the service
and a GROUP element with additional PARAM elements to describe the
input parameters. The standard PARAM elements for a service resource are
described in Table 3.

For services that implement an IVOA standard, the standardID is spec-
ified as the value attribute of the PARAM with name="standardID". For
free or custom services, this PARAM is not included.

16

name value required

accessURL URL to invoke the capability yes
standardID URI for the capability no
resourceIdentifier IVOA registry identifier no
contentType Media type of the service response no

Table 3: Service Resource Parameters

For registered services, the resourceIdentifier PARAM allows the client
to query an IVOA registry for complete resource metadata. This could be
used to find documentation, contact info, etc. Although they need not be,
free or custom services could be registered in an IVOA registry and thus
have a resourceIdentifier to enable lookup of the record.

For standard services, the value of the accessURL PARAM must be the
accessURL for the capability specified by the standardID. The accessURL
is not generally usable as-is; the client must include extra parameters as de-
scribed below. If a standardID indicates a capability that supports multiple
HTTP verbs (GET, POST, etc.), the client may use any supported verbs.
Otherwise, there is no way in this version to specify that POST (for example)
is supported so clients should assume that only HTTP GET may be used.
Since the accessURL may contain parameters; clients must parse the URL
to decide how to append additional parameters when invoking the service.

A GROUP with name="inputParams" contains PARAM elements de-
scribing how to invoke the service. For services where the parameter values
come from columns in the results resource, we use the ref attribute of the
PARAM to indicate the FIELD (column) with the values. Other PARAM
elements (without a ref attribute) are also allowed; these would describe
additional service parameters, the type of value that must be specified, the
meaning (UCD) of the value they apply to, etc.

4.2 Example: Service Descriptor for the {links} Capability

The {links} capability can be used with a result table when one of the
columns contains identifier values that can be used with the ID parame-
ter (see 2.1.1). In order for the service resource to refer to this FIELD, the
FIELD element describing this column of the table must include an XML
ID attribute that uniquely identifies the FIELD (column). For example, a
response following the ObsCore-1.0 data model would use the following:

<FIELD name="obs_publisher_did" ID="primaryID"
utype="obscore:Curation.PublisherDID"
ucd="meta.ref.url;meta.curation"
xtype="adql:VARCHAR" datatype="char" arraysize="256*" />

17

where the ID value primaryID is arbitrary. This FIELD would typically
be found within the RESOURCE of type="results". The same VOTable
document would have a second RESOURCE with type="meta" to describe
the associated DataLink {links} capability.

The {links} capability described in section 2 is described by the following
resource:

<RESOURCE type="meta" utype="adhoc:service" name="RawAndCatalogDataLinks"
">

<DESCRIPTION>
This datalink service gives access to the raw data for the
discovered datasets as well as to catalogues of extracted sources
</DESCRIPTION>
<PARAM name="standardID" datatype="char" arraysize="*"

value="ivo://ivoa.net/std/DataLink#links-1.0" />
<PARAM name="accessURL" datatype="char" arraysize="*"

value="http://example.com/mylinks" />
<PARAM name="contentType" datatype="char" arraysize="*"

value="application/x-votable+xml;content=datalink" >
<GROUP name="inputParams">
<PARAM name="ID" datatype="char" arraysize="*"

value="" ref="primaryID"/>
</GROUP>

</RESOURCE>

Clients that want to find services to operate on the results would look for
resources with type="meta" and utype="adhoc:service". They would find a
DataLink service specifically via the PARAM with name="standardID". To
call the service, the GROUP contains a PARAM with the service parameter
name and a ref attribute whose value is the XML ID attribute on a FIELD.
In the example above, the ref="primaryID" refers to the FIELD with ID=
"primaryID" in the same document (usually the result table). The URL to
call the service would be:

http://example.com/datalink/mylinks?ID=<obs_publisher_did value>

Although this version of DataLink only has one parameter (ID), using a
GROUP and providing the service parameter name allows this recipe to be
used with any service and (with the GROUP) with multi-parameter services.

In the above example, the {links} capability is not registered in an IVOA
registry so there is no resourceIdentifier PARAM included in the descriptor.

