

 International

 Virtual

 Observatory

Alliance

Proposal for a Simulation Database Standard

Version 0.5
Note 2009 May ...

This version:
 0.5-20090504
Latest version:
 http://www.ivoa.net/Documents/latest/NOWHERE
Previous version(s):

Author(s):
 Gerard Lemson
 Hervé Wozniak

Laurent Bourgès
Rick Wagner
Claudio Gheller

Abstract

We propose a standard protocol for a “Simulation Database (SimDB)”. A SimDB
implementation is a web service that gives access to a databasde containing
metadata describing simulations. SimDB has been developed in the IVOA
Theory Interest Group with assistance of representatives of relevant working
groups. Whilst the theory interest group can not create working drafts and

promote documents onto the recommendation track, we feel this document has
sufficient detail that this can be done in short order.
This Note gives an overview of SimDB, and contains the MUSTs , SHOULDs etc,
but leaves many of the details to other formal and normative documents, in
particular where it concerns the data model and its representations that forms the
core of the proposal.

Status of This Document
This is a Note. The first release of this document was 2009 …. This is a
preparation of a specification document, but, coming from the theory interest
group, can not be a working draft on the recommendation track. Because of this
we have taken the liberty to add hints here and there in the document to working
groups with suggestions or requests for feedback. In the final specification these
must be taken out.

This is an IVOA Note expressing suggestions from and opinions of the authors. It
is intended to share best practices, possible approaches, or other perspectives
on interoperability with the Virtual Observatory. It should not be referenced or
otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
...

Contents
1 Introduction 4
2 Summary 5
3 SimDB data model: design overview (descriptive) 7
3.1 “20 questions” 7
3.2 Usage scenario 8

3.2.1 Millennium Run, simulation, post-processing and publication 8
3.3 Domain model 9

4 SimDB/DM: details (normative) 13
4.1 Packages 13

4.1.1 simdb 13
4.1.2 object 14
4.1.3 protocol 15
4.1.4 experiment 15
4.1.5 dal 15

4.2 SimDB/Resource 16
4.2.1 Connection to Resource Registry’s VOResource 17

4.3 Object types, object collections and characterisation 18
4.4 SKOS vocabularies 21
4.5 Issues for the model 22

4.5.1 Normalisation 22
4.5.2 Quantities and Units 24
4.5.3 Linking services and experiments 25
4.5.4 Constraints 25

5 SimDB/TAP (normative) 26
5.1 SimDB as TAP service 26
5.2 SimDB/TAP_SCHEMA 27

6 SimDB/REST (normative) 28
6.1 HTTP 29

6.1.1 GET 29
6.1.2 POST 29

6.2 SimDB/XML 29
7 SimDB/VOSI (normative) 30
8 Registration of SimDB implementations 31
8.1 Registration of SimDB services (normative) 31
8.2 Registration of SimDB/Resources (future) 31
8.3 SimDB as extension registry (far future) 31

9 Extras (some normative, some not) 32
9.1 SimDB/UTYPE (normative) 32
9.2 Harvesting (future) 32

References 33
Appendix A UML syntax 35
A.1 Element 35
A.2 Model (no visual counterpart) 35
A.3 Package 36
A.4 Class 36
A.5 ValueType 36
A.6 PrimitiveType 37
A.7 DataType 37
A.8 Enumeration 38
A.9 Attribute 38
A.10 Inheritance 39
A.11 Collection 40
A.12 Reference 40
A.13 Subsets 41
A.14 … (?) 41

Appendix B Data model usage by SimDAP and S3 42

B.1 SimDAP 42
B.2 S3 42

Appendix C An intermediate representation for data models 43
Appendix D SimDB/TAP_SCHEMA 44

1 Introduction
We here describe a proposal for an IVOA standard, the Simulation Database
(SimDB). Work on this standard started under the header Simple Numerical
Access Protocol (SNAP) in the theory interest group since the Victoria
interoperability meeting, 2006. Recent developments have made us decide to
split SNAP in two separate tracks, SimDB and SimDAP, which stands for
Simulation Data Access Protocol. The main part of this Note deals with SimDB
only: what it is supposed to be, what its current state is, and what further work is
needed and the possible organisation of that work.

Work on this specification has been organised via a googlecode SVN repository
in the volute project originally created by Norman Gray for the Semantics
Working group. The SimDB project in particular can be followed under
https://volute.googlecode.com/svn/trunk/projects/theory/snapdm . In particular
follow the current document is available from
https://volute.googlecode.com/svn/trunk/projects/theory/snapdm/doc/note.

SimDAP deals with extracting subsets of data from simulation results that have
been discovered through a SimDB. Its dependence on SimDB is through its
dependence on aspects of the SimDB data model. The progress of the SimDAP
specification can be traced also via the googlecode volute project:
https://volute.googlecode.com/svn/trunk/projects/theory/snap (see also [3]).

We think the SimDB effort has evolved far enough that it can be moved onto the
recommendation track. After summarising its main features, we identify some
issues related to this next step, namely that it is hard to find a single working
group that could be responsible for tracking all aspects of the specification.
We provide a number of possible solutions to this, but leave it to the TCG and the
Exec to decide on this. In the mean time the current group of developers will
keep working on this, with the goal of having working prototype/reference
implementations available by the October 2008 interop.

The organisation of thie Note is as follows. First we give an “executive” summary
of the proposal. Then we describe the data model on which the specification is
based. There we address explicitly some “meta-meta-design” issues for this
specification: how do we go about designing the abstract (i.e. implementation
neutral) data model, and how do we use it to derive usable representations of it.

We also explicitly state our position on using the results of prior standardisation
efforts of relevance, both from the data model and other working groups. Then
we define the protocol itself. This has two parts, one which we will
callSimDB/TAP, which is based on a relational database representation of the
data model. The other we will call SimDB/REST and is based on an XML
representation of the model.

We end by describing some prototype implementations.

2 Summary
SimDB is a protocol describing an online web service providing access to a
database that contains metadata describing numerical computer simulations of
astrophysical systems and related resources. The protocol defines the structure
of this database and how queries can be sent to it. We do this by defining SimDb
as a kind of specialised TAP/ADQL service.
We also define a serialisation to XML of specific types of resources in the
database. These can be used in a registration protocol and for retrieving full
descriptions of identified resources using simple, non-ADQL requests.

For this specification we follow the original SNAP idea, which limited its focus to
simulations that produce a representation of 3+1D space, and to various post-
processing products of a similar nature (we will assume to include the latter when
referring to “simulations” in the rest of this note. In later versions this restriction
on the type of simulations is likely to be relaxed.

1. The structure of the SimDB is based on a (logical) data model, fully
specified in UML2. This data model is part of the specification, though it
has no normative aspects for the protocol. It instead defines the concepts
that we use when discussing the structure of the SimDB database, without
referring to specific implementations.

2. From the UML data model we derive1 physical representations for use in
their respective SimDB service contexts:

a. A relational database schema expressed according to the TAP
specification.

b. An XML schema, defining valid XML documents containing SimDB
meta data descriptions for use in messaging.

c. A set of UTYPEs identifying elements of the model in case this
model is to be expressed in VOTables or other non-SimDB-
standard representations. One context for these is as the results of
the ADQL queries.

1 For SimDB this derivation relies on standardized set of rules. We believe it us ultimately the
domain of the DM working group to come up with such rules.

d. A human readable HTML document describing all the individual
model elements in detail.

