International
Virtual
Observatory

Alliance

IVOA Execution Planner - design outline

Version

IVOA Note 20211014

Working Group
Grid and Web Services Working Group

This version
https://www.ivoa.net/documents/IVOA-EP-note/20211014

Latest version

https://www.ivoa.net /documents /IVOA-EP-note
Previous versions

Author(s)

Dave Morris, Sara Bertocco
Editor(s)
Dave Morris, Sara Bertocco

Abstract

The IVOA Execution Planner (IVOA-EP) interface is a HT'TP webser-
vice interface that provides a simple way to discover and access computing
services. This document uses a series of use cases and example applications

to illustrate the functionality provided by the IVOA-EP interface.

Status of this document

This is an IVOA Note expressing suggestions from and opinions of the
authors. It is intended to share best practices, possible approaches, or other
perspectives on interoperability with the Virtual Observatory. It should not

be referenced or otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents

can be found at https://www.ivoa.net/documents, .

https://www.ivoa.net/documents/IVOA-EP-note/20211014
https://www.ivoa.net/documents/IVOA-EP-note
https://wiki.ivoa.net/twiki/bin/view/IVOA/DaveMorris
https://wiki.ivoa.net/twiki/bin/view/IVOA/SaraBertocco
https://wiki.ivoa.net/twiki/bin/view/IVOA/DaveMorris
https://wiki.ivoa.net/twiki/bin/view/IVOA/SaraBertocco
https://www.ivoa.net/documents/

Contents

1 Introduction 3
2 Type identifiers 4
3 Notebook services 5
3.1 Jupyter notebook 5
3.2 Binder notebook 6
3.3 ESAP notebook 7
3.4 Zeppelin notebook oo 8
3.5 PySpark notebook L 9
4 Container services 11
4.1 Docker UWS 11
4.2 Docker compose 12
4.3 Portainer serviceo 14
4.4 Multiple interfaces Lo 15
5 Computing resources 16
6 Data access 16
6.1 VOSpace. 17
6.2 Rucio 17
6.3 Amazon S3 17
7 Authentication 17
8 Deployment and discovery 18
8.1 Service deployment L 18
8.2 Service discovery Lo 19
9 Data formats 19
9.1 Request formats, 19
9.2 Response formatso 20
References 20

Acknowledgments

This document derives from discussions among the Grid and Web Services
working group of the IVOA.

This document has been developed with support from the UK Science and
Technology Facilities Council (STFC), from the Italian National Institute
for Astrophysics (INAF) and from the European Commission’s Research
and Innovation Program Horizon 2020 under the project ESCAPE (Grant
1n.824064).

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard, (Bradner, 1997).

The Virtual Observatory (VO) is general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

The Execution Planner (IVOA-EP) interface aims to provide a simple way
to discover and access computing services.

The design of the IVOA-EP interface is based around two key classes of
objects, computing Tasks and Services.

The primary question the IVOA-EP interface is designed to answer is
"where can I run this Task ?", or more specifically, "which computing Services
can I use to run this Task?"

The simplest solution to this problem would be for a central agency to
maintain enough metadata about all the available computing Services to be
able to answer that question using a simple database query.

The simplest case is just to match the type of task with the type of
Service, using a simple string match.

SELECT % FROM services WHERE servicetype = ’'binder’

This works for a small fixed set of Task types with a simple set of accep-
tance criteria. However as the range and complexity of Task types begins to
grow a centralised solution like this becomes harder to maintain.

Different types of Tasks will have different metadata to describe them
and different Service instances will have different criteria for accepting or
rejecting Tasks. Each time a new type of Task or Service becomes available,
the software for evaluating execution requests will need to be updated.

As the system evolves, we can see the criteria or rules for accepting a Task
growing in complexity over time. If we imagine a system capable of deploying

http://www.ivoa.net

and executing a complex chain of interconnected software components, the
criteria for accepting or rejecting a complex Task like this will also grow in
complexity.

The design of the IVOA-EP interface aims to address this complexity by
using the Separation of Concerns' pattern to delegate as much as possible
to the Service instances

The IVOA-EP interface defines a simple stateless HT'TP interface that
supports GET and POST requests. The following sections use a series of
example Task types to illustrate how the IVOA-EP service interface works.
In all of these cases, the IVOA-EP service interface provides a common
method to query Services about their capabilities.