4.3 Example: Service Descriptor for an SIA-1.0 Service

Suppose you have an SIA-1.0 service and you want users to be able to call it
to get SIA-1.0 specific metadata. This VOTable RESOURCE describes the
basic query interface of SIA-1.0:

18

<RESOURCE type="meta" utype="adhoc:service"
name="RadioCubeDiscoveryService">

<DESCRIPTION>
This parameter based HTTP service allows discovery of Radio Cubes
obtained by LOFAR observations processing
</DESCRIPTION>
<PARAM name="resourceIdentifier" datatype="char" arraysize="*"

value="ivo://example.com/mySIA" />
<PARAM name="standardID" datatype="char" arraysize="*"

value="ivo://ivoa.net/std/SIA#1.0" />
<PARAM name="accessURL" datatype="char" arraysize="*"

value="http://example.com/sia/query" />
<PARAM name="contentType" datatype="char" arraysize="*"

value="application/x-votable+xml" />
<GROUP name="inputParams">
<PARAM name="POS" datatype="char" arraysize="*"

value=""/>
<PARAM name="SIZE" datatype="char" arraysize="*"

value="0.5"/>
<PARAM name="VERB" datatype="int" value="0"/>
<PARAM name="FORMAT" datatype="char" arraysize="*"

value="ALL">
<VALUES>
<OPTION value="ALL" />
<OPTION value="image/fits" />
<OPTION value="METADATA" />

</VALUES>
</PARAM>

</GROUP>
</RESOURCE>

If this SIA service supported querying specific data collections via a cus-
tom parameter named COLLECTION, the following PARAM describes the
custom parameter, including the possible values:

<PARAM name="COLLECTION" datatype="char" arraysize="*"
value="ALL">

<VALUES>
<OPTION value="ALL" />
<OPTION value="FOO" />
<OPTION value="BAR" />

</VALUES>
</PARAM>

This PARAM would be added to the GROUP name="inputParams" of the
service description.

19

4.4 Example: Service Descriptor for VOSpace-2.0

VOSpace-2.0 is a RESTful web service with several capabilities. Each of
these capabilities can be described with a service descriptor; this would save
the client having to perform a registry lookup to find and use the service.
The descriptors cannot describe the path usage and XML document based
input to the service, but they can describe the optional parameters:

<RESOURCE type="meta" utype="adhoc:service" ID="vnodes" name="CADC-Store">
<DESCRIPTION>
Datasets discovered here are automatically available in
CADC’s VOSpace under the URI produced here
</DESCRIPTION>
<PARAM name="resourceIdentifier"

value="ivo://example.com/vospace" />
<PARAM name="standardID"

value="ivo://ivoa.net/std/VOSpace/v2.0#nodes" />
<PARAM name="accessURL"

value="http://example.com/vospace/nodes" />
<GROUP name="inputParams">
<PARAM name="detail" datatype="char" arraysize="*"

value="min"/>
<PARAM name="limit" datatype="integer"

value="1000"/>
<PARAM name="uri" datatype="char" arraysize="*"

value=""/>
</GROUP>

</RESOURCE>
<RESOURCE type="meta" utype="adhoc:service" ID="vtrans">
<PARAM name="resourceIdentifier"

value="ivo://example.com/vospace" />
<PARAM name="standardID"

value="ivo://ivoa.net/std/VOSpace/v2.0#transfers" />
<PARAM name="accessURL"

value="http://example.com/vospace/transfers" />
</RESOURCE>

Since the capability being described is RESTful, the caller must recognise
the standardID values and use a VOSpace-aware client to call the service.

4.5 Example: Custom Access Data Service

Parameters for custom access data services can be described such that clients
can figure out how to call the service and even create a basic form-based
user interface. The following Rotatable resource describes a custom spectral
cutout service:

<RESOURCE type="meta" utype="adhoc:service" ID="apoadimo"
name="CustomSpectrumRecalibration">

20

<DESCRIPTION>
This service lets you retrieve the spectra discovered uncalibrated,
with flux calibration, and continuum normalised (where some
spectra are now availble in continuum normalisation because the
pipeline failed to identify a continuum)

</DESCRIPTION>
<PARAM arraysize="*" datatype="char" name="accessURL"

ucd="meta.ref.url"
value="http://dc.zah.uni-heidelberg.de/flashheros/q/sdl/dlget"/>

<PARAM name="contentType" datatype="char" arraysize="*"
value="application/fits" />

<GROUP name="inputParams">
<PARAM arraysize="*" datatype="char" name="ID" ref="xjc7ra"

ucd="meta.id;meta.main" value="">
<DESCRIPTION>The pubisher DID of the dataset of interest
</DESCRIPTION>

