

Giving archival catalogs a capability of interoperability

MANGO

A Model for Source Data DM Workshop 2021

L. Michel F. Bonnarel G. Landais M. Louys M. Molinaro J. Salgado

Describing a Source: an Endless Job number of use-cases

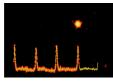
AbaNESSANICAN Promote and common and common

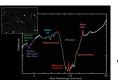
Provider/implementer Survey run by the DM WG in Paris 2019

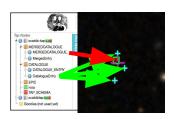
Standard Parameters

Exoplanets

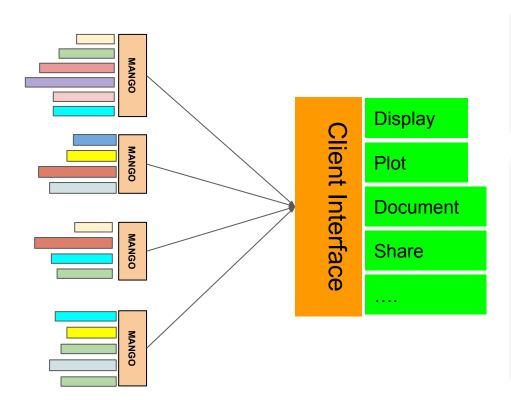
Orbiting stars


Complex shaped objects


Complex errors


Provenance

Time Series



Spectrum

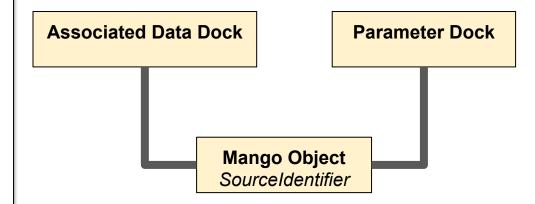
Multiple detections
Correlations

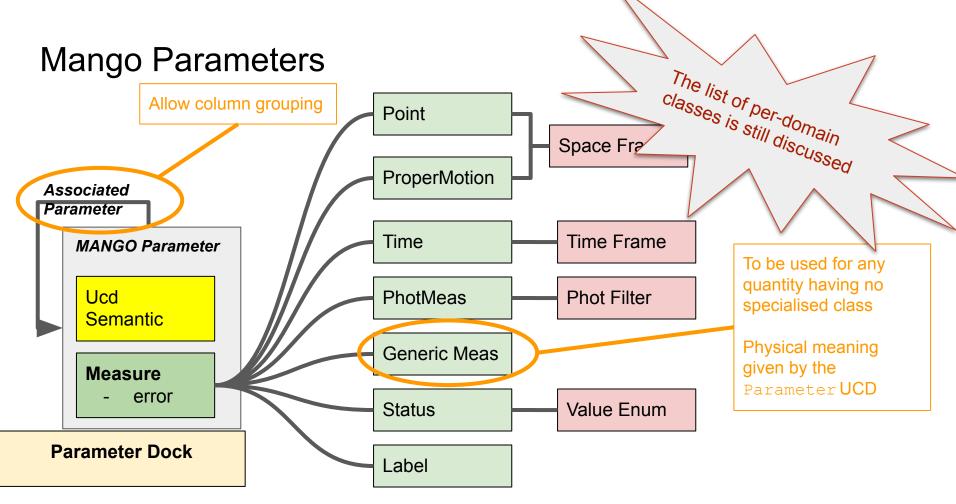
Model for ANnotating Generic Objects

- MANGO is not for describing what sources are
- MANGO is for enhancing the description of source data that cannot be changed by the curator (archive, TAP) and that can be very heterogeneous (Vizier)

MANGO purposes

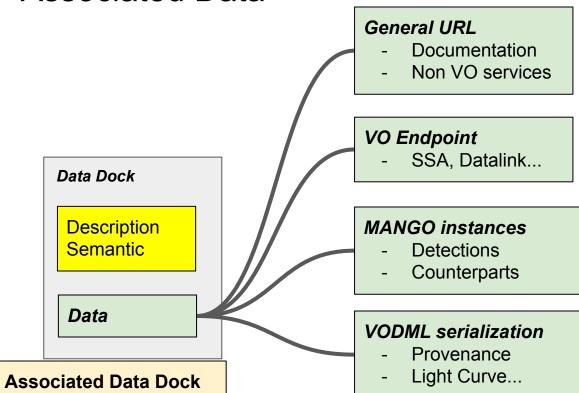
- Guideline for interpreting data attached to a source
- Guideline for building annotations


Expectation


Clients can get an accurate description of parameters whatever the data origin is.