For simplicity, this document will represent IVOA-EP query request and
response messages using a simplified same JSON notation. Hopefully this
makes it easier for the reader to compare the information in the request and
response messages. Section 9 describes more detail about how IVOA-EP
requests and responses should be serialised in HT'TP requests.

There is no absolute requirement for the URI identifiers to be resolvable
into a resource. However providing a resolvable resource at the URI location
is an ideal way to communicate information about the Task and Service
types to others outside the local community.

2 Type identifiers

The IVOA-EP service specification does not define a fixed list of Task and
Service types. The intention is that the Task and Service types will be de-
veloped organically by communities based on their science use cases.
In order to support this grass-root model, the IVOA-EP specification re-
comends using resolvable Uniform Resource Identifier (URI)? identifiers to
refer to Task and Service types.
The choice of schema and format for the type URIs is left to the individual
communities, the only requirement is that they be globally unique.

For readability this document will use a simplified URI scheme to repre-
sent the Task and Service type identifiers.

tasktype = uri://Jjupyter-notebook

For a real-world deployment, the easiest way of ensuring global unique-
ness is to use a HTTP URL that points to a location controlled by the
community.

tasktype = http://purl.escape.eu/types/jupyter—-notebook

nttps://en.wikipedia.org/wiki/Separation_of_concerns
2https ://en.wikipedia.org/wiki/Uniform_Resource_TIdentifier

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Alternatively one of the established resolvable URI registration schemes may
be used, such as the DOI scheme or IVOA registry.

tasktype = doi://########/jupyter-notebook

tasktype = ivo://########/Jjupyter-notebook

3 Notebook services

The following sections describe different types of notebook Task, including
a generic JupyterHub Service, a BinderHub Service and an ESCAPE ESAP
notebook Service, and finally a Zeppelin notebook Service that supports
multiple languages including PySpark.

3.1 Jupyter notebook

Replicating the simplest use case outlined above, where the name of the Task
type matches the type that the Service implements, the client can call the
IVOA-EP interface with a single parameter, tasktype, representing the
type of Task the client is asking about.

HTTP GET /accepts?tasktype=uri://jupyter—-notebook

If the service is not able to accept uri://jupyter—-notebook Tasks,
then it can simply reply with JSON response containing a reponseword
of NO.

{

"reponseword": "NO"

}

If the service can accept uri://jupyter—notebook Tasks then it
should reply with a simple JSON response containing a reponseword of
YES along with details of how to execute the Task.

{

"reponseword": "YES",
"servicetype": "uri://jupyter—-hub",
"serviceinfo": {

"endpoint": "http://jupyter.example.org/"

}
}

The servicetype value tells the client what kind of service is available,
and the serviceinfo element provides details of how to connect to it.

In this example, tasktype=uri://Jjupyter—-notebook in the re-
quest applies to a generic Jupyter notebook, as defined by the Jupyter?

3https://jupyter.org/

https://jupyter.org/

project. In the response, servicetype=uri://jupyter-hub refers to
a JupyterHub service, as defined by the Jupyter project.

In order to run a notebook in a JupyterHub Service, a client would
need to know the endpoint URL of the Service, which is provided in the
serviceinfo.endpoint element of the response. The client can use this
endpoint URL to pass the notebook to the JupyterHub service and launch
the Task.

3.2 Binder notebook

It is also possible to run a generic Jupyter notebook in a BinderHub service
provided by the Binder? project. In which case, given the same request to
run a uri://jupyter—-notebook Task.

HTTP GET /accepts?tasktype=uri://jupyter—-notebook

A BinderHub service would also reply with a positive response.

{

"reponseword": "YES",
"servicetype": "uri://binder-hub",
"serviceinfo": {

"endpoint": "http://binder.example.org/"

}
}

The response from the BinderHub Service is similar to the response from
the JupyterHub Service, but the meaning is slightly different. Setting the
servicetype to uri://jupyter—hub or uri://binder—-hub in the
response, tells the client what kind of Service to expect at the endpoint
URL. It is then up to the client to decide how to send the details of the
notebook to the Service based on the service type.