</PARAM>

<PARAM arraysize="*" datatype="char" name="FLUXCALIB"
ucd="phot.calib" utype="ssa:Char.FluxAxis.Calibration"
value="">

<DESCRIPTION>Recalibrate the spectrum. Right now, the only
recalibration supported is max(flux)=1 (’RELATIVE’).
</DESCRIPTION>
<VALUES>
<OPTION name="RELATIVE" value="RELATIVE"/>
<OPTION name="UNCALIBRATED" value="UNCALIBRATED"/>

</VALUES>
</PARAM>

<PARAM ID="axi5fg" datatype="float" name="LAMBDA_MIN"
ucd="par.min;em.wl" unit="m" value="">

<DESCRIPTION>Spectral cutout interval, lower limit
</DESCRIPTION>
<VALUES>
<MIN value="3.4211e-07"/>
<MAX value="5.5927e-07"/>

</VALUES>
</PARAM>

<PARAM ID="k4dfpe" datatype="float" name="LAMBDA_MAX"
ucd="par.max;em.wl" unit="m" value="">

<DESCRIPTION>Spectral cutout interval, upper limit
</DESCRIPTION>
<VALUES>
<MIN value="3.4211e-07"/>
<MAX value="5.5927e-07"/>

</VALUES>
</PARAM>

21

<PARAM arraysize="*" datatype="char" name="FORMAT"
ucd="meta.code.mime" utype="ssa:Access.Format"
value="">

<DESCRIPTION>MIME type of the output format</DESCRIPTION>
<VALUES>
<OPTION name="FITS binary table"

value="application/fits"/>
<OPTION name="Original format" value="image/fits"/>
<OPTION name="Comma separated values" value="text/csv"/>
<OPTION name="VOTable, tabledata encoding"

value="application/x-votable+xml;serialization=tabledata"/>
<OPTION name="VOTable, binary encoding"

value="application/x-votable+xml"/>
<OPTION name="Tab separated values"

value="text/tab-separated-values"/>
</VALUES>

</PARAM>
</GROUP>

</RESOURCE>

The custom service described above supports 5 input parameters: ID,
FLUXCALIB, LAMBDA_MIN, LAMBDA_MAX, and FORMAT.

The PARAM describing the ID parameter has a ref attribute; the value
is the XML ID of a FIELD element in a results table in the same document
(the value xjc7ra is arbitrary; it is an opaque string that matches an ID value
elsewhere in the document). The specified column contains values for the ID
parameter. The client (user) will pick rows (presumably spectra) from the
results table and then can invoke the service via the ID parameter and value
from that row.

The FLUXCALIB parameter allows the client to specify one of two val-
ues: UNCALIBRATED or RELATIVE (listed as OPTIONS along with a
description of the meaning). The UCD (Derriere and Preite Martinez et al.,
2005) value of phot.calib conveys the basic meaning of this parameter (it is
related to photometric or flux calibration).

The LAMBDA_MIN and LAMBDA_MAX parameters allow the user
to specify a spectral interval to extract from the spectrum. The PARAM(s)
specify that the values are wavelengths: ucd="par.min;em.wl" and ucd=
"par.max;em.wl" say they are minimum (par.min) and maximum (par.max)
wavelength (em.wl) values. The VALUES child elements convey a range of
valid wavelength values from which a subset could be extracted.

The FORMAT parameter allows the client to select from a list of out-
put formats for the extracted spectrum. Here, the name of the PARAM is
suitable to display (e.g. in a user interface) while the value would be used to
call the service.

22

4.6 Example: Self-Describing Service

A service may include a service descriptor that describes itself with its normal
output. In that case the utype "adhoc:this" indicates the self-describing
nature of the service descriptor. This convention would make finding the
self-description unambiguous in cases where the output also contained other
service descriptors. This usage is comparable to prototype work on S3 (see
Rodrigo and Cerviño et al. (2008)) and when combined with calling a service
with no input parameters (e.g. as allowed in 2.1.1) will make it easy for clients
to obtain a description of both standard and custom features.

