

cherenkov telescope array

IRFs for High-energy Astrophysics In the context of the CTAO Data Model

Karl Kosack for the CTAO Data Model Group

IVOA HEIG meeting, online 2023-10-18

ScienceOperations	Science
ObservatoryConfiguration ObservatoryState	R0 R1 DL0 DL1
Reporting	DL2 DL3 DL4 DL5
DataProduct DataProduct Data Metadata	DL6 Simulation Analysis
Activities	Common
Workflows Configuration	Time Coordinates Regions
Provenance Logging	Identifiers NDArrays AstrophysicalModels

Event-counting instruments

"Events" here are detections of a single photon or background particle ≈ 10,000 / s for CTAO! (gammas + background) in the raw data

Measure many *reconstructed* properties per event:

Physical:

- Position on the sky (RA/Dec, Alt/Az)
- Energy
- -Arrival Time
- -+ uncertainty estimates on these

Optional Instrumental / Shower physics

- -telescope multiplicity
- -Impact parameter w.r.t. telescopes
- Height of Shower-maximum
- Width of shower (Molière radius)
- "Gammaness" (probability to be signal)
- Quality of reconstruction

DL3.Event

CTAO DL3 Data Model Specification, v1b

Figure 2.2 – UML Diagram of the DL3/Event Data Model.

Event-lists *not* **Photon-lists!**

Karl Kosack

Event-lists *not* **Photon-lists!**

For Imaging Atmospheric Cherenkov Telescopes (and also Water Cherenkov Telescopes):

- Strong irreducible background from mis-reconstructed cosmic rays
- Mostly isotropic (except for instrumental effects)

Event-lists *not* **Photon-lists!**

- For Imaging Atmospheric Cherenkov Telescopes (and also Water Cherenkov Telescopes):
- Strong irreducible background from mis-reconstructed cosmic rays Mostly isotropic (except for instrumental effects)
- Photons are only statistical!
- Can compute "Excess photon-like events" within a region of space/time/energy.
- Background model is needed (or off-source measurement in some cases)
- Can never say if an individual event is a photon or not.

Galactic Longitude

What we really want:

region of the sky and to test that hypothesis.

Physical Quantities

 $F(E_{\text{true}}, \vec{p}_{\text{true}}, t_{\text{true}})$ Flux

We are missing one piece of information: how to go between true and measured (reconstructed) quantities?

To make a hypothesis about the gamma-ray emission in a

Reconstructed Quantities

$N_{\rm events}(E_{\rm reco}, \vec{p}_{\rm reco}, t_{\rm reco})$ **Event Counts** within some bin or region

K. Kosack, Habilitation June 2023 6

Forward-Folded Analysis

Luca Giunti, thesis presentation 2021 DPPS

41

Forward-Folded Analysis

Luca Giunti, thesis presentation 2021 DPPS

41

Forward-Folded Analysis

Luca Giunti, thesis presentation 2021 DPPS

41

Instrumental Response Decomposition

Treat components independently:

- ▶ Effective Collection Area (A_{eff}): combines optical effective area and efficiency of detection of photons
- Point-Spread function (PSF): probability of reconstructing event at position **p**' given true position **p** and true energy E.
- Energy Dispersion / Migration (Edisp): Probability of reconstructing energy E' given true energy E
- **Background Rate**: rate of expected **background** at reconstructed position P' and reconstructed energy E')

Point Spread Function

Currently not treated

Examples

Outputs from gammapy

Event List

...

- tab [6]:
- [6]: Table length=499

S	SKYX_RADEC	DIR_ERR	DEC	RA	MULTIP	TIME	OBS_ID	EVENT_ID
	deg	deg	deg	deg		S		
	float32	float32	float32	float32	int16	float64	uint32	int64
	-0.8467294	0.0	-28.378927	329.76013	3	392695107.16595197	85356	24189255811677
	-1.1110648	0.0	-28.11467	329.7613	2	392695109.406718	85356	24193550778756
-0	-0.6760932	0.0	-28.54954	329.71042	2	392695114.1640556	85356	24197845746261
	-2.7600195	0.0	-26.46658	329.14612	2	392695117.68513155	85356	24202140713433
	1.3215607	0.0	-30.546444	330.07318	2	392695119.8251052	85356	24206435680287
	-0.03684649	0.0	-29.174904	331.64767	2	392695124.4254937	85356	24210730647732
	-0.927548	0.0	-28.294678	328.74268	2	392695129.84283924	85356	24215025615341
	-1.3244383	0.0	-27.899296	330.48044	2	392695130.539845	85356	24215025615494
	-0 15758944	0.0	-29 050547	32754605	3	392695131 2239411	85356	24215025615622

0.0 -

10-2

 10^{-1}

10¹

10²

10⁰

True Energy [TeV]