A BinderHub service can also handle a more complex Task than just a
generic Jupyter notebook. If the notebook comes as part of a git repository
that contains additional information about the dependencies or environment
the Task requires, such as requirements.txt or environment.yml,
then a BinderHub service can use this information to build a new Docker
container based on the requirements and deploy it in the BinderHub service.

In order to check if a Service accepts this more complex type of Task, the
client would set the tasktype request parameter touri://binder—-notebook.

HTTP GET /accepts?tasktype=uri://binder-notebook
A generic JupyterHub service would not be able to accept auri://binder-notebook

Task, so it would reply with a JSON response containing a reponseword
of NO.

‘https://binderhub.readthedocs.io/

https://binderhub.readthedocs.io/

{
"reponseword": "NO"

}

A BinderHub service that can accept a uri://binder—notebook
Task would reply with a positive response, with the servicetype set
to uri://binder-hub and the serviceinfo.endpoint pointing to
BinderHub service endpoint.

{

"reponseword": "YES",
"servicetype": "uri://binder-hub",
"serviceinfo": {

"endpoint": "http://binder.example.org/"

}
}

Given the servicetype and serviceinfo.endpoint elements in
the response, the client now has enough information to pass launch the Task
by passing a reference to git repository to the BinderHub service.

3.3 ESAP notebook

In terms of the ESCAPE project, there may be additional components be-
yond simply adding the required software dependencies. If a notebook re-
quires access to data in the ESCAPE Datal.ake, then for the "DataLake as a
Service" to work correctly, the notebook needs to be run on a compute plat-
form that is co-located with a Rucio Storage Element (RSE) ° that is part of
the ESCAPE Datal.ake, and the mechanism used to launch the Task needs
to pass the appropriate authentication tokens into the notebook environment
to enable it to access the Datal.ake.

If we define a new Task type, uri://esap—notebook, which refers to
a notebook Task defined by the ESCAPE ESAP project. Then an IVOA-EP
service client can use this to check if a Service supports this environment.

HTTP GET /accepts?tasktype=uri://esap-notebook

In this case, the generic JupyterHub and BinderHub Services would not
understand the new Task type, and so would reply with a negative response.

{

"reponseword": "NO"

}

A Service deployment that does understand this new Task type, and can
provide access to data in the ESCAPE DataLake, would reply with a positive
response.

5https ://rucio.readthedocs.io/en/latest/overview_Rucio_Storage_
Element.html

https://rucio.readthedocs.io/en/latest/overview_Rucio_Storage_Element.html
https://rucio.readthedocs.io/en/latest/overview_Rucio_Storage_Element.html

{

"reponseword": "YES",

"servicetype": "uri://binder-hub",
"serviceinfo": {
"endpoint": "http://binder.example.eu/"

}
}

Note that the Service type in the response is still uri://binder—hub.
This means that the webservice interface that the client interacts with is
the same as the generic BinderHub. The difference with this Service in-
stance is that it is deployed within the ESCAPE network and is capa-
ble of providing access to the ESCAPE Datal.ake. Which means that in
addition to being able to run generic uri://jupyter—notebook and
uri://binder—-notebook Tasks, this Service is also capable of under-
standing and executing a uri://esap-notebook Tasks.

3.4 Zeppelin notebook

Apache Zeppelin® is a browser based notebook platform that provides a
similar user experience and functionality to the Jupyter notebook platforms.
However, the technical details of the notebook format and webservice API
are different, which means that the notebook Tasks are not equivalent.

The IVOA-EP API provides a common interface to enable a client to
ask questions about this different type of notebook Service by setting the
tasktype parameter to uri://zeppelin-notebook.

HTTP GET /accepts?tasktype=uri://zeppelin-notebook
IVOA-EP services that represent JupyterHub and BinderHub Services

would not understand the tasktype and would simply reply with a negative
response.

{

"reponseword": "NO"

}

An IVOA-EP services that represented a Zeppelin Service would reply
with a positive response, and include details of how to connect to the service.

{

"reponseword": "YES",
"servicetype": "uri://zeppelin-service",
"serviceinfo": {

"endpoint": "http://zeppelin.aglais.uk/"

}
}

Shttps://zeppelin.apache.org/

https://zeppelin.apache.org/

Given the servicetype and serviceinfo.endpoint elements in
the response, the client now has enough information to launch the Zeppelin
notebook Task.