3. These physical representations are to be used in the service interface
specification of SimDB instances. These are

a. A TAP/ADQL-based querying of the metadata repository as a
relational database. SimDB is a TAP service, mandating /sync
ADQL only and fixing the data model

b. A RESTful web service interface, using standard HTTP methods
(GET, PUT, POST, DELETE, etc.) to provide mechanisms for
maintaining the actual entries in a SimDB. SimDB resources would
be uploaded, retrieved, or modified using the XML format defined
by the XML Schema derived from the data model.

c. @@TBD needs discussion@@ An OAI-PMH compliant
publishing interface, to allow harvesting of SimDB records. Like the
Registry, this permits SimDB instances to acquire records
published in other SimDBs.

The protocol aspects will be fully defined in this Note, but often references will be
made to external documents containing details. For example the data models
and their representations are defined in external documents. Whilst under
development the most recent versions of these can be found under the Volute
GoogleCode2 project, more precisely in the SVN repository under
theory/snapdm3 (we will refer to this repository as “Volute” in the rest of this
Note).. The precise locations of documents will be given where required.
Eventually the documents will be uploaded to the IVOA Wiki.

This concludes the overview of the normative/standard aspects of the SimDB as
far as it has currently been designed. We do want to mention the following
aspects of the SimDB effort that will simplify much of the further work:

1. Under Volute we have XSLT scripts that derive the physical models
directly from the UML model according to predefined mapping rules.

2. We also derive Java classes with JPA and JAXB annotations to make it
easy to implement a SimDB from the specification.

3. From this we are developing a full SimDB implementation using code
generation from the UML model only.

4. We propose an implementation path to transform an existing, “legacy”
relational database containing simulation metadata to the SimDB
specification.

The following groups have committed to creating a reference implementation of a
SimDB, some of these are meant to be ready by the October 2008
interoperability meeting.

• GAVO (Gerard Lemson)

2 http://code.google.com/p/volute/
3 http://code.google.com/p/volute/source/browse/#svn/trunk/projects/theory/snapdm

• UCSD (Rick Wagner)
• INAF/Trieste (Patrizia Manzato) @@ TBD correct? ITVO maybe? @@
• INAF/Catania (Ugo Becciani) @@ TBD correct? ITVO maybe? @@
• VO-France (Franck LePetit, Laurent Bourges)

3 SimDB data model: design overview (descriptive)
SimDB is a protocol giving access to a database. The structure of that database
is prescribed by a data model. This data model is represented in different ways in
different parts of the SimDB protocol. For example TAP requires a relational data
model specified according to the metadata standards defined in the TAP protocol
[6]. We define UTYPEs for linking to the elements of the data model, and we
specify a set of XML schemas that together define the serialisation of particular
objects in the data model to XML.
These representations are all derived from an implementation-neutral version of
the data model. That specification is fully defined in UML and is what we will refer
to as the SimDB data model, or SimDB/DM. The UML diagram will ultimately be
uploaded to the appropriate place on the IVOA Wiki. Until then it is available on
the Volute repository (see [4]) as an XMI [10] document.
A possible problem is that one needs the UML drawing tool MagicDraw 4
(community version 12.1 is used) to read that file. Though the DM working group
has mandated that data models are to be represented as UML (interop,
Cambridge 2003), there is no agreement on a tool or standard representation of
such documents. And though XMI is supposed to provide a tool neutral
representation, we have not checked that other tools can read the diagrams. JPG
and similar representations will be made, but these are not complete. In
particular documentation of the individual elements is not visible.
To partially remedy this situation we provide an HTML description of the full
model in [5]. From this the model one could in principle draw the UML from
scratch for it contains all relevant information. This HTML representation also
contains the UTYPEs for each of the elements in the model and is part of the
normative specification of SimDB (see below).
We now describe the main structure of the UML model, detailing some aspects
that have provoked discussions in the past such as the use of characterisation-
like elements and registry-like resources and curation. In Appendix A we
describe the UML syntax we have used.

3.1 “20 questions”
We have followed the approach to data modelling suggested in [9] and applied
there to the design of the SDSS database for the SkyServer web site. According
to that approach one tries to gather O(20) science questions that a system
should be able to answer and one designs the system in such a way that this
becomes possible. We have polled some scientists with the question that if they

4 http://www.magicdraw.com/

were presented with a database of simulation metadata, what questions would
they want to ask it to find interesting simulations. The following list gives some of
the answers:

• What system/object is being simulated?
• What physical processes are included?
• How is the system being represented in the simulation (particles

(Langrangian), (adaptive) mesh (Eulerian)), both, other?
• How are the physical processes implemented ?
• Characterise the numerical approximations (.e.g. resolution, softening

parameter)
• What observables are available for the system/object, possibly as function

of time5? As it is a spatial system, at least simulation boxsize, center-of-
mass position.

• What observables are available for the constituents, i.e. what is the
schema of the objects from which the simulation built. E.g. particles in N-
body simulation, grid cells in an adaptive mesh simulation, particle groups
in a cluster finder?

• Per snapshot, per simulation object type, per variable:
o Characterise the possible values
o Characterise the result

• Are post-processing results available?
• Are services/applications available for accessing the results?
• Which code ran the simulation?

o Which version of the code ?
o Is software available?

• Who ran the simulations?
• What were values of input parameters?
• How were initial conditions created?

3.2 Usage scenario

3.2.1 Millennium Run, simulation, post-processing a nd publication
The VIRGO consortium ran the simulation . For this they used a particular
version of the simulation code Gadget. This simulation code needs a certain
number of input parameters to be set. The simulation code approximates
physical processes (Gadget supports gravity and hydrodynamics, star
formation, black hole formation etc) using numerical algorithms (TreePM,
SPH). The simulation code allows one to choose which physical processes one
want to include (for Millennium only gravity). The processes act on simulation
objects (here point particles) that on their own, or in aggregate represent real
world objects . (here Large Scale Structure) The simulation objects have a
number of properties (here [id, x, y, z, vx, vy, vz, mass]) that are evolved forward

5 Re: Rick Wagner’s example of certain properties only being calculated after a certain stage in
the simulation is reached.

in time by the simulation code. The code allows me to choose which properties I
want to calculate.
The simulation produces results that consist of collections of the simulation
objects, one for each type of simulation object that is included. In this simulation
each result corresponds to a snapshot taken at a particular time. The results are
stored in multiple files (512 per snapshot). These files have a complex format ,
the particles are ordered using an index based on a space-filling curve, and the
files contain hash tables that act as indexes to optimise retrieval of spatial sub
volumes.
The Millennium simulation contained about 10 billion particles in a box of size
500Mpc/h. It had 64 snapshots, including the initial conditions which were
calculated using a separate code. Each snapshot was about 400GB.

The snapshots produced by the simulation were used as input for various types
of post-processing . For example a cluster finder using the friends-of-friends
(FOF) algorithm was run on each of the snapshots. This produces FOF groups,
which are dark matter halos with more complex properties (radius, various types
of mass, velocity dispersion etc). The results are stored again in 512 files per
snapshot.
These files with FOF groups are used as input for the SUBFIND code which
detects substructures in the FOF groups, which correspond to bound “sub-halos”.
These sub-halos evolve in time by merging with each other. The resulting merger
trees are detected using a further post-processing algorithm which uses the
particle data and the sub-halo files.
These merger trees are the input for a simulation code that implements galaxy
formation using so called semi-analytical algorithms. These algorithms model
physical processes such as gas cooling. star formation and evolution,
supernovae feedback etc.
All the post-processing results are also stored in a relational database , which is
published through a web application that allows users to submit SQL queries to
the database.