Data Exposed by MANGO

A MANGO source is made with


- One source identifier
- A set of Parameters
 - Set of simple values (string or numerical)
 - Measurements
 - Computed parameters
 - Flags
- A set of associated data
 - complex data such as light curves,
 - any sort of counterparts,
 - Pointers VO services

Domain related measures

Associated Data

 Pack data bundles into a single serialisation (e.g. VOTable)

Combined Data

 Associated spectra are on the associatedDataDock as WebPoint instances

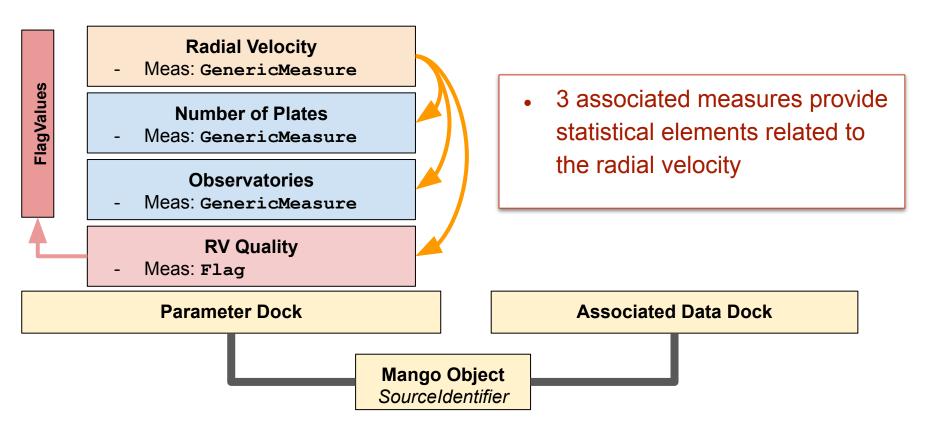
WebEndpoint (spectrum URL)

WebEndpoint (spectrum URL)

WebEndpoint (spectrum URL)

Associated Data Dock

Position


Parameter Dock

ICRS

Mango Object Sourceldentifier

Position SpaceFrame: ICRS QualityFlag **FlagValues** Filter: Energy Band1 Flux Eb1 (Photometry) Flux Eb2 (Photometry) Filter: Energy Band2 Dock Flux Eb3 (Photometry) Filter: Energy Band3 Parameter Filter: Energy Band4 Flux Eb4 (Photometry) Flux Eb5 (Photometry) Filter: Energy Band5 **HardnessRatio EB4-5 (HardRatio)** Frame: HR4 Frame: HR3 HardnessRatio EB3-4 (HardRatio) HardnessRatio EB2-3 (HardRatio) Frame: HR2 **HardnessRatio EB1-2 (HardRatio)** Frame: HR1

Column Grouping

Mapping Syntax ModelInstanceInVot

- #1 Can be ignored
 - Do not break working things
 - O The parser implementation shouldn't alter the existing code
 - The annotation implementation shouldn't alter the original data
- #2 readability
 - Compactness
 - Human readability
- #3 Parser helper: Can be used at different levels
 - Just get the type of the VOTable content
 - Just get meta data
 - Get everything through the model

```
<TABLE MAPPING tableref='Results'>
     The TABLE contains one time series
    <INSTANCE dmrole="root" dmtype="mock ts:TimeSeries">
         TS meta data
       <INSTANCE dmrole="mock_ts:TimeSeries.dataSet" dmtype="mock_ts:DataSet">...
       <!--
         The TS in a collection of light curves
        <COLLECTION dmrole="mock_ts:TimeSeries.lightCurves">
             Light curve for B band
           <INSTANCE dmrole="mock ts:TimeSeries.lightCurves" dmtype="mock ts:LightCurve">
                 Light curve meta data: Name + filter
                <ATTRIBUTE dmrole="mock ts:LightCurve.name" dmtype="ivoa:string" value="Light curve G band" />
                <INSTANCE dmrole="mock ts:LightCurve.filter" dmref="PhotFrame gaiaG" />
                 Light curve points: populated by iterating on the data table with a filter on band G
                <COLLECTION dmrole="moc. ts:TimeSeries.points">
                    <TABLE ROW TEMPLATE>
                </ CLLECTION>
           </INSTANCE
           <!--
             Light curve for RP band
           <INSTANCE dmrole="mock ts:TimeSeries.lightCurves" dmtype="mock ts:LightCurve">
                <ATTRIBUTE dmrole="mock_ts:LightCurve.name" dmtype="ivoa:string" value="Light curve RP band" />
                <INSTANCE dmrole="mock ts:LightCurve.filter" dmref="PhotFrame gaiaRP" />
                <COLLECTION dmrole="mock ts:TimeSeries.points">
                    <TABLE ROW TEMPLATE>...
                </COLLECTION>
           </INSTANCE>
             Light curve for BP band
           <INSTANCE dmrole="mock_ts:TimeSeries.lightCurves" dmtype="mock_ts:LightCurve">
                <ATTRIBUTE dmrole="mock ts:LightCurve.name" dmtype="ivoa:string" value="Light curve BP band" />
                <INSTANCE dmrole="mock ts:LightCurve.filter" dmref="PhotFrame gaiaBP" />
                <COLLECTION dmrole="mock ts:TimeSeries.points">
                    <TABLE_ROW_TEMPLATE>...
                </COLLECTION>
           </INSTANCE>
       </COLLECTION>
    </INSTANCE>
</TABLE MAPPING>
```