3.5 PySpark notebook

The Zeppelin platform includes interpreters for several different program-
ming languages, and can support multiple languages within a single note-
book.

An example of this is the PySpark” Python API that enables users to
write Python code that performs data analysis using a Spark cluster. If a
Zeppelin platform has access to a Spark cluster, then it will be able to handle
notebooks that contain both standard Python and PySpark elements in the
same notebook.

If we follow the same pattern as we did for the Jupyter notebooks, then
we could define another Task type, zeppelin-pyspark—-notebook, to
describe Zeppelin notebooks that include PySpark code in them. However,
as a Zeppelin notebook can include more than one language within a single
notebook, the list of Task types would become overly complex if we tried to
handle all the possible combinations.

A better solution would be to add a second parameter to the accepts
request that contains a list of the required languages.

A JSON representation of an accepts query for a Zeppelin notebook
Task that includes Markdown®, Python and PySpark elements would be as
follows:

{
"tasktype": "uri://zeppelin-notebook",
"taskinfo": {
"languages": [
"md",
"python",
"pyspark"
1

}
The same query serialised as a HT'TP GET request would be:

HTTP GET /accepts?tasktype=uri://zeppelin-notebook
&taskinfo.languages={md, python, pyspark}

In this example, we have a Zeppelin notebook task that includes a list of
three languages that are used in the notebook.

"http://spark.apache.org/docs/latest/api/python/
8https://daringfireball.net/projects/markdown/

http://spark.apache.org/docs/latest/api/python/
https://daringfireball.net/projects/markdown/

{
"tasktype": "uri://zeppelin-notebook",
"taskinfo": {
"languages": [
"md",
"python",
"pyspark"
]

}

An IVOA-EP service that represents a Zeppelin Service that can support
all three languages would reply with a positive response. In addition, the
servivceinfo element for the uri://zeppelin-service could con-
tain a list of the languages it supports.

{
"reponseword": "YES",
"servicetype": "uri://zeppelin-service",
"serviceinfo": {
"endpoint": "http://zeppelin.aglais.uk/",
"languages": [
"md",
"python",
"pyspark"
1

}

The IVOA-EP service specification defines the order in which the re-
quest elements are processed. The first step is to check the tasktype. If
the target Service does not understand the tasktype, then the IVOA-EP
service should simply ignore the rest of the request and reply with a negative
response.

An IVOA-EP service that represents a JupyterHub or BinderHub Service
would not recognise uri://zeppelin-service as a valid tasktype,
and so would skip the taskinfo block and simply reply with NO.

{

"reponseword": "NO"

}

Defining the parsing sequence in this way means that the content of the
taskinfo element can be specific to each Task type. In this example, if the
IVOA-EP service recognises and understands the uri://zeppelin—-service
tasktype, then it will know to expect a list of languages in the
taskinfo element.

An accepts query for a different tasktype would have different, type
specific, content in the taskinfo element.

10

4 Container services

The following sections describe different types of container execution Ser-
vices. Starting with the basic Docker container and Docker Compose Ser-
vices described in the IVOA UWS-CE |[cite| note, and an IVOA-EP service

that represents a Portainer Service deployment.

4.1 Docker UWS

The UWS-CE |cite| note describes a basic Docker container execution Service
that uses the IVOA UWS webservice interface to manage container execution
Tasks.

The simplest IVOA-EP implementation for a basic UWS-CE service
could just check the tasktype parameter to answer the question "Can
I run a Docker container here?".

HTTP GET /accepts?tasktype=uri://docker-container

IVOA-EP services that represent Services that can execute Docker containers
would reply with YES, and IVOA-EP services that do not support Docker
containers would reply with NO.

However, a particular UWS-CE instance may want to apply some checks
on the content of the Docker container before allowing it to be executed on
their platform. For example a UWS-CE Service may only accept containers
from a white list of allowed images, or it may want to examine the container
image to check that it is derived from a specific base image.

In this situation, the question changes from "Can I run a Docker con-
tainer here?” to "Can I run this Docker container here?”, and in order to
answer this question the IVOA-EP service needs to see the container image
to check that it meets the acceptance criteria.

Following the pattern outlined in the previous section, the IVOA-EP
request to ask this question would start with the tasktype parameter set
to uri://docker—-container, followed by the Task specific content in
the taskinfo element, containing the fully qualified name of the container
image, for example docker.io/example:1.0.