The output of a {links} capability with no input ID would include the
self-describing service descriptor and an empty results table:

<RESOURCE type=”meta” utype=”adhoc:this” ID=”PwL” name=”Power Law fitting”>

<DESCRIPTION>Apply a power law model on a XMM-Newton EPIC spectrum </DESCRIPTION>
<PARAM name="accessURL" datatype="char" arraysize="*" value="http://obs-he-lm:8888/3XMM/fitmodelonspectrum& model=powlaw" />

<GROUP name=”inputParams”>
<PARAM name=”oid” datatype=”char” arraysize=”*”
value=”1160803203386703876” unit =”none” >
<DESCRIPTION>Spectrum internal ID in the database </DESCRIPTION>

</PARAM>
<PARAM name=”binSize” ucd=”spect.binSize” datatype=”int” unit=”none” value=”10” >

<DESCRIPTION>Number of counts per bin</DESCRIPTION>
<VALUES>

<OPTION value=”1” />
<OPTION value=”5” />
<OPTION value=”10” />
<OPTION value=”20” />
<OPTION value=”50” />

</VALUES>
</PARAM>
<PARAM name=”nh” ucd=”phys.abund.X” datatype=”float” unit=”1e22cm-2” value=”0.01” >

<DESCRIPTION>Galactical NH</DESCRIPTION>
<VALUES>
<MIN value=”0” />

<MAX value=”1” />
</VALUES>

</PARAM>
<PARAM name=”alpha” ucd=”meta.code;spect.index” datatype=”float” unit=”none” value=”1.7” >

<DESCRIPTION>Photon index of power law</DESCRIPTION>
<VALUES>

<MIN value=”1” />
<MAX value=”9” />

</VALUES>
</PARAM>

</GROUP>

23

</RESOURCE>

In the above example we give the self-describing service descriptor a name
attribute with the value “this” to indicate the self-describing nature. This
convention would make finding the self-description unambiguous in cases
where (i) the output also contained other service descriptors and (ii) the
caller could not infer which descriptor was the self-describing one from the
standardID (because it is optional and not present for custom services and
because they might just have a URL). Even trying to match the URL that
was used with the accessURL in the descriptors is likely to be unreliable
(e.g. if providers use HTTP redirects to make old URLs work when service
deployment changes).

5 New “datalink” content-type for the LINK
element in VOTable

When providing a column with URLs, for example outside DAL service re-
sponses or when service descriptors are not defined, if all the URLs are to a
DataLink "links" endpoint, then the preferred approach is to add a LINKS
element with the content type defined in section for 3.1. If some values are
to a "links" endpoint and others to different content types (e.g. single file
download), then the VOTable would need a second column to convey the
content type (see Appendix for details).

<FIELD name="bla" datatype="char" arraysize="*" utype="Access.reference" ucd="meta.url" >
<LINK content-type="application/x-votable+xml;content=datalink" title="DataLink" />
<DESCRIPTION> bla bla bla </DESCRIPTION>

</FIELD>

6 Changes

This is the initial version of this document.

6.1 PR-DataLink-1.0-20150413

• Restricted the {links} resource path so that it must be a sibling of the
VOSI resources in order to allow discovery of VOSI resources from a
{links} URL.

• Changed ID parameter to allow caller to invoke service with no ID val-
ues and get an empty result table; this is actually easier to implement
than a special error case. Added reference to previous work on S3 and

24

an example section where an empty links response has a self-describing
service descriptor and an empty result.

• Fixed URL to DALI document in the references section.

• Fixed namespace prefix in example capabilities document to use rec-
ommended value.

6.2 PR-DataLink-1.0-20140930

• Re-organised introduction to introduce the links capability and distin-
guish it from the service descriptor more clearly. Explicitly noted that
service descriptors do not describe the output of a service.

• Fixed various small typos mentioned on the RFC page.

• Clarified the use of the DataLink vocabulary in the semantics column
of the links table.

• Changed the links table output constraints to allow only one of: ac-
cess_url, service_def, or error_message. This removes the possible in-
consistency of access_url in the table being different from accessURL
in a service descriptor referenced by use of service_def and reduces
service use by clients to a single supported approach.

• Added specific datatype="long" to the content_length field in the links
table.

• Moved VOSpace-2.0 service descriptor to be a separate example and
made it explicit that all the necessary details to invoke such a RESTful
service is not supported in this version of the specification; clients must
recognise the standardID to use RESTful web services.

6.3 PR-DataLink-20140530

• Changed document status to proposed recommendation.

• Removed REQUEST parameter

• Added custom service example.