Mapping of the data enclosed in the Results table

Time Series mapping

Time Series meta-data (folded)

The TS contains several light curves

Mapping of one light curve

Light curve meta-data

Photometric points mapping with a (folded) table iterator that contains a filter

- Maps both table PARAMS and table DATA
- 3 table row iterators populating the same instance

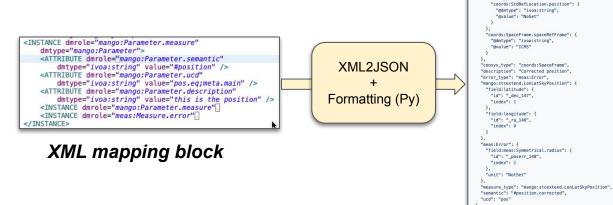
API: Proof of Concept

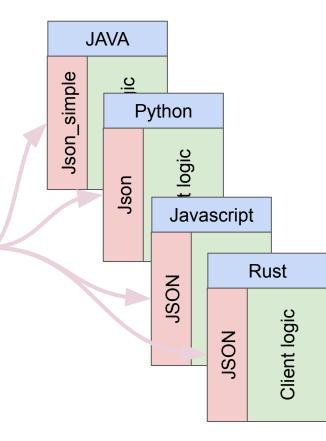
Non normative: based on dictionaries

"#1 pos": {

"coords:SpaceFrame": {
 "@ID": "SpaceFrame_ICRS",
 "@dmtype": "coords:SpaceFrame",
 "coords:SpaceFrame.equinox": {

"coord type": "mango:stcextend.LonLatPoint",

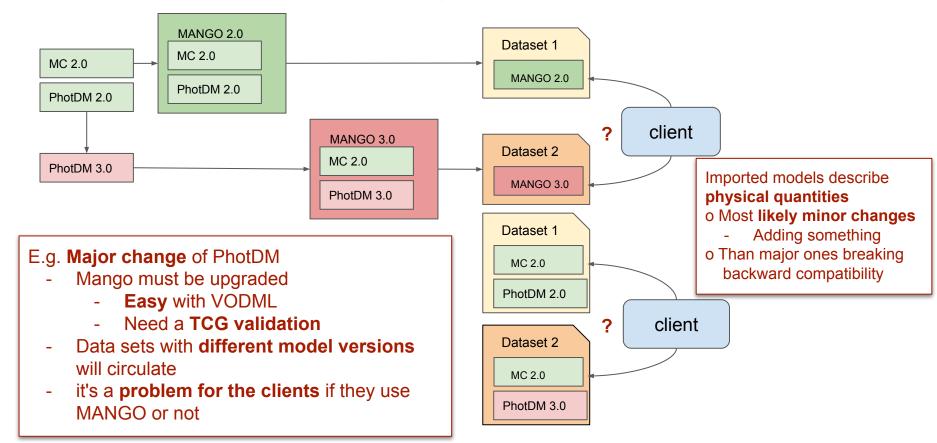

"@dmtype": "coords:Epoch",
"@value": "NoSet"

