Data Model Workshop

Pre-interop Session

Introduction

- Workshop Goals
 - Exercise models-in-progress in real world usage, on real world data
 - Exercise ability of annotation syntax proposals to map existing datasets to model instances
 - Demonstrate compatibility with common existing software (e.g. Astropy)
 - Demonstrate the potential for supporting "Interesting Science"

IVOA Hierarchy

Model Implementation Challenge

• The data models support several aspects of IVOA interest.

 They inform all users of the entities involved, their relations and associations to other entities.

IVOA Hierarchy

Model Implementation Challenge

 Want to demonstrate that the models can actually support the Interesting Science cases..

• This is a significant commitment in resources to 'test' a model.

Interesting Science **Applications Data Access Annotation** Data Mode

Models Used

Model Landscape

• Set of small, building block models used to construct complex data structures.

DM Working Group Twiki

Models Used

Model Landscape

- Set of small, building block models used to construct complex data structures.
- Models used in workshop cases

Annotation

VO-DML Mapping Syntax

"Mapping Data Models to VOTable" (G. Lemson, O. Laurino et. al.)
Working Draft: 2017-03-23

https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml-mapping/doc/VO-DML mapping WD.pdf https://github.com/ivoa/mapping-vodml

7.3 VODML Element Hierarchy

< OPTIONMAPPING>...

<OPTIONMAPPING>

⊕ <MAPPEDOPTION>

→ <ENUMLITERAL>

</OPTIONMAPPING>

→ <SEMANTICCONCEPT>

</COLUMN>

```
<CONTAINER>
                                                            (<IDREF>|<REMOTEREFERENCE>|<FOREIGNKEY>)
 <VODML>
                                 <MODEL>
                                                             </CONTAINER>
 \oplus <MODEL>···
                                \oplus < NAME>
                                \oplus <URL>
 \oplus < GLOBALS> \cdots
                                \oplus < IDENTIFIER>
 \oplus < TEMPLATES>...
                                                           <REFERENCE>
                                </MODEL>
 </VODML>
                                                           (<IDREF>|<REMOTEREFERENCE>|<FOREIGNKEY>)···
                                                           </REFERENCE>
                                                               <ATTRIBUTE>
  <GLOBALS>
                                                               \mapsto (<COLUMN>|<CONSTANT>|<LITERAL>)...
                              <INSTANCE>
  \oplus < INSTANCE> \cdots
                             \oplus <PRIMARYKEY>
                                                               \mapsto <INSTANCE>···
  </GLOBALS>
                                                               </ATTRIBUTE>
                             \oplus < CONTAINER>
                             \oplus < ATTRIBUTE>...
                             \oplus < COMPOSITION> · · ·
  <TEMPLATES>
                                                                        <COMPOSITION>
                             \oplus < REFERENCE> \cdots
  \oplus < INSTANCE>...
                                                                       \oplus < INSTANCE>...
                              </INSTANCE>
  </TEMPLATES>
                                                                       \oplus < EXTINSTANCES> \cdots
                                                                        </COMPOSITION>
   <FOREIGNKEY>
                                 <PRIMARYKEY>
                                                                  <PKFIELD>
  \oplus < PKFIELD> \cdots
                                                                  (<COLUMN>|<CONSTANT>|<LITERAL>)
                                \oplus <PKFIELD>···
  \oplus < TARGETID>
                                 </PRIMARYKEY>
                                                                  </PKFIELD>
   </FOREIGNKEY>
<COLUMN>
                              <CONSTANT>
                                                                        <LITERAL>
```

< OPTIONMAPPING>···

</CONSTANT>

⟨OPTIONMAPPING⟩···

</LITERAL>

Annotation

VO-DML Mapping Syntax

"Mapping Data Models to VOTable" (G. Lemson, O. Laurino et. al.)
Working Draft: 2017-03-23

https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml-mapping/doc/VO-DML mapping WD.pdf https://github.com/ivoa/mapping-vodml

7.3 **VODML Element Hierarchy**

</COLUMN>

<OPTIONMAPPING>

⊕ <MAPPEDOPTION>

→ <ENUMLITERAL>

</OPTIONMAPPING>

→ <SEMANTICCONCEPT>

</LITERAL>

</CONSTANT>

Software

Packages used in workshop implementations

- Jovial (Java)
 - Developed by Omar Laurino; updated by me to the current data model content.
 - Generates annotation from DSL representation of instances.
- Rama (Python)
 - Developed by Omar Laurino; updated by me to the current data model content and bug fixes/enhancements.
 - Parses annotation to generate instances of VO Data Model Classes.
 - Attaches adapters which translate certain VO Data Model Classes to corresponding Astropy types (with complete coordinate system specs).
 - eg: meas:Point.coord -> astropy:SkyCoord
 - eg: meas:Time.coord -> astropy:Time
- Astropy (Python)
 - Unit conversions, Coordinate system conversions, epoch migration
 - Units/Quantity, SkyCoord, Time packages
- MatPlotLib (Python)
 - Generate plots

Case 1

Column Grouping

- Description: Exercise 'Associated Parameters' feature of Mango model. Property A is 'in some way' related to other Properties.
- Data: Vizier dataset
- Challenges:
 - Annotate Source with radial velocity property
 - Associate radial velocity property with columns/'properties'
 - Quality 'grade'
 - #plates used to determine RV value
 - Observatory code
- Models:
 - Mango, Measurements, Coordinates
- Results:
 - <u>GitHub Implementation Page</u> shows the annotated and associated properties, but the properties are empty as I don't believe these items fit under the Measurement umbrella.
 - This case will inform Mango and Measurement model development going forward.