 @@TBD some more examples@@

3.3 Domain model
The SimDB data model (SimDB/DM form now on) is inspired by the Domain
model for Astronomy proposed in [7]. We will explain the logic behind that and
the current model using a restricted version of the domain model, adjusted for the
current domain, that of theoretical simulations. The model is shown in Figure 1.
In that figure elements in orange are represented also in the SimDB data model,
possibly with a different name. The purple classes are not part of SimDB/DM, but
are used to explain other features.

Figure 1 Schematic model used to explain the logic of the SimDB model and the domain
model it is based on.

We start the description by assuming the existence of one or more Files that a
publisher thinks may be of interest to the community because they contain
astronomical data. Instead of in files the data might also reside in a Database ,

and to be generic we introduce a Storage base class that abstracts the actual
physical location of the data.
Registering that files exist somewhere is not of great interest without providing
information about the contents of the files. The philosophy that we follow is that
the files are of potential interest because they contain the Results 6 of an
(astronomical) Experiment , and accordingly their contents must be explained by
describing the experiment that gave rise to it. Only in this way can one make
scientific use of the files or other storage resources.
The abstract Experiment is made concrete by adding some examples of
experiment types that are important for the current model dealing with
Simulations and simulation PostProcessing .
In our model, Experiment represents the actual running of an experiment; to
describe the design of the experiment we introduce the concept of Protocol . This
separation between design of experiment and the execution is a normalisation
that reduces redundancy in the model. See section 4.5.1 below for a discussion
of this concept. We mirror the concrete subclasses of Experiment by adding
concrete subclasses to Protocol such as Simulator , which represents
simulation codes according to which Simulations are run, and PostProcessor
corresponding to PostProcessing runs.
The Protocol class contains InputParameters . An Experiment using a
particular Protocol only needs to indicate the values for these parameters. In this
way a single instance of the Protocol can be reused by many Experiments
performed according to it.
The Protocol also defines the possible structure of the results of the experiments.
In our model Results contain ResultObjects. These objects have a given type,
represented by the ResultObjectType contained by Protocol . The
ResultObjectType defines the Properties that these objects have.
For example the results of N-body simulations may contain particles having
properties position, velocity, mass and possibly othes. Adaptive Mesh
Refinement (AMR) simulations produce results that are collections of mesh cells
of various sizes, positions and contents. Similarly post-processing codes such as
halo finders produce “halos” and “semi-analytical” galaxy formation codes
produce galaxies.
In general a single result can contain objects of different types. For example a
Smooth Particle Hydrodynamics (SPH) simulation may contain dark matter
particles, star particles and gas particles. And in general the codes allow one to
configure which of these exactly are chosen in a given experiment.

6 We do not assume that in reality the relation between the conceptual Result and the concrete
Storage elements can be modelled by a single reference. Especially for the largely non-
standardised world of simulations a single result can be distributed over many files, but it is also
possible for one file to contain multiple results. In the current SimDB model we do not attempt to
model such relations explicitly. We delegate the responsibility for accessing the physical results to
(web) services and this issue is more explicitly addressed by the SimDAP protocol.

One aspect of the experiment that is not determined by the protocol is why the
experiment was performed. In the model we introduce the Target concept for
this, which represents real world objects or processes that are being simulated.
For example, with the same N-body simulator one may simulate a galaxy merger
or the evolution of large scale structure of the universe.
As discussed above, the actual way in which results are stored in files or
databases is hard, if not impossible to model. Instead we assume that
Webservices of various kind may be used to access the results of simulations
and other SimDB products.
Some of these will be standardised in the SimDAP specification, but custom
services may also be introduced. The model allows one to describe the
experiments and their results, which should allow users to discover results of
interest, after which the web services can be called for actually accessing these.

4 SimDB/DM: details (normative)
The actual SimDB follows the logic explained in the previous section, filling in
details and adding some more concepts. A single image of the model is too large
to fit in a readable fashion in this Note. We will provide cut-outs of relevant pieces
in the following sections. For full details we again refer to the UML model in [4]
and the HTML documentation in [5].

The capitalised keywords “MUST”, “REQUIRED”, “SHOULD”, and “MAY” as
used in this document are to be interpreted as described in the W3C
specifications (IETF RFC 2119 [13]). Mandatory interface elements are indicated
as MUST, recommended interface elements as SHOULD, and optional interface
elements as MAY or simply as a non-capitalised “may”.

4.1 Packages
We subdivide the model in packages (see 9.2A.3). These subdivide the model in
subsets of classes and data types that belong together. This subdivision is
generally based on collection hierarchies. We use this subdivision to show the
model in detail and give a short description of each package. See for the
packages and their dependencies.

Figure 2 The packages of the SimDB data model and t heir relationships. The
IVOAValueTypes package is defined in the formal UML profile and contains the predefined
primitive types (see).

4.1.1 simdb
This is the root package of the SimDB data model. It contains the Resource
Class (see below), which plays the same role as the Resource class in the
Registry Resource model []. Only Resources can be directly registered in a
SimDB, other types of objects can only occur in the context of a Resource
object’s hierarchy.

Figure 3 The "simdb" package.

4.1.2 object
This package contains Class definitions that describe objects and their
properties. It is used to describe objects in simulations, both the ones that are
used, such as the particles in N-body simulations, but also astronomical objects
that are the result or target of the experiments.

Figure 4 The "objects" package.

4.1.3 protocol
The protocol package contains the Protocol class and subclasses such as
Simulator and PostProcessor. The package furthermore contains classes that
describe features of these resources such as InputParameter,
RepresentationObjectType or Algorithm. See below for more details about some
of these classes.

(The image for this package is too large to fit easily on a page so we refer to the
online resources.)

4.1.4 experiment
The experiment package contains the Experiment class at its root and
subclasses of it such as Simulation and PostProcessing. It also contains classes
that describe further features such as parameter settings and in particular the
Snapshot class which represents the results of the experiments. In later sections
we describe some more details of these classes.

(The image for this package is too large to fit easily on a page so we refer to the
online resources.)

4.1.5 dal
This package, named after the Data Access Layer working group, contains a few
classes that aim to model web services that give access to the results of
experiments. As mentioned above we do not explicitly model how these results
are stored, but defer such considerations to the actual services that allow
download and/or manipulation of these resources. These services may
implement protocols such as SimDAP, but they may also be custom services.
The main feature that is important for the SimDB is that for a given experimental
result one should be able to find services that allow their retrieval.

Figure 5 The dal package, with a class representin g web service for accessing other
SimDB resources.

4.2 SimDB/Resource
At the root of the SimDB data model is an abstract class called Resource, in the
rest of this document we will refer to this as SimDB/Resource, a notation we will
follow with other concepts as well. Resource represents the different types of
highest level meta-data objects to be stored in a SimDB. Concrete examples of
this are represented as subclasses. First Experiment (SimDB/Experiment), which
represents different types of experiments that have been performed
(run/executed/...) and have produced the results that SimDB users may be
interested in. Examples of SimDB/Experiment-s are Simulations, but also the
various PostProceissing operations transforming simulation results into other
products such as halo catalogues, density fields etc.
The second major type of SimDB/Resource is the SimDB/Protocol. This concept
represents a formally prescribed way of doing an experiment. It is derived from
the concept with the same name in the domain model, which itself was inspired
by the concept with the same name in Chapter 8.5 in [3]. In the SimDB/DM this
concept has concrete representations in the computer programs that are being
used to run simulations and post-processing etc. As such it defines the possible
input parameters, possble algorithms, the kind of results that can be produced by
the code. Every SimDB/Experiment must indicate which SimDB/Protocol was
used and for example provide values for the input parameters, indicate which
physics was used

This separation between Protocol and Experiment is an important feature of the
model. It is directly taken over from the domain model presented in [7], and is
related to the Measurement-Protocol pattern in [8]. That pattern says that when
one does a measurement (of some property) it is important to remember the
protocol by which the measurement was made ([8], p65). In [7] this was
expended to experiments, which in general consists of large numbers of
“measurements”, all done in similar ways. Whereas the term measurement
seems to be more applicable to observations, it is simple to generalise the
concept a bit and apply it to the calculation of properties during a simulation.
Actually this is similar to the CalculatedMeasurement in [8].
An important reason to introduce this separation here is to avoid having to
redefine the parameters and other aspects of a simulation code each time a
simulation is run.