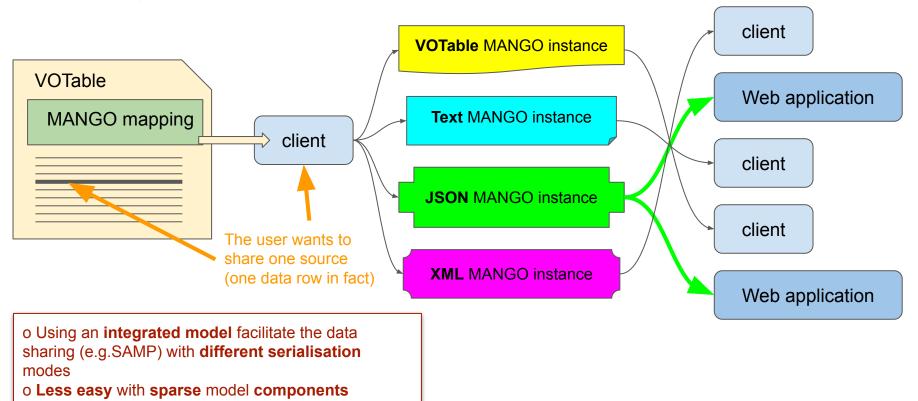

"coords:SpaceFrame.refPosition": {
 "@dmtype": "coords:StdRefLocation",

JSON serialization

Keys are DM roles

- Easy of process on many languages
- Model roles used as keys




API: Output keep connected to native data

```
Extracting a position from MANGO annotation
mango_data = mango_browser.get_data(measure_type="mango:stcextend.LonLatSkyPosition")
DictUtils.print_pretty_json(mango_data)
 "data": [
    340.91055060369,
    -17.071667101891,
                                                        Sky position read (limited here to one row)
    1.50765
 "head": [
  "field:longitude [#1 pos]",
                                                        Model attribute references
  "field:latitude [#1 pos]",
                                                        Labels can be used as keys to get more information
   "error: field:meas:Symmetrical.radius [#1 pos]"
 "selected index": [
  0,
                                                        VOTable column Indices
```

Impact of major model change

Sharing MANGO instances

Why Using Mango Docks?

- Unentangled models: All mapping elements listed at the same level
 - Just provide a bag of Lego bricks

- OK as long as bricks have all the same nature (.e.g measures)
- May become confusing when brick get heterogeneous
 - Measure, join keys, columns groups, axis description ...

- Mango docks: Model elements located at the right placeholder in the docks
 - Provide a Lego construction within which users know where are searched things

- Note really more complicated than the unentangled mode
- Comfortable with complex data patterns as long as they are taken into account by the model
- Can be exchanged with any serialization mode.

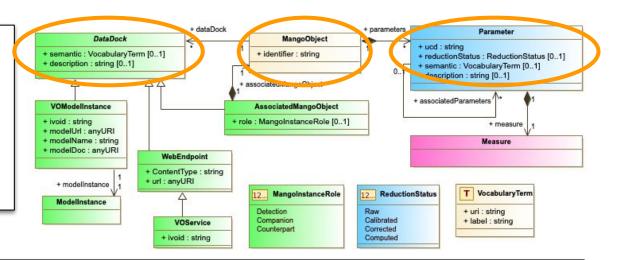
Status and Prospect

Mango

- WD on GitHub
- Some feature requests risen for the workshop

Mapping syntax ModelInstanceInVot

- WD on Github
- XML schema ready
- Many unit tests
- Annoter helper prototype
- A few missing features pointed out by workshop discussions

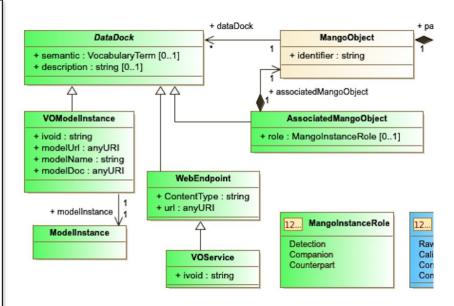

API

- Just a proof of concept so far
- Works with many examples
- Needs both MANGO and mapping syntax to be adopted to be consolidated

Mango Skeleton

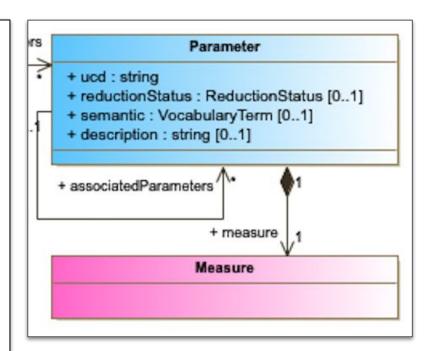
3 components

- One source identifier
- 2 Docks
 - The content of the docks are not defined by the model
 - The model lists possible objects that can be attached to a dock