0.6749976

-1 8983405

向 个

Energy Migration

K. Kosack, Habilitation June 2023 9

Karl Kosack

Internal Dimensionality (3D):

- **Position** in Field-of-View (r, ϕ)
- ► Energy → large differences! even for FOV!
- ▶ **Time** → Usually taken into account by using 1 IRF per short time interval

Karl Kosack

Internal Dimensionality (3D):

- **Position** in Field-of-View (r, ϕ)
- ► Energy → large differences! even for FOV!
- ▶ **Time** → Usually taken into account by using 1 IRF per short time interval

External Dimensionality assumed constant within a stable interval (≈30min):

- ▶ Pointing direction on AltAz mount (α, ζ) *:
 - -altitude angle (atmosphere density)
 - -azimuthal angle (magnetic field orientation)
- ▶ Night-Sky-Background light intensity/distribution
 - Galactic Plane variations, stars (field-rotation!)
 - Zodiacal light
 - Human sources (cities, etc)
- Seasonal atmosphere changes, instrumental aging

(Energy dependent!)

* this works fine for HESS/ MAGIC/VERITAS with smallish FOV, but for CTAO (>10°) and HAWC/SWGO (>>10°), **pointing direction must be an internal dimension**

Internal Dimensionality (3D):

- **Position** in Field-of-View (r, ϕ)
- ► Energy → large differences! even for FOV!
- ▶ **Time** → Usually taken into account by using 1 IRF per short time interval

External Dimensionality assumed constant within a stable interval (≈30min):

- ▶ Pointing direction on AltAz mount (α, ζ) *:
 - -altitude angle (atmosphere density)
 - -azimuthal angle (magnetic field orientation)
- ▶ Night-Sky-Background light intensity/distribution
 - Galactic Plane variations, stars (field-rotation!)
 - Zodiacal light
 - Human sources (cities, etc)
- Seasonal atmosphere changes, instrumental aging

Non-continuous Dimensions

- Event Type (reconstruction quality, background quality)
- Subarray Choice

pointing mode (tracking, drifting, moon)DPPS

(Energy dependent!)

* this works fine for HESS/ MAGIC/VERITAS with smallish FOV, but for CTAO (>10°) and HAWC/SWGO (>>10°), **pointing direction must be an internal dimension**

Important note:

X-ray an analysis also uses forward-folding

- ▶ PI channel \approx E_{reco}
- ▶ **ARF** \approx 1D effective area IRF (with assumed source region), ours more like instmap?
- ▶ RMF ≈ energy dispersion IRF, but we often store as log(Etrue/Ereco) vs Etrue to reduce sparsity
- No instrumental background model needed (?)

For Gamma rays we often simultaneously model a combination of :

- Energy (energy-only == 1D spectra)
- Morphology (position-only point-source == 2D image)
- Time (time-only == 1D light-curve)

"Data Cubes" are important:

- Binned data in Space/Time/Energy (and also instrumental dimensions like event-type!)
- We do not use the term "Cube" to talk about event lists (re: proposed Cube data model) as event-lists are not constrained in bins or boundaries.

Karl Kosack

Data Model

Figure 3.1 – UML Diagram of the NDArray data model. CTAO Common Data Model Specification, v1a

Observation ≈ 30 min exposure **Stable Observation Interval (SOI)** ≈ 1-few per observation **One IRF per SOI**, decomposed into multiple components.

Data Model

Observation ≈ 30 min exposure Stable Observation Interval (SOI) ≈ 1-few per observation One IRF per SOI, decomposed into multiple components.

Figure 3.1 – UML Diagram of the NDArray data model. *CTAO Common Data Model Specification, v1a*

Figure 2.3 – UML Diagram of the DL3/Service/IRF Data Model.

CTAO DL3 Data Model Specification, v1b

Karl Kosack

DAITay	

Data Model

Figure 3.1 – UML Diagram of the NDArray data model. CTAO Common Data Model Specification, v1a

Observation ≈ 30 min exposure **Stable Observation Interval (SOI)** ≈ 1-few per observation **One IRF per SOI**, decomposed into multiple components.

Figure 2.3 – UML Diagram of the DL3/Service/IRF Data Model.

CTAO DL3 Data Model Specification, v1b

A Caveat: Point-like vs General IRFs

optimized by the PSF: "Point-Like IRFs"

- Assumes a **point-like source model** with known test position
- PSF effects (spillover of flux outside of region) taken into account in other IRFs
- Simpler analysis: no need to model PSF or source position/morphology
- BUT: is not general (extended emission, simultaneous fit of position and spectrum not supported)

We support this "type" of IRF as well:

- include a table of "spatial cut" vs energy
- other IRFs are generated with this cut already applied.
- User must select which type to use, based on their analysis case.

For some science cases, cut away background by selecting events near to source,