{

"tasktype": "uri://docker-container",
"taskinfo": {
"image": "docker.io/example:1.0"

}
}

The IVOA-EP service can then compare the image name with an internal
white-list of accepted images, or it could download and inspect the image to
verify that it is derived from the correct base image.

11

Assuming the container image meets the acceptance criteria, the IVOA-
EP service would reply with a positive response, with the servicetype
set to uri://docker-uws to indicate the type of Service, and the
serviceinfo would contain the endpoint URL to access the service.

{

"reponseword": "YES",
"servicetype": "uri://docker-uws",
"serviceinfo": {

"endpoint": "http://example.org/dkuws",

}

4.2 Docker compose

In addition to the basic Docker container execution Service, the UWS-CE
[cite] note describes a Docker Compose Service that handles Docker Compose
Tasks as UWS jobs.

Again, the simplest IVOA-EP implementation could just check the
tasktype parameter to answer the question "Can I run a wuri://docker-
compose Task here?".

HTTP GET /accepts?tasktype=uri://docker-compose

IVOA-EP services can execute Docker Compose Tasks would reply with YES,
and IVOA-EP services that don’t would reply with NO.

However, a more realistic scenario would be for the UWS-CE Service
to apply some checks on the content of the Docker Compose Task before
allowing it to be executed on the platform.

One way to enable this would be for the client to send a URL that points
to the location of the Docker Compose file.

{

"tasktype": "uri://docker-compose",
"taskinfo": {
"composefile": "https://edin.ac/3jgocuV.yml"

}
}

However, this requires a copy of Docker Compose file to be publicly accessible
on the internet, which may not always be possibly. A better alternative would
be to use a HTTP multipart/form-data POST Y request to include the
content of the Docker Compose file in the request body.

TODO develop a better example using a containerized version of the
Vollt TAP service!®.

%https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
Onttps://github.com/gmantele/vollt

12

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://github.com/gmantele/vollt

POST /accept HTTP/1.1
Host: foo.example
Content-Type: multipart/form-data;boundary="boundary"

——boundary
Content-Disposition: form-data; name="tasktype"

uri://docker—-compose

——boundary

Content-Disposition: form-data; name="taskinfo.
composefile"; filename="compose.yml"
Content-Type: text/yaml

version: 3.9’
networks:
external:
internal:
services:
database:
image:
"example/postgres:9.2"
networks:
— internal
environment :
POSTGRES_DB: "S{database}"
POSTGRES_USER: "S{usernam}"
POSTGRES_PASSWORD: "S${password}"
webapp:
image:
"example/webapp:1.1"
networks:
- internal
— external
ports:
- "8080:8080"
——boundary--

This example sets the tasktype to uri://docker—-compose in the
first block of form data, and then includes the content of the Docker
Compose file in the second block.

Note that the only part required by the IVOA-EP specification is the
initial tasktype element set to uri://docker—-compose. After that,
the rest of the content of the message is defined by the specification for
the UWS-CE application and the IVOA-EP extension for handling Docker
Compose Tasks.

TODO "No, but maybe" response offering a template compose file 7

13

4.3 Portainer service

Portainer!!

is a commercial platform that "enables centralized configuration,
management and security of Kubernetes and Docker environments, allowing
you to deliver ‘Containers-as-a-Service’ to your users quickly, easily and
securely. "

The IVOA-EP design pattern supports a number different of ways to

integrate a Portainer service into the IVOA ecosystem.

e A UWS-CE interface in front of a Portainer service accepting Docker
container Tasks.

e A UWS-CE interface in front of a Portainer service accepting Docker
Compose Tasks.

e Exposing the Portainer service directly via an IVOA-EP interface

In the first two cases, the UWS-CE interface acts as a proxy for the
Portainer service. Initialising and running the Docker or Docker Compose
Tasks on the Portainer service, and providing an IVOA compatible interface
that represents the Portainer tasks as UWS jobs.