Docks are open ended data containers

- The model describes which quantities that can be dropped off on a dock
- It does no say which ones have to be there or not
- The content of the docks varies from a dataset to another
- We can have several instances of the same quantity on a dock
 - Multiple positions
 - Multiple counterparts


Associated Data

- URL (VO or not)
 - VO endpoints
 - Datalinks, SIA, SSA
 - Serving data related to that source
 - General purpose URLs
 - Documentation
 - Non VO tools
- Other Mango Instances
 - Source detections
 - Counterparts in other datasets
- VODML serialized objects
 - Light curves
 - Provenance
- Purpose
 - Pack data bundles on a VOTable and to retrieve them
 - Can be replaced with Datalinks

Mango Parameter

- A MANGO parameter is an object that can be dropped on the parameter dock
- Parameters have 2 components
 - A semantic block giving the role of the measure
 - UCD
 - Reduction status (Model enumeration)
 - Vocabulary entry (label + URI)
 - Text description
 - instance of class deriving from the abstract Measure class
 - See after
- Extended usage of the UCDs
 - UCD scope extended to complex values (values +error)
 - Example: pos;meta.main gives the role of a sky position measure, along with its values, errors and frame.

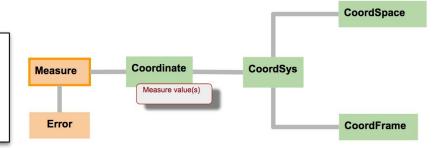
Measure

Broad measure taxonomy

- Still in expansion
- Can be measurements or computed values or annotation

• The use of different measurements in archival data is very variable

- Some are very common (position)
- Some are less usual (shape, flag)
- Some can be duplicated in the docks (multipositions, multiple bands...)
- Some are definitely exotic ("decimal log of surface gravity")


• A modeling effort weighted by that usage rate

- The most popular are modeled by specific classes
- The less popular can be described by generic objects
- No trouble with adding new quantities that have not been foreseen by the model

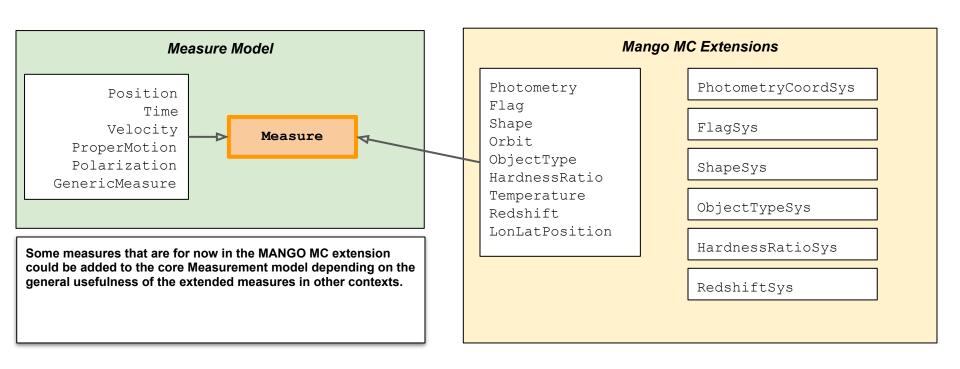
Measure Classes

All built on the Meas/Coordinates (MC) pattern

- o Meas = coord + error,
- Using the same pattern for any measure facilitates parsing

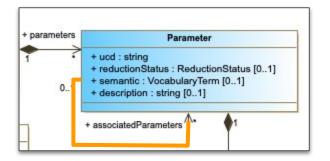
Using MC classes when possible ...

- o Meas concrete classes are reused as they are.
- O All measure that have no dedicated classes can be handled by generic Meas: Generic Meas


• ... or extending MC classes

- Mango proposes a set of classes that are not in Meas: Measure
- Some are necessary (Luminosity, shape, quality flag)
- The others still must be discussed.

Using a specific class when available is not mandatory


- A magnitude can be presented with a generic measure.
- The semantic block allows us to properly identify the quantity.