4.2.1 Connection to Resource Registry’s VOResource

Figure 6 UML rendering of the Resource complexType from [16].

In Figure 6 we present a UML rendering of the Resource complexType as as
inferred from the Resource Registry VOResource XML Schema [16]. Comparing
that model to SimDB/Resource in Figure 3 we can see that these two models for

Resource are related, but not identical. In data modelling terms, it is not true that
a SimDB/Resource is a Registry/Resource (or vice versa). Curation is modelled
differently and arguably with less detail in SimDB7, but the main difference is in
the Content. SimDB provides a very detailed and specialised model for the
Content of Simulations and related resources, by modelling provenance,
motivation and results characterisation. This higher level of detail gives rise to a
higher level of granularity in the types of resources stored in a SimDB, which in
general will be to fine grained for registration in a Registry. This is similar to the
case of a single image, which is not a Registry/Resource, whereas a SIAP-
compatible service, providing access to many images, is.
A SimDB service itself will have to be registered (see chapter 7 for that
discussion), i.e. a SimDB service is a Registry/Resource. In discussion with Ray
Plante (IVOA Interoperability meeting May 2007, Beijing) on this issue it was
proposed that some part of the contents could also be registered in a Registry
directly, i.e. we should be able to identify Registry/Resource-s in SimDB.
Considerations to decide on how to make this identification would be for example
that all data products resulting form a well defined (and published) scientific
project could qualify. To represent such a possibility for now we have introduced
another subclass of SimDB/Resource: SimDB/Project. This is not much more
than an annotated aggregation of other SimDB/Resources, with some additional
attributes describing the motivation etc. The metadata of a SimDB/Project is not
the same as that of a Registry/Resource, however we propose that we should be
able to define a transformation (possibly implemented again in XSLT) to
transform a SimDB/Project and produce a Registry/XML representation. Some
more thoughts on this subject will be given in chapter 7.

4.3 Object types, object collections and characterisati on
The world of simulations is very heterogeneous, and in contrast to a model for
images or for spectra, we can not predict what type of results a simulation or
post-processing product will deliver. Simplifying a bit, “all” images contain pixels
at a given sky position, measuring a flux; spectra contain pixels representing a
given wavelength, again measuring a flux. SimDB model we do not assume very
much about the type of products produced and hence these have to be explicitly
described in the model. In the domain model [7] results are represented as in the
diagram in Figure 7, which is a slight modification of the original:

7 TBD Should we follow the Registry’s Curation model for SimDB resources?

Figure 7 Domain model for results.

Results consist of Object-s. Objects are structured according to an ObjectType.
The possible object types are predefined in the protocol by lists of Property-s.
Objects are instances of object types, similar to the way objects are instances of
classes in common object oriented programming languages, and assign values
to the properties.
In SimDB (and the domain model) the ObjectType concept is supposed to
represent the “atomic building blocks” of a result. In the model a result should be
seen as a collection of these objects. So for example an image is a collection cof
pixels, with properties location, flux, time. The bbjects in a source catalogue
(result of a "source extraction experiment") are the sources, with whatever
properties the source extractor calculates. In simulations a result may consistsof
a collection of N-body particles, with properties (x, y, z, vx, vy, vz, mass) or a
collection of (adaptive mesh refinement) grid cells, with properties (position, size,
density, temperature). Howevere the actual result is stored, in principle one must
be able to identify such collections of objects and their properties.
This is a model that could describe the actual data products. Objects, instances
of object types could be stored in a database for example. However, the current
data model is not supposed to be that fine grained. In this respect it is different
for example form the spectrum data model, which does contain the objects
(“pixels”) themselves. The SimDB/DM is a model for metadata, and a detailed

model for the data is beyond its scope. Nevertheless it may be useful to have
some indication of the actual results, albeit not in all detail.
We have therefore looked for a way to summarise the detailed results. This is
very similar (in our opinion) to the approach taken in the Characterisation data
model and we use similar names. In fact it follows the proposal for a
Characterisation domain model @@TDB add link@@ that may be discussed
further in the DM working group (private discussions with Mireille Louys and
Francois Bonnarel).
The following diagram shows our approach to characterising the contents of the
results (which in the SimDB/DM are called Snapshot-s).

Figure 8 Characterisation in SimDB/DM

A snapshot has a collection of ObjectCollection-s, each of which represents a

collection of objects of a single ObjectType. The object collection has a collection
of Characterisation-s, each of which characterises a property of the object. The
interpretation is that from the collection of objects of a given object type, we can
extract collections of value(assignment)s, one for each property of the object type.
It is these collections that we want to summarise. Precisely how this summary is
made is defined by the type attribute on the Characterisation class. It takes a
value in an enumeration, examples of which are min, max, mean. We expect this
list to change, maybe become a semantic vocabulary, as it corresponds to
various statistics one could derive form the collections of properties.
@@TBD We want to discuss the issue of characterisat ion in the SimDB/DM
further in the context of the corresponding discuss ion in the DM WG@@ .

4.4 SKOS vocabularies
In the SimDB data model, observables, object types, properties, parameters that
play a role in a given simulation have to be defined explicitly, for the world of
simulations is too large to define all possibilities in the model itself. This in
contrast for example to the spectrum data model @@TBD add reference@@ ,
where we know that a flux is determined for a wavelength interval, or a model for
images where a flux is determined for a spatial pixel. In principle the publisher of
a SimDB/Resource has all freedom to name and describe these entities. For
other users to understand the meaning of them, we have where appropriate,
added an attribute corresponding to a semantic label. This is similar to the
situation in VOTable, where FIELD-s can be given a UCD (or UTYPE) that allows
users to understand the meaning of a column in the table.
In SimDB we need to generalise this concept as UCDs are not sufficient for our
puspose. For example target object types are not covered by the list of UCDs
and the same for other elements in our model. The Semantics WG is defining
semantic vocabularies for use in the VO, for example of astronomical objects.
We try to anticipate their results by introducing a special type of attribute in our
UML profile that corresponds to a concept in a given ontology.
Technically, we have defined a sterotype <<ontologyterm>> that can be assigned
to an attribute in the UML model. Attributes with this stereotype must define a
value for the tag "ontologyURI". This value must be a URI that points to a SKOS
XML document defining a list of (top) concepts that are the valid values for the
attribute.
Concretely, in our model we have assigned this sterotype to the following
attributes and assigned the indicated URIs. Currently the URIs point to a location
in the snapdm project in volute. Eventuallly they should link to a location decided
by the IVOA/Semantics group.

Table 1 Attributes in the data model that represent a concept in a SKOS vocabulary, i.e.
have sterotype <<ontologyterm>>.
attribute URI
Algorithm:label IAUT93.rdf
Physics:physicsLabel http://ontology.of.physical.objects
Property:ucd UCD.rdf

RepresentationObject:label IAUT93.rdf
TargetObjectType:label IAUT93.rdf
TargetObjectType:… http://some.way.to.point.at.identified.objects
TargetProcess:astroJournalSubject AAkeys.rdf

4.5 Issues for the model

4.5.1 Normalisation
The current version of the SimDB/DM is rather more normalised [9] than most of
the other data models in the IVOA. We explain this concept based on a particular
choice we made during the modelling process, and then we discuss the
consequences of particular choices.