Case 2

Combined Data

- Description: Multiple Table annotation challenge; annotating to multiple models, exercise associated data feature of Mango model
- Data:
 - 4XMM Table with 'Source' properties + Table with 1 or more links to Spectra for particular sources
 - CSC Master Source Table (one record per source) + Detections Table (one record per observation)
- Challenges (CSC example):
 - Annotate to Mango and Cube (TimeSeries as Cube) models
 - Annotate Master table to Mango model (Source)
 - Associate properties from same table
 - Associate Detection Source instances from Detections table for each source
 - Associate TimeSeries derived from Detection table to each source
 - Annotate Detections table to Mango model
 - Annotate SparseCube (TS) for each Master Source, whose data is populated from the Detections table.

Models:

Mango, Cube, Dataset, Measurements, Coordinates, PhotDM

Case 2 Combined Data

Code: GitHub Implementation Page

Case 3a Standard Properties

- **Description:** Easily 'find' scientifically relevant properties.
- Data: 4XMM, CSC2, GAIA
- Challenges:
 - Annotate properties in each file
 - Obs. Time, Obs. Duration, Position, Photometry, Hardness Ratios, Flags (detection, variability, quality)
 - Informs the measurement model extension process/requirements
 - Use the same script to locate/extract property data from each file
- Models:
 - Mango, Measurements, Coordinates, PhotDm

Case 3a Standard Properties

Code GitHub Implementation Page

```
# Load annotated file
doc = Reader( Votable(infile) )
# Extract list of Source records
# - Source model provides structure, organizing the Properties
catalog = doc.find_instances(Source)[0]
sys.stdout.write("\n")
sys.stdout.write("o Goal: High Level content summary\n")
                    o Number of records: %d\n"%( len(catalog.identifier) ) )
sys.stdout.write("
                     o Number of unique Sources: %d\n"%( len(set(catalog.identifier)) ) )
sys.stdout.write("
# Summarize content of example Source record.
srcno = 2
source = catalog.unroll()[srcno]
sys.stdout.write("\n")
sys.stdout.write("o Goal: Detail Level content summary\n")
                     o Source number: {}\n".format( srcno+1 ) )
sys.stdout.write("
                    o Identifier: {}\n".format( source.identifier ))
sys.stdout.write("
for prop in ( source.parameter_dock ):
                          o Property: semantic={}, ucd={}\n".format( prop.semantic.label, prop.ucd ))
    sys.stdout.write( "
                              o {}\n".format( measure_toString( prop.measure )))
    sys.stdout.write( "
```

- * Script will work on ANY file annotated to the model(s)
- * Generic scan of properties, or can target specific properties directly.
- Easily identify common properties
- * Easy access to associated metadata (frames, bands, etc)
- * Use Astropy packages (or other) to manipulate data to common basis or work an interesting science thread.

Chandra Catalog Results

- Goal: High Level content summary
 - Number of records: 1000
 - Number of unique Sources: 326
- Goal: Detail Level content summary
 - Source number: 3
 - Identifier: 2CXO J104732.7+123024
 - Property: semantic=position, ucd=pos
 - Position: (233.542479 [deg], 57.535140 [deg]) [GALACTIC]
 - Property: semantic=flux, ucd=phot.flux
 - Photometry: (9.743e-15 [erg/s/cm^2]) [band=CHANDRA/ACIS.broad]
 - Property: semantic=hardness_ratio, ucd=phot.color
 - HardnessRatio: 0.239 range(low: 0.028, high: 0.439) [band_low: CHANDRA/ACIS.hard, band_high: CHANDRA/ACIS.soft]
 - Property: semantic=hardness_ratio, ucd=phot.color
 - HardnessRatio: 0.311 range(low: 0.132, high: 0.489) [band_low: CHANDRA/ACIS.medium, band_high: CHANDRA/ACIS.soft]
 - Property: semantic=hardness_ratio, ucd=phot.color
 - HardnessRatio: -0.080 range(low:-0.242, high: 0.077) [band_low: CHANDRA/ACIS.medium, band_high: CHANDRA/ACIS.soft]
 - Property: semantic=obs.start, ucd=time
 - Time: 2006-04-09T10:51:35.000 [TT]
 - Property: semantic=quality, ucd=src.extent
 - Flag: 0 [Not Extended]
 - Property: semantic=quality, ucd=src.var
 - Flag: 1 [Source hardness ratios are statistically inconsistent between two or more observations]

Case 3b Proper Motion

- **Description:** Proper Motion 'Slider'
- Data: Vizier dataset with position and proper motion data
- Challenges:
 - Identify and extract position and proper motion data
 - Associate them and illustrate relative motions of sources