In the third case, the IVOA-EP service would provide a registered entry-
point to represent the Portainer service in the IVOA ecosystem. The IVOA-

EP service would accept Tasks with tasktype of uri://docker—-container,
uri://docker-compose and two new types of uri://portainer—-container
and uri://portainer—compose. The IVOA-EP service would sim-

ply match the tasktype names and return a positive response, with
servicetype set to uri://portainer—-service

{

"reponseword": "YES",
"servicetype": "uri://portainer-service",
"serviceinfo": {

"endpoint": "http://portainer.example.org/",

}
}

If a client does not understand how to drive a Portainer service,
then it simply ignores this offer and moves on to try another service.
If a client does understand how to drive a Portainer service, then the
serviceinfo.endpoint element of the response enables the Portainer
client to contact the Portainer service directly.

This represents a key design pattern of the IVOA-EP service. Implement-
ing just enough to provide a standard IVOA interface that can be registered
in the IVOA Registry to make a 3rd party service find-able and use-able as
part of the IVOA ecosystem, without having to standardise the whole of the
3rd party interface.

Uyttps://www.portainer.io/

14

https://www.portainer.io/

4.4 Multiple interfaces

A complex service like a full Portainer deployment may be capable of pro-
viding multiple methods for running the same Task type.
Given a basic request to execute a Docker container Task.

HTTP GET /accepts?tasktype=uri://docker—-container

An IVOA-EP service that represents the Portainer service may return an
array of service interfaces in the response, allowing the client to choose the
most appropriate method to use.

{

"reponseword": "YES",
"interfaces": |
{
"servicetype": "uri://portainer-service",
"serviceinfo": {
"endpoint": "http://portainer.example.org/"
o
{
"servicetype": "uri://compose-uws",
"serviceinfo": {
"endpoint": "http://uws.example.org/compose"
}I
{
"servicetype": "uri://docker-uws",
"serviceinfo": {
"endpoint": "http://uws.example.org/docker"

}

In this example, the IVOA-EP service is offering three methods for exe-
cuting a uri://docker—-container Task.

e The full Portainer service interface.

o A UWS-CE interface that accepts can accept the uri://docker—container
Task if it is wrapped as a uri://docker—compose Task.

e A UWS-CE interface that accepts uri://docker—container Tasks
directly.

The client is free to choose which method is most appropriate to use.

e If the client understands how to use a Portainer service, then it can
use the serviceinfo.endpoint to access the Portainer Service di-
rectly.

15

e [f the client understands how to wrap a uri://docker—-container
as a uri://docker—-compose Task, then it may choose to use the
uri://compose-uws Service.

e Or the client may choose to simply use the basic uri://docker—uws
Service.

5 Computing resources

Request /response section describing the required and available resources.

Example resource request:

resources:
Storage space (Gbytes)
minstore: 8G

maxstore: 10G

CPU cores
mincores: 8
maxcores: 10

Memory (Gbytes)
minmemory: 8G
maxmemory: 10G

Startup time (s)
minstartup: 5s
maxstartup: 60s

Execution time (duration)
minduration: 5m
maxduration: 10m

If the requested resources are available, the IVOA-EP service may reply
with a simple YES response. It may also include a resources element with
updated values for the available resources.

If the request asks for more than the available resources, the Task will be
rejected. Simple NO. It may also include a resources element with available
resources and optional warning messages.

ISO 8601 duration

6 Data access

Data access requirements ..
Data access vocabulary ..

16

6.1 VOSpace

Example reference to data in VOSpace (INAF archive?). Identity and auth

6.2 Rucio

Example reference to data in Rucio (ESCAPE Datalake?). Identity and
auth ..

6.3 Amazon S3

Example reference to data in S3 (internal and external). Examples, Amazon,
DigitalOcean, Openstack, STFC Echo. Identity and auth ..

7 Authentication

Different Service instances may have different criteria for who they will allow
to execute Tasks on their Service.

Some services, such as the public Service provided by the BinderHub
Federation may be free and open to the public to use [1].
An IVOA-EP service that represents a public access Service like this may
accept any HTTP request, with or without authentication. However, most
computing services will be funded to provide compute resources for specific
communities, and will require some level of user authentication to control
access to their resources.
If an authenticated identity is provided as part of the /accepts, then the
EP service can use this identity as part of the evaluation criteria.

HTTP GET /accepts?tasktype=uri://docker—-container
Authorization: Bearer S1AV32hkKG

If the authenticated identity is allowed to perform the task on the target
platform, the EP service replies with a positive response as normal.