Figure 9 Non-normalised model for experiments and p arameters.

At an earlier stage, the model was less normalised in the design of the input
parameters of an experiment, as is illustrated in Figure 9. There was no separate
protocol class, only an attribute protocolName on the Experiment class indicated
the protocol by which the experiment was run. Also, the input parameters on the
experiment were completely contained in a collection of Parameter -s. The
Parameter class contained all the details, including name of the parameter,
description, ucd etc. It also contained the value of the parameter in the
experiment.

Figure 10 Normalised modelling of experiments, prot ocols and their parameters.

Currently the model treats parameter definitions and settings as in Figure 10. In
this normalised design, the Protocol is given a class of its own, and it contains
the input parameter collection. The InputParameter class does not contain a
value, only the definition of the parameter: name, datatype, ucd, description. The
values assigned to parameters in a given experiment are captured with the
ParameterSetting class, contained in a collection off Experiment.
The motivation for this change of model was that a SimDB instance will in
general contain many simulations (experiments) run with the same simulator
code (protocol). In the old model, each experiment has to define the collection of
input parameters with all details. In the new design this only has to be defined
once, on the appropriate protocol. This clearly is less redundant, which is one
important design goal of a normalised modelling approach. At the same time it
provides an explicit identity to input parameters, which allows us to ask explicit
questions about all parameter settings for a given, identified parameter. In the old
model this is only indirectly possible, using equality of the name of input
parameters for all experiments having the same protocolName. Now we can ask
for all experiments with the same protocol reference, and look for parameter
settings with the same input parameter reference. This is arguably a more
"correct" model of reality.

There are therefore advantages to normalisation, but there are also
disadvantages. We need to realise these and make choices that optimise the
usability of the data model. One of the main disadvantages is that references,
which naturally have to be introduced when normalising a model, are more
difficult to deal with than most of the other modelling elements, particularly in
some physical representations (see below). When defining a new experiment,
one will have to find the input parameter that one needs to set, and instead of
simply giving name/value, one needs to represent the reference to the parameter.
For this one may have to extract the protocol as stored in the SimDB and find the
appropriate identifiers of the input parameters. In this sense an Experiment
definition becomes less self-contained, it depends on the details of the registered
Protocol. This protocol is registered separately and necessarily at an earlier point
in time.
This puts strong requirements on SimDB implementations to maintain referential
integrity, something which will be even harder to achieve if we were to allow
cross-SimDB referencing. In one advanced usage scenario the UC San Diego
version of SimDB registers the Enzo8 simulator, whilst the Italian SimDB allows
registration of simulations that used it and reference the remote protocol9.
Similarly a query language needs to be able to handle with this level of
indirection. For example in a relational database one needs to write joins
between ParameterSetting and InputParameter. For expert SQL users this is not
a problem, but is something to get used to. For simpler query languages, those
not allowing joins, like TAP/Param, asking meaningful queries becomes very
difficult. One way around this problem could be to add some view definitions to

8 http://lca.ucsd.edu/portal/software/enzo
9 We actually do not support this scenario in the current version of SimDB.

the model. In relational databases, views are predefined, named SQL queries
that can be treated as if they were tables when querying the database. It is quite
straightforward to define some SQL queries that as it were denormalise the
model and put the input parameter definition back under the experiment together
with the value. This way one may protect users of the database from the high
level of normalisation. @@TODO discuss this further @@

4.5.2 Quantities and Units
At various locations in the SimDB data model numerical values can be defined,
for example in parameter settings or the characterisation of properties of
representation object type collections. Often these numerical values will need to
have a unit. The IVOA has two ways of dealing with units. Either units are fixed
explicitly for properties/parameters in protocol or data model, sometimes
depending on the small list of possible UCDs. Alternatively units are epxlicitly
stated, for example in VOTable. At the moment we suppport the second mode,
especially because, as is true for VOTable, we do not know what kind of property
is being used. To this end we introduce a value type in the model, Quantity ,
which contains a value and a unit, and which is the data type of various value
attributes, for example in NumericalParameterSetting or Characterisation. In the
XML schema this is translated to a complexType with 2 elements, in the
relational database schema to two columns, one with the value, one with the unit.
It is in the use of the relational schema that we anticipate problems with this
approach, especially in the query protocol to SimDB. Consider the typical science
question: return all N-body simulations with particle mass roughly 1010Msun. In
SimDB this would be need to be translated in an ADQL query which contains the
unit column explicitly. Allowing users freedom of registering SimDB resources
using any units they desire can lead to resource containing, for the same
observable "N-body particle mass", values with a whole range of units. To
provide reasonable support to users requires the SimDB implementation to be
able to do the automated transformation. But in the We propose in SimDB to use
ADQL/TAP as the query interface. If units are stored explicitly users can phrase
queries using these,
An alternative approach is to mandate stating values for properties with a given
UCD (or other semantic label) always with the same units. This would solve the
query problem but poses others. For one it may be very (too?) unnatural for
users to be forced to use meters for cosmological simulations, or megaparsec for
simulations in the solar system. Related to this is the probably contentious
discussion of what units to assign to what UCD. One might choose SI or cgs
units, but these are not always very useful or natural. @@NB This is similar to
the recent proposal by Alberto Micol for “Standardis ing units and formats
(and ref frames?) in transmission”
 http://www.ivoa.net/forum/dal/0905/1270.htm @@

4.5.3 Linking services and experiments

When studying the SimDB/DM and comparing it to the explanation in section 2.1,
one will notice that there is no concept of storage for the results in the proposed
model. The reason is that whereas we can define the concept of a Result as
collections of Objects quite satisfactory, we have shied away of trying to model
the precise way these results are actually stored in files or a database. There are
simply too many possible and actual ways in which results can be stored in a file
system. In general, a result, or snapshot in our model, can not be modelled with
a simple reference to a file or table in which it is stored. Large results may be
split up over many files, stored as structs, or in arrays. We have therefore
decided not to open this can of worms (or reopen it, see the Quantity data model
[20]).

Instead we assume the existence of web services that allow users access to the
results of SimDB experiments. Some of these services may implement a
standard protocol as defined by SimDAP, or they may be custom services. The
precise way to relate experiments to services and what can be inferred about
how to call them is the task of the SimDAP protocol.

In the model actually web services are related to resources in general. This can
be used to represent services that gives access to a set of experimental results
from some project, or that can for example visualise any result of experiments
performed according to a fixed protocol, for example generic Gadget-format
visualisers.

4.5.4 Constraints

The UML profile (see 9.2Appendix A) allows the definition of various types of
constraints. For example we have constraints on the lengths of (string) attributes.
These are defined using tags on the <<attribute>> stereotype. Other constraint
on that stereotype are uniqueGlobally and uniqueInCollection. The latter can for
example be used to state that the names of properties on an object type should
be unique for that object type. The former states that the attribute should be
unique in the

Issues:

• Can we make statements like: "A SimDB implementation MUST enforce all

the rules from the UML model"? Or do we have to stick to statements in
terms of the physical representations?

• DM WG may want to start thinking how to express constraints in a DM

5 SimDB/TAP (normative)
A SimDB “is a” TAP [6] service, with certain restrictions. What this means is that
the main way by which SimDB is supposed to allow users to query for
simulations and related resources is through ADQL queries submitted through
HTTP requests. SimDB uses the TAP protocol to define how these queries
should be sent. SimDB is a special TAP service in that the TAP metadata are
predefined and based on the SimDB/DM. One consequence of this is that all
SimDB instances will understand the same ADQL queries.
Here we define the subset of TAP functionality that must be supported and define
the SimDB TAP_SCHEMA.

5.1 SimDB as TAP service
A SimDB MUST implement the TAP protocol exactly as it is defined in the
corresponding specification, but with some following changes. Here we provide a
few consequences of this requirement (introduced by “Following TAP …”), and
list explicitly all deviations of that specification (introduced by “In contrast to TAP
…”).

Following TAP, a SimDB/TAP service “MUST be represented as a tree structure
of web resources each addressable via a URL in the HTTP scheme”10.
In contrast to TAP, SimDB mandates some extra structure on this structure. A
SimDB service itself MUST be accessible through a registered web resource. We
will refer to this address as %SimDB%.
The TAP functionality MUST be accessible through %SimDB%/tap. I.e. it is this
URL that corresponds to the “tree structure of web resources” in the TAP
specification. This structure is mandated to provide a uniform treatment of the
different protocol features, TAP and REST.

Following TAP, a SimDB MUST implement synchronous ADQL querying of the
database following the method defined in TAP. As a consequence ADQL
querying will be available under

%SimDB%/tap/sync?REQUEST=ADQLQuery&ADQL=…

@@TBD check compatibility with TAP@@

In contrast to TAP, a SimDB MAY (i.e. “NEED NOT”) implement asynchronous
ADQL queries. In fact a SimDB MAY support all the other query configurations
including (a)synchronous Parameter queries. In all cases the TAP specification
MUST be followed regarding request format, execution, result and error handling
etc.

10 TBD Should we allow HTTPS as well?

Following TAP, a SimDB MUST 11 support metadata querying of the
TAP_SCHEMA in all manners defined in TAP. In particular ADQL queries to the
TAP_SCHEMA tables MUST be supported.

In contrast to TAP, the metadata for a SimDB service are prescribed and as a
consequence each SimDB service MUST give the same reply to the same TAP
metadata query. This reply is completely specified by the SimDB/TAP metadata
described in 5.2.

Following TAP, the result of a query MUST be a VOTable constructed according
to the description in section 2.9 of the TAP specification.

@@TBD more cases where TAP is followed and/or devia ted from? @@

5.2 SimDB/TAP_SCHEMA
TAP expresses its content metadata in various ways. One of these is through a
set of tables in the TAP_SCHEMA, containing information about schemas,
tables, columns, foreign keys and possibly other elements that assist the user in
defining queries.
Generic TAP implementations are free to define their database, i.e. there is no
fixed data model. SimDB/TAP is special in that it completely12 defines the
contents of the schema, i.e. SimDB/TAP prescribes the relational model of the
SimDB database.
This relational model is derived from the SimDB data model. SimDB/DM is an
object model, but we follow standard object-relational (OR) mapping algorithms
to derive from this a relational database model. This model is completely
described using the various metadata formats in the TAP specification.
The formal definition of the SimDB/TAP_SCHEMA is presented as a VOTable
serialisation of the TAP_SCHEMA tables in Appendix D.

The main features of the OR mapping are summarised in

Table 2 Object-relational mapping from SImDB/DM to the TAP_SCHEMA
Object model element Relational data model element
objectType 1 table (or view!) per object type.

Must contain all attributes as columns (see below),
where appropriate including attributes inherited from
base class(es).
Must include some extra columns such as
identifiers and timestamps.

simple attribute column of mapped ADQL data type (see Table 3)
structured attribute one column for each attribute of structured

11 TBD since the metadata is prescribed, iso a MUST we might use a SHOULD ?
12 TBD We should decide whether we want to allow extensions

datatype, with a particular naming convention.
reference foreign key (FK) column of same type as identifier

column in referenced table.
collection (parent-child) FK column named “containerId” from child to parent
inheritance Identifier column of the subclass is also a FK

column to the base class’s table. On the table for
the root base class a VARCHAR column named
DTYPE stores the Class name of the object actually
stored in the row.

package Ignored. Could be mapped to schema, but we have
decided not to do so.

… …

The mapping of data model primitive types to ADQL types is preformed
according to the prescription in Table 3.

Table 3 Mapping of SimDB//DM primitive data types t o TAP's ADQL data types.
Primitive data type
(from IVOA Value types)

ADQL Type

boolean BOOLEAN
integer INTEGER
real DOUBLE
datetime TIMESTAMP
string VARCHAR(L)

Length L=256 if no length constraint is
given, otherwise the maxLength or
length constraint is used.

…

There are typically different ways to map classes in inheritance hierarchies.
Some advocate to have a separate table for each concrete class and store all
attributes, including the ones that have been inherited., others have a table for
each class and only. We have decided that for each Class in the model there
should be a table to query. This may be a view, SimDB

6 SimDB/REST (normative)
SimDB defines a REST [11] interface for retrieving or uploading XML
representations of complete SimDB/Resource-s.

The representations of the data model that are retrieved or uploaded MUST be
XML documents that are valid according to the XML schema defined in 6.1. The
actual actions and their protocol is defined in the subsequent subsections.

6.1 HTTP

6.1.1 GET
A SimDB MUST implement an HTTP GET request for an identified resource.
The format of the URL MUST be

%SimDB%/rest/get?resourceId=:ID
Here :ID is the IVO identifier of the requested resource. %SimDB% is the root of
the SimDB service as defined in 5.1.
The SimDB service MUST return an XML document that serialises the indicated
SimDB/Resource according to the XML schema defined in the next section 6.2

@@TBD the form of the URL is rather simplistic. May be more REST-like
format is better? @@

6.1.2 POST
A SimDB MAY implement an HTTP POST for uploading a SimDB/Resource.

@@TBD Needs further details. The POST may be struct ured in a properly
REST-like form. But we may postpone this to a later version @@.

6.2 SimDB/XML
SimDB defines an XML serialisation of the data model using a set of XML
schemas. These schemas define valid SimDB/XML documents that are used in
the REST part of the SimDB protocol.
The schema documents are part of this specification and will eventually be
uploaded to the IVOA Wiki pages. Until then they can be retrieved from the
Volute repository:
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/.

The XML schemas are defined using a fixed mapping from the data model in
UML to complexType and simpleType definitions in XML schema (see [18] and
links from there). We furthermore define a set of root elements based on the
concrete SimDB/Resource classes, these define the valid documents.
Consequently the schemas are described in one set of documents containing the
type definitions, and another single document containing the definitions of the
root elements. This follows the approach in the design of the XML schemas for
the IVOA Registry.

Similar to the object-relational mapping the following table gives a summary of
the mapping of UML to XSD.

Table 4 Mapping of UML to XML Schema concepts.
Object model element XSD model element
objectType complexType
attribute element of type according to the

data type of the attribute
attribute element13 of appropriate data type.
reference element of type base:Reference14 .

That type
collection (parent-child) element of appropriate (mapped)

type on the container type.
inheritance extension
dataType complexType.
enumeration simpleType restricting xsd:string

with an xsd:enumeration element
fror each of the literals in the UML
enumeration.

package (target)Namespace and separate
XSD document.

package dependency Import of XML schema
corresponding to package one
depends on.

model XSD document with a root element
for each of the concrete root entity
classes, i.e. those classes that are
not contained in another class
(either direct or through a base
class).