Models:

- Measurements, Coordinates
 - Note: Intentionally annotated ONLY to these models. The implementation script would work, unchanged, if these were within the context of a Data Product (e.g. Source or Cube)

Case 3b

Proper Motions

Code: GitHub Implementation Page

```
doc = Reader( Votable(infile) )
pos = doc.find_instances(Position)[0]
pm = doc.find_instances(ProperMotion)[0]
# Setup plot
fig = plt.figure(figsize=[8.0,5.0])
ax = fig.add_subplot(111)
ax.grid(True)
ax.set_title("Proper Motion Demo: [Positions and Proper Motions - North (Roeser+, 1988)]")
ax.set_xlabel("RA ({})".format(pos.coord.ra.unit))
ax.set_ylabel("DEC ({})".format(pos.coord.dec.unit))
ax.set_xlim( np.min(pos.coord.ra.value)-0.2, np.max(pos.coord.ra.value)+0.2 )
ax.set_ylim( np.min(pos.coord.dec.value)-0.2, np.max(pos.coord.dec.value)+0.2 )
# Gather data and plot
xvals = pos.coord.ra.value
yvals = pos.coord.dec.value
# Determine offsets due to proper motion
deltaT = (50000.0 * u.Unit('yr'))
       = (pm.lon.cval * deltaT).to(u.deg).value
       = (pm.lat.cval * deltaT).to(u.deg).value
# Plot Postions with Arrow indicating proper motion direction and speed
ax.plot( xvals, yvals, markersize=4, marker="o", linestyle='', color="blue" )
ax.text( 3.25, 81.1, "DeltaT = {}".format( deltaT ))
for n in range(len(xvals)):
    ax.arrow( xvals[n], yvals[n], dx[n], dy[n], width=0.02, color="red" )
plt.show()
```

Proper Motion Demo: [Positions and Proper Motions - North (Roeser+, 1988)]

- * Easy/Automatic conversion to Astropy SkyCoord enables
 - * Conversion of coordinate frame
 - * Quantity math handles unit conversion and scaling by time
 - * Use of its proper motion migration code.

Case 3b Proper Motion Slider

Animation: Proper Motion Animation

Proper Motion Demo: [Positions and Proper Motions - North (Roeser+, 1988)]

- * Combines
 - * Astropy SkyCoord apply_space_motion method
 - * MatPlotLib FuncAnimation
- * To propagate sources over time

Note: cosDec application info is important here.

Case 4

Time Series

- **Description:** Identify Time Series instances
- Data:
 - Gavo Simple time series table
 - ZTF Time Series for each source in field of view
 - GAIA multi-band Time Series using multiple filters, and multiple sources; compact native serialization

Challenges:

- Annotate datasets to Cube model (TimeSeries as Cube)
 - Identify 'dependent' and 'independent' axes
 - Associate data and errors
 - Plot TimeSeries data
- Use the same script to process and plot each file. Even though the native representation is VERY different, the client sees the same view.

Models:

• Cube, Dataset, Measurements, Coordinates, Mango (meas extensions), PhotDM

Case 4 Time Series

Code: GitHub Implementation Page

Conclusion

- Models
 - Models provided high level of support for the workshop cases from very simple to very complex
 - Core models: Identified a couple adjustments to make, but the framework is sound.
 - Good experience with extending core Measurements with different sorts of data.. (Photometry, Hardness Ratios)
 - and refining the line between a Measurement and other forms of data.. (Flags, Classifiers)
- Annotations
 - Mapping syntax supported ALL cases, from most simple case to compact GAIA multi-band TimeSeries.
 - Specifics of annotation not visible at user level
 - Some elements are more intuitive than others; gathered good experience to define final syntax
- Demonstrated potential
 - Core models are compatible with the Astropy internal model: easy conversion from Model instance to Astropy instance.
 - Proper Motion Slider: identify/combine Position and Proper Motion, unify coordinate system, migrate in Time.
 - Time Series: Using same code, extract and manipulate TimeSeries from multiple resource with VERY different underlying data structures.

Resource Summary

- Mapping Syntax
 - Work Draft Document
 - Volute: https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml-mapping/doc/VO-DML_mapping_WD.pdf
 - Git: https://github.com/ivoa/mapping-vodml
- Jovial Library
 - Version used in this project: https://github.com/mcdittmar/jovial
 - Master repository: https://github.com/olaurino/jovial
- Rama module
 - Version used in this project: https://github.com/mcdittmar/rama
 - Master repository: https://github.com/olaurino/rama
- Workshop Implementations
 - Column Grouping: https://github.com/ivoa/dm-usecases/tree/main/usecases/column_grouping/mcd-implementation
 - Combined Data: https://github.com/ivoa/dm-usecases/tree/main/usecases/combined_data/mcd-implementation
 - Standard Properties: https://github.com/ivoa/dm-usecases/tree/main/usecases/standard_properties/mcd-implementation
 - Time Series: https://github.com/ivoa/dm-usecases/tree/main/usecases/time-series/mcd-implementation