• Removed standard authentication and authorization error messages
since these are difficult to implement consistently in different web ser-
vice platforms. Changed the error message strings to use the word
Fault (following GWS-WG usage, e.g. VOSpace-2.0) since Error has
specific meaning in some platforms.

25

6.4 WD-DataLink-20140505

• Changed the standardID for the {links} resource to include version as
will be described in the StandardsRegExt record.

• Changed service descriptor resource to use type="meta" utype=
"adhoc:service" so VOTable documents pass schema validation and
this resource type can still be easily found.

• Improved the VOSI-capabilities example so it describes all parameters
of the example DataLink service.

• Removed unnecessary HTTP header advice and clarified the strict
DataLink mimetype usage.

• Removed mention of DALI-examples since it is an optional feature for
all services.

• Changed name of the input parameters group element in a service
descriptor to inputParams.

• Fixed reference to DALI document.

• Added SIA-1.0 resource desciptor example.

• Tried to clarify the relationship of the two aspects of DataLink in the
introduction.

• Specifically allow access_url in the list of links to be different from
accessURL in the service descriptor, with VOSpace example.

6.5 WD-DataLink-20140212

• Clarified that one can implement a standalone DataLink service or
include {links} resources in other services.

• Re-ordered sections 2–5 so all the sections describing the {links} capa-
bility are together.

• Changed from GROUP with PARAM and FIELDref siblings to
PARAM with ref attribute when defining a parameter-column-with-
values in section 4.1.

• Clarified the introduction so it is clear we intend to support linking of
any services via RESOURCE(s) in any responses.

• Changed the output of {links} resource to clearly differentiate between
links with usable accessURL and links where the accessURL is a service
that requires more parameters. Changed the naming style for fields in

26

the list of links to use lower case with underscore separator so that
direct potential implementations don’t run into case issues.

References

Berners-Lee, T., Fielding, R. and Masinter, L. (2005), ‘Uniform Resource
Identifier (URI): Generic syntax’, RFC 3986.
http://www.ietf.org/rfc/rfc3986.txt

Bonnarel, F. (2019), ‘Ivoa provenance table access protocol (provtap)’,
IVOA internal working draft.
https://wiki.ivoa.net/internal/IVOA/ObservationProvenanceDataModel/
ProvTAP.pdf

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Derriere, S., Preite Martinez, A., Williams, R., Gray, N., Mann, R., McDow-
ell, J., Mc Glynn, T., Ochsenbein, F., Osuna, P. and Rixon, G. (2005),
‘An IVOA Standard for Unified Content Descriptors Version 1.10’, IVOA
Recommendation 19 August 2005, arXiv:1110.0525.
http://dx.doi.org/10.5479/ADS/bib/2005ivoa.spec.0819D

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2013), ‘Data Access
Layer Interface Version 1.0’, IVOA Recommendation 29 November 2013,
arXiv:1402.4750.
http://dx.doi.org/10.5479/ADS/bib/2013ivoa.spec.1129D

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table Access Protocol Version
1.0’, IVOA Recommendation 27 March 2010, arXiv:1110.0497.
http://dx.doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D

Freed, N. and Borenstein, N. (1996), ‘MIME part one: Format of internet
message bodies’, RFC 2045.
http://www.ietf.org/rfc/rfc2045.txt

Graham, M., Rixon, G. and Grid andWeb Services Working Group (2011),
‘IVOA Support Interfaces Version 1.0’, IVOA Recommendation 31 May
2011, arXiv:1110.5825.
http://dx.doi.org/10.5479/ADS/bib/2011ivoa.spec.0531G

Harrison, P., Burke, D., Plante, R., Rixon, G., Morris, D. and IVOA Reg-
istry Working Group (2012), ‘StandardsRegExt: a VOResource Schema
Extension for Describing IVOA Standards Version 1.0’, IVOA Recommen-
dation 08 May 2012, arXiv:1402.4745.
http://dx.doi.org/10.5479/ADS/bib/2012ivoa.spec.0508H

27

http://www.ietf.org/rfc/rfc3986.txt
https://wiki.ivoa.net/internal/IVOA/ObservationProvenanceDataModel/ProvTAP.pdf
https://wiki.ivoa.net/internal/IVOA/ObservationProvenanceDataModel/ProvTAP.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://dx.doi.org/10.5479/ADS/bib/2005ivoa.spec.0819D
http://dx.doi.org/10.5479/ADS/bib/2013ivoa.spec.1129D
http://dx.doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D
http://www.ietf.org/rfc/rfc2045.txt
http://dx.doi.org/10.5479/ADS/bib/2011ivoa.spec.0531G
http://dx.doi.org/10.5479/ADS/bib/2012ivoa.spec.0508H