…

7 SimDB/VOSI (normative)
SimDB is a web based VO service protocol and hence it should comply with the
IVOA Support Interface [17] specification. SimDB does not define a SOAP

13 Note, attributes map to elements, not to attributes. This is so that all attributes are treated
uniformly, as structured data types must be mapped to complexType-s and attributes of such a
type MUST be mapped to elements.
14 See http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/base.xsd

binding and therefore the “REST binding” ([17], section 2, item 3) of that
specification applies.
TAP
Capabilities and Availability MUST be spe
@@TBD need input on how to complete this section. @ @

8 Registration of SimDB implementations
SimDB implementations must be registered like all IVOA standard services. But
also part of the contents of a SimDB may be registered in their own right. This
will not be true for all SimDB/Resources. But for example web services and
Projects may be registered. Indeed the original motivation for introducing the
SimDB/Project into the model was for this purpose.

8.1 Registration of SimDB services (normative)
A SimDB implementation MUST be registered in an IVOA registry.
This means that an XML document must be provided that describes the service
as a VOResource [16]. We must decide on the form of this document. Can we
reuse an existing type of VOResource, for example VODataService? Or must the
registry model be updated with a new type of “SimDB” resource?

As SimDB is a TAP services we likely can follow the way TAP services are
registered, but it would be good to be able to query a registry for all SimDB
implementations.

@@TODO discuss with Registry WG@@

8.2 Registration of SimDB/Resources (future)
Certain types of SimDB/Resources MAY be registered in their own right in a
Registry. In particular SimDB/WebServices SHOULD (MUST?) be represented in
a Registry. The Resource metadata may be more comprehensive than the
metadata in the SimDB/DM.
Also other SimDB/Resources may be registered individually. In particular if these
represent “something large”, a comprehensive result from a scientific project.
Individual simulations may not qualify, protocols may though. @@TBD how
should protocols be registered?@@ .
In particular SimDB/Projects can be registered. This concept represents exactly
the result of a larger project, a complete collection of resources. @@TBD how
should projects be registered?@@ .

8.3 SimDB as extension registry (far future)
IF we conclude from the previous section that SimDBs harbour resources that
are qualified to be registered in a Resource Registry, it may become possible to
view SimDB as an extension registry.

To do so will put requirements on SimDB. In particular it has to implement the
registry interface and must for example be able to deliver SimDB/Resources in a
representation appropriate for a Registry.
This likely should be postponed till later version.
@@TBD can we leave it at this, or are their more in teresting statements to
make about this possibility?@@

9 Extras (some normative, some not)

9.1 SimDB/UTYPE (normative)
UTYPEs are strings that “point into a data model”.

We have defined a list of UTYPEs for the model. These can be found in the
HTML documentation of the model in [5]. When representing components of the
data model in a VOTable (for example), these SHOULD be used, in particular
when the VOTable contains results of ADQL queries to SimDB/TAP.
We use a particular rule to derive the UTYPEs from the UML model. We present
this rule in a quasi-BNF form for each of the elements that have a UTYPE:

utype := [model-utype | package-utype | class-uty pe |
 attribute-utype | collection-utype |
 reference-utype | container-utype
model-utype := <model-name>
package-utype := model-utype “:/” package-hierarchy
package-hierarchy := <package-name> [“/” <package- name>]*
class-utype := package-utype “/” <class-name>
attribute-utype := class-utype “.” attribute
attribute := [primitive-attr | struct-attr]
primitive-attr := <attribute-name>
struct-attr := <attribute-name> “.” attribute
collection-utype := class-utype “.” <collection-nam e>
reference-utype := class-utype “.” <reference-name>
container-utype := class-utype “.” “CONTAINER”
identifier-utype := class-utype “.” “ID”

9.2 Harvesting (future)
@@TBD Here we could describe, IF we want to make it part of the
specification, how remote SimDB-s might be harveste d to replicate (some
of) their resources. @@

References

[1] R. Hanisch, IVOA Document Standards,

http://www.ivoa.net/Documents/latest/DocStd.html
[2] This document, at web address

http://code.google.com/p/volute/source/browse/trunk/projects/theory/snapdm/specifi
cation/SimDB-note.doc

[3] Gheller C., Wagner R. et al, Simulation Data Access Protocol (SimDAP),
http://code.google.com/p/volute/source/browse/trunk/projects/theory/snap/SimDAP.
html

[4] SimDB data model UML diagram obtained from MagicDraw :
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/Si
mDB_DM.xml

[5] HTML representation of the SimDB data model in [4]
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/Si
mDB.html

[6] TAP specification, until further notice we will use version 0.5 on the TAP
page of the data access layer working group :
http://www.ivoa.net/internal/IVOA/TableAccess/TAP-0.5.pdf
(NB started out using 0.4, need to check that chang es in 0.5 are
properly represented where applicable).

[7] A Unified Domain Model for Astronomy
Lemson, G., Dowler, P, Banday, A.J., 2004 ...
http://www.aspbooks.org/a/volumes/article_details/?paper_id=861

[8] Analysis Patterns
Fowler, M.

[9] Some links to web pages on data model normalisation
http://www.datamodel.org/NormalizationRules.html
http://en.wikipedia.org/wiki/Database_normalization

[10] XMI ...
[11] Architectural Styles and the Design of Network-based Software

Architectures
Fielding, R. T. 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[12] IVOA Spectral Data Model
Jonathan McDowell et al, 2007
http://www.ivoa.net/Documents/latest/SpectrumDM.html

[13] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF RFC
2119. http://www.ietf.org/rfc/rfc2119.txt

[14] OMG Unified Modeling Language (OMG UML), Infrastructure Version 2.2
http://www.omg.org/docs/formal/09-02-04.pdf

[15] Bob Haniisch et al, Resource metadata for the virtual observatory
http://www.ivoa.net/Documents/latest/RM.html

[16] Ray Plante et al 2008, VOResource : an XML Encoding Schema for Resource
Metadata
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html

[17] Guy Rixon IVOA Support Interfaces Version 1.00 …
http://www.ivoa.net/Documents/WD/GWS/VOSI-20081023.pdf

[18] XML schema, http://www.w3.org/XML/Schema
[19] Carlos Rodrigo et al, S3 : proposal for a simple protocol to handle theoretical

data (microsimulations)
http://www.ivoa.net/Documents/latest/S3TheoreticalData.html

[20] Jonathan McDowel et al, Data Model for Quantity
http://www.ivoa.net/internal/IVOA/IvoaDataModel/qty23.pdf

Appendix A UML syntax

For a particular community it is possible to create a domain specific extension of
UML by defining a so called Profile15. Such a profile can restrict the set of
available syntactic elements to a subset of those available to UML as a whole.
But also one can assign new meanings to existing elements by defining
stereotypes for example, with associated properties (tag definitions). It is also
possible to predefine classes and data types (see below) that can be reused by
the data modeller.

We have an initial implementation of a UML profile as created by MagicDraw
available under this link. The profile is also contained in the UML file containing
the SimDB data model. Here we give a list of the main elements that we use and
give a short motivation for their inclusion in the language. It is our opinion that the
DM working group should be ultimately responsible for a profile such as this, as it
gives the possibility of defining a domain specific language for all IVOA data
modelling efforts, thus giving some uniformity to those disparate efforts.

A.1 Element
All elements mentioned below are specialisations of UML Element.
Stereotypes
• <<utype>> : every modelling element can declare itself to represent an

element in another data model by assigning this stereotype.
Tags:

o utype [string] : this holds the actual UTYPE that points to the other
modelling element that is represented here.

A.2 Model
This is the root of the complete model, contains all packages, classes etc. Also
contains any imported profile.