Measurement Core Model Extension

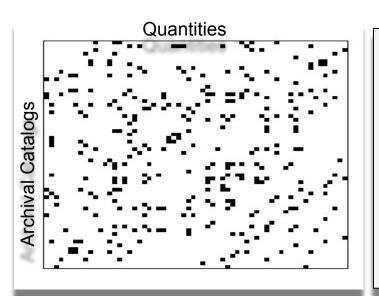
Measure Sets: A Vizier Request

- Vizier data need a way to group columns
 - Grouping columns around a particular quantity
 - VizieR J/MNRAS/392/19/2slaggso
 - Redshift + quality
 - Spectroscopic type + flag
 - Gaia
 - Position + proper motion to handle complex errors (Xmatch - work in progress)
 - Such groups have no semantic but **is-related-to**
- Likely one of the most important features to annotate Vizier data
 - Implemented by the **associatedParameters** relation

Describing a Source: an Endless Job number of use-cases

Lots of possible sets of parameters

- Lots of different parameters
- Different roles for the same types of parameters


Lots of source types

Stars, extended objects, orbiting stars, complex shaped object.....

Lots of possible associated data

o Time series, spectra, SEDs, multiple detections, cross-match counterparts....

Motivation for a Source Model

A model that would pretend to support the most used quantities would have to tackle with to **2 serious issues**:

- An **unavoidable complexity** because people using it will have to deal with many quantities useless for their particular use case.
- No agreement on what the most used quantities are.

2 options

- Explicitly limiting the scope of the model
- Bypassing the hurdle

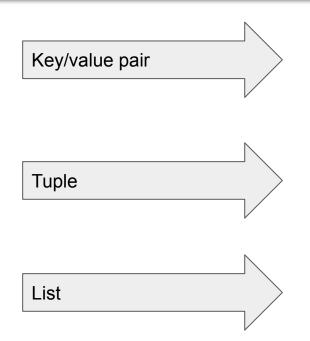
Other Features

Shortcuts: Model components that are parts of a standard can be folded in compact XML elements

Row filtering: Only processing data with a certain field value

Foreign keys: Joining data from different tables

Row grouping: Grouping data of the same source spread over multiple rows


One mapping block per <TABLE>

Raw VOTable (folded)

Mapping block (folded)

- One mapping block for each <TABLE>
- Such placeholder makes easier the mapping insertion

- Any complex data hierarchy can be exchanged with [key-value pairs, tuples and lists]
 - See JSON based Web applications

<ATTRIBUTE dmrole="mango:stcextend.PhotFilter.effectiveWavlength" dmtvpe="ivoa:real" value="7740.87" />

```
<INSTANCE dmrole="mango:Parameter.measure"
   dmtype="mango:Parameter">
   <ATTRIBUTE dmrole="mango:Parameter.semantic"
        dmtype="ivoa:string" value="#position" />
   <ATTRIBUTE dmrole="mango:Parameter.ucd"
        dmtype="ivoa:string" value="pos.eq;meta.main" />
   <ATTRIBUTE dmrole="mango:Parameter.description"
        dmtype="ivoa:string" value="this is the position" />
   <INSTANCE dmrole="mango:Parameter.measure"
   <INSTANCE dmrole="meas:Measure.error"
</pre>
```

```
<COLLECTION size="-I"
  dmrole="mango:MangoObject.parameters">
  <INSTANCE dmrole="mango:Parameter.measure"
  </COLLECTION>
```

Precise Astrometry

Position

Meas: LonLatSkyPosition

- Error: CorrelatedError

Proper Motion

Meas: LonLatSkyPosition

- Error: Ellipse

RadialVelocity

- Meas: GenericMeasure

- Error: Symmetrical

Parallax

- Meas: GenericMeasure

Error: Symmetrical

Parameter Dock

Building an error matrix

- All measures contributing to the positions error are associated with the the Position measure
- The error matrix is represented by the CorrelatedError object
 - References to the errors of associated measures

Associated Data Dock

Mango Object Sourceldentifier

SpaceFrame: ICRS

Motivation for a Model for Source Data

What is missing?

- a clean representation of the coordinate systems
- a clean representation of the complex errors
- Support cross-columns parameters
 - Columns grouping
 - Complex errors (pos + pm + parallax)
- Capacity of Gathering data from multi-table VOTable (sources + detection)

Motivation for a Model for Source Data

- Catalog data are well supported by VOTables
 - VOtable has been designed for this purpose!
- Data column well defined
 - UCD, format unit, utype
 - Global parameters (PARAM)
- Possible column associations
 - o GROUPs
- Coordinate Systems
 - Time/space
- Human readable information
 - o INFO
 - DESCRIPTION
- Plenty of others features to discover within the 32 pages of the standard
 - Anything we need to get a good interoperability level!
 - Do we need more?