Louys, M., Tody, D., Dowler, P., Durand, D., Michel, L., Bonnarel, F.,
Micol, A. and IVOA DataModel Working Group (2017), ‘Observation Data
Model Core Components, its Implementation in the Table Access Protocol
Version 1.1’, IVOA Recommendation 09 May 2017.
http://dx.doi.org/10.5479/ADS/bib/2017ivoa.spec.0509L

Ochsenbein, F., Taylor, M., Williams, R., Davenhall, C., Demleitner, M.,
Durand, D., Fernique, P., Giaretta, D., Hanisch, R., McGlynn, T., Sza-
lay, A. and Wicenec, A. (2013), ‘VOTable Format Definition Version 1.3’,
IVOA Recommendation 20 September 2013.
http://dx.doi.org/10.5479/ADS/bib/2013ivoa.spec.0920O

Plante, R., Stébé, A., Benson, K., Dowler, P., Graham, M., Greene, G., Har-
rison, P., Lemson, G., Linde, T. and Rixon, G. (2010), ‘VODataService:
a VOResource Schema Extension for Describing Collections, Services Ver-
sion 1.1’, IVOA Recommendation 02 December 2010, arXiv:1110.0516.
http://dx.doi.org/10.5479/ADS/bib/2010ivoa.spec.1202P

Plante, R., Williams, R., Hanisch, R. and Szalay, A. (2008), ‘Simple
Cone Search Version 1.03’, IVOA Recommendation 22 February 2008,
arXiv:1110.0498.
https://ui.adsabs.harvard.edu/abs/2008ivoa.specQ0222P

Riebe, K. (2018), ‘Ivoa provenance simple access protocol (provsap)’, IVOA
internal working draft.
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/
ProvSAP/

Rodrigo, C., Cerviño, M., Solano, E. and Manzato, P. (2008), ‘S3: Proposal
for a simple protocol to handle theoretical data (microsimulations)’, IVOA
Note.
http://www.ivoa.net/documents/latest/S3TheoreticalData.html

Servillat, M., Riebe, K., Boisson, C., Bonnarel, F., Galkin, A., Louys, M.,
Nullmeier, M., Sanguillon, M. and Streicher, O. (2019), ‘Ivoa provenance
data model’, IVOA Proposed Recommendation.
http://www.ivoa.net/documents/ProvenanceDM/index.html

28

http://dx.doi.org/10.5479/ADS/bib/2017ivoa.spec.0509L
http://dx.doi.org/10.5479/ADS/bib/2013ivoa.spec.0920O
http://dx.doi.org/10.5479/ADS/bib/2010ivoa.spec.1202P
https://ui.adsabs.harvard.edu/abs/2008ivoa.specQ0222P
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/ProvSAP/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/ProvSAP/
http://www.ivoa.net/documents/latest/S3TheoreticalData.html
http://www.ivoa.net/documents/ProvenanceDM/index.html

	Introduction
	The Role in the IVOA Architecture
	Motivating Use Cases
	Multiple Files per Dataset
	Progenitor Dataset
	Alternate Representations
	Standard Services
	Free or Custom Services
	Access Data Services
	Recursive DataLink
	Datasets linked to an astronomical source
	Metadata and data related to provenance entities

	The {links} endpoint
	Parameters on {links} endpoints
	ID
	RESPONSEFORMAT

	Registering {links} endpoints

	{links} Response
	DataLink MIME Type
	List of Links
	ID
	access_url
	service_def
	error_message
	description
	semantics
	content_type
	content_length

	Successful Requests
	VOTable output
	Other Output Formats

	Errors

	Service Descriptors
	Service Resources
	Example: Service Descriptor for the {links} Capability
	Example: Service Descriptor for an SIA-1.0 Service
	Example: Service Descriptor for VOSpace-2.0
	Example: Custom Access Data Service
	Example: Self-Describing Service

	New “datalink” content-type for the LINK element in VOTable
	Changes
	PR-DataLink-1.0-20150413
	PR-DataLink-1.0-20140930
	PR-DataLink-20140530
	WD-DataLink-20140505
	WD-DataLink-20140212