Stereotypes
• <<model>>

If the designer wants to annotate the model with the tags in this stereotype
(s)he must explicitly associate this stereotype to the Model.
Tags:

o author : Indicates the author(s) of the model.
o title : provides a long title to the model. The name of the model

should be short

15 See for example http://advanceduml.wordpress.com/the-unified-modeling-language/profiles/ for
a tutorial on profiles.

A.3 Package

Figure 11 This figure shows a package "simdb" that contains two other packages. Of these
the experiment package depends on the protocol pack ages, which is indicated by the
dashed arrow.

A package groups related elements such as class definitions and possibly sub
packages. Packages can depend on each other (indicated by the dashed line),
which means that elements in one package can use elements in the target
package in their definition. This relation is transitive. A package is similar to an
XML namespace and in fact we map UML packages to XML namespaces in 6.1.

A.4 Class

Figure 12 A Class is a rectangular box, with the na me of the class in boldface.
Classes are the fundamental building blocks of a data model. A Class represents
a full fledged concept and is built up from properties and relations to other
Classes. An important feature of Classes as opposed to DataTypes (see below)
is that objects have their own, explicit identity.

Properties :
• isAbstract

Indicated by italicised name of the object. Implies that no instances can be
made of the class, one needs sub classes for that.

A.5 ValueType
A ValueType represents a simple concept that is used to describe/define more
complex concepts such a Classes. ValueType-s are, in contrast to Classes not

separately identified. They are identified by their value. For example an integer is
a value type; all instances of the integer value 3 represent the same integer.
In this profile ValueType-s are only represented using specialised examples.
Attributes (see below) must have a ValueType as their datatype.

A.6 PrimitiveType
PrimitiveTypes are the simplest examples of ValueTypes. They are represented
by a single value only. A set of PrimitiveTypes is predefined in the IVOA profile
(see Figure 13).

Figure 13 The PrimitiveTypes that are predefined in the IVOA profile.

A.7 DataType

Figure 14 Example of a structured datatype:Pos3D re presents a position in 3D space and
is defined using x, y and z attributes. The DataTyp e symbol is distinguished form the
Class by the <<dataType>> stereotype.

A DataType is a ValueType that has more structure than a single value. This
structure is modelled using Attributes, just as on ObjectTypes.

A.8 Enumeration

Figure 15 An enumeration is indicated by a box with the name of the the enumeration and
the list of literals.
An Enumeration is a ValueType that is defined by a list of valid values. These are
the only values that instances of this data type can assume.

A.9 Attribute

Figure 16 An attribute is indicated by a line with a name, a datatype, an indication of the
multiplicity and possibly a stereotype.

An Attribute is a Property of a type (object type as well as structured data type).
An attribute’s data type is always a Value type, not an object type. For object
type properties one should use References

Properties
• data type
• multiplicity/cardinality: indicates the cardinality of the attribute (assumed to be

0..1, or 1. This is a relational bias based on normal form and the assumption
that most databases do not allow storage of arrays in single columns.)

•
Stereotypes
• <<attribute>>

To assign further properties such as the tags this stereotype attribute must
be explicitly assigned.
Tag definitions

o length [integer] : Constraint indicating that an attribute must have a
specific fixed length. Is relevant only for attributes of type string.

o maxLength [integer] : Constraint indicating that an attribute may at
most have the indicated length. Is relevant only for attributes of type
string. Is used in mappings to TAP to indicate the length of the
corresponding column. Thist would seem to be very much an
application specific feature and therefore belong to logical
modelling. But this profile can be used for that purpose, hence it is
included.

o uniqueGlobally : Constraint indicating that only one instance of the
type of the Class owning this attribute can have a given value.
Globally should be read to mean globally in a given instance of the
model, i.e. a database for example that stores instances of the
model.

o uniqueInCollection [boolean] : If true, indicates that the value of
the attribute can not be shared by the same attribute of any other
instance of the Class owning this attribute that is in the same
collection, i.e. has the same container object. In SimDB/DM an
example is given by the name attribute of the InputParameter class.
For a given Protocol

• <<ontologyterm>>
There are many instances in the data model where we need to describe
elements of the SimDB/Resource-s explicitly, because we do not have
implicit information based on the context. Examples are the various
properties of object types, the target objects and processes etc. Apart from a
name and a description we then frequently add an attribute which is
supposed to "label" the element according to an assumed standard list of
terms.
We model this using the <<ontologyterm>> stereotype. Attributes with this
stereotype are assumed to take their values form such a predefined
"ontology" 16 .
Tag definitions:

o ontologyURI
A URL locating a standard (RDF|SKOS|OWL|???) document
containing a list of terms from which the value for this attribute may
be obtained. It is our opinion that the Semantics working group
should be responsible for the definition of relevant ontologies (or
semantic vocabularies, or thesauri, or ...) required for a given
application domain, though the contents should be decided in
cooperation with domain experts.

A.10 Inheritance

16 Possibly this should be a vocabulary, that at least is intended, and the stereotype might have to
be called <<skosterm.., with tag definition named skosVocabulary.

Figure 17 Inheritance is indicated by a line with a n open arrow from a subclass to its base
class.

Indicates the typical “is a” relation between the sub-class and its base-class (the
one pointed at). In this profile we do not support multiple inheritance.

A.11 Collection

Figure 18 The line with the closed circle on one en d and an arrow on the other indicates a
composition relation, or collection, between the pa rent (on the side of the circle) and the
child, on the other side.

This relation indicates a composition relation between one, parent object and 0 or
more child objects. The life cycles of the child objects are governed by that of the
parent.
In UML a composition relation is represented by a binary association end.

A.12 Reference

Figure 19 A Reference is represented by a line conn ecting a class with another, referenced,
class with an arrow on the referenced class. Note, the <<reference>> sterotype indication
is not required.

This is a relation that indicates a kind of usage, or dependency of one object on
another. It is in general shared, i.e. many objects may reference a single other
object. Accordingly the referenced object is independent of the "referee". In our
profile the cardinality can not be > 1.
For implementing the Reference in UML we use a shared, navigable binary
association end.

A.13 Subsets

Figure 20 The subsets property can only be assigned to a relation between two objects
that are both subclasses of Classes that have an eq uivalent relation. It is indicated by the
{subsets ...} annotation to the relevant associatio n end.
The “subsets” property, when associated to a Reference or Collection (in UML to
the corresponding association end), indicates that a relation overrides the
definition of a relation of the same name defined on a base class. It does so by
specifying that the class at the end point of the relation should be a subclass of
the class at the endpoint of the original, sub-setted relation.

A.14 … (?)
@@TBD What did I miss? @@

Appendix B Data model usage by SimDAP and S3
The SimDB data model can also be used in other contexts than SimDB
implementations. Here we describe how SimDAP uses SimDB/DM and how S3
can be represented in SimDB/DM.

B.1 SimDAP
@@TBD Rick?@@

B.2 S3
S3 [19] is a simple protocol for querying and retrieving results of “micro-
simulations”. S3 supports three types of requests ([19], section 2):

1. Metadata
2. Data query
3. Retrieve file

The result of a Metadata query is a VOTable describing the service and a list of
PARAM elements, one for each parameter accepted by the Data query request.
These parameters will generally correspond to parameters of the model, but can
also contain extra service specific parameters.
The Data query finds models corresponding to particular (ranges of) values for
these parameters, selected ones of which can be downloaded using the Retrieve
file request.
Most of this protocol can be described using SimDB/DM concepts. First one can
argue that an S3 implementations is a SimDB/WebService giving access to
results of a single SimDB/Protocol, possibly always a SimDB/Simulator, or
maybe another type. The SimDB/Protocol is described using its set of available
SimDB