{

"reponseword": "YES",
"servicetype": "uri://portainer—-service",
"serviceinfo": {

"endpoint": "http://portainer.example.org/",

}
}

If the authenticated identity is not allowed to perform the task on the
target platform, the EP service may reply with a simple negative response.

17

{

"reponseword": "NO"

}
Or it may provide additional information about the reason why.

{
"reponseword": "NO"
"reponseinfo": {
"reasons": [
{
"httpcode": 403,
"text": "Not authorised"

}

8 Deployment and discovery

8.1 Service deployment

The IVOA-EP interface is designed to work both within the context of the
IVOA community, or as apart of a separate domain outside the IVOA, such
as the ESCAPE ESAP community.

In both situations, there would typically be onelVOA-EP service associated
with each platform that provides computing resources to the community.
In most cases the IVOA-EP service would normally be deployed as part of the
computing platform itself. The entity that provides the computing platform
would also provide and maintain an IVOA-EP service that handles queries
about running Tasks on that computing platform.

However that is not a necessarily required. For example, a project like ES-
CAPE may choose to deploy a stand-alone instance of an IVOA-EP service
that handles queries about an external computing platform like the My-
Binder service provided by the BinderHub Federation'?. The IVOA-EP ser-
vice itself would be hosted and maintained by a member of the ESCAPE
community, but it can be configured to handle queries about running Tasks
on the MyBinder service.

This distributed micro-service architecture enables communities to build up
a network of IVOA-EP services that describe both internal and external
computing resources in an interoperable way.

2https://mybinder.readthedocs.io/en/latest/about/federation.html

18

https://mybinder.readthedocs.io/en/latest/about/federation.html

8.2 Service discovery

The IVOA-EP interface is designed to be compatible with using the IVOA
registry for service discovery. The IVOA-EP specification defines a VORe-
source metadata extension for describing IVOA-EP services and their capa-
bilities.

IVOA-EP services deployed by members of the IVOA community will be
registered in the IVOA registry, enabling service discovery using the existing
IVOA registry tools.

However, although registering services in the IVOA registry is encouraged, it
is not required for the IVOA-EP services to function. For example, a project
like ESCAPE may choose to deploy their own service discovery mechanism,
separate from the IVOA registry. This can be as simple as a database ta-
ble maintained inside the an ESAP portal that lists the IVOA-EP services
associated with the computing platforms available to that community.

9 Data formats

Default data format for IVOA-EP services is to use YAML for data inputs
sent via POST messages and the default response format is JSON for out-
puts. This pattern of using different formats for the request and response
data is used by a number of webservice interfaces, for example the Kuber-
netes kubectl control application.

The reasoning behind this pattern is that YAML is the best format for
storing human edited configurations, such as the resource requirements and
metadata. Whereas JSON is best format for handling and parsing webservice
responses.

9.1 Request formats

The IVOA-EP interface can accept both YAML and JSON documents in the
elements of a HT'TP multipart POST messages. The client should specify
the format for each element in the HT'TP POST message.

POST /accept HTTP/1.1
Host: foo.example
Content-Type: multipart/form-data;boundary="boundary"

——boundary
Content-Disposition: form-data; name="tasktype"

example-task

——boundary

Content-Disposition: form-data; name="taskinfo.example.
one"; filename="example-1.yml"

Content-Type: text/yaml

19

——boundary

Content-Disposition: form-data; name="taskinfo.example.
two"; filename="example-2.json"

Content-Type: text/Jjson

——boundary—--
Where there is a preference for a particular format, e.g. to match the for-

mat used by a 3rd party application, it should be declared in documentation
for that particular IVOA-EP application.

9.2 Response formats

The IVOA-EP interface can generate JSON, YAML or XML response for-
mats. A client can specify the preferred format using the HTTP Accepts
header.

References
Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement

levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

20

http://www.ietf.org/rfc/rfc2119.txt

	Introduction
	Type identifiers
	Notebook services
	Jupyter notebook
	Binder notebook
	ESAP notebook
	Zeppelin notebook
	PySpark notebook

	Container services
	Docker UWS
	Docker compose
	Portainer service
	Multiple interfaces

	Computing resources
	Data access
	VOSpace
	Rucio
	Amazon S3

	Authentication
	Deployment and discovery
	Service deployment
	Service discovery

	Data formats
	Request formats
	Response formats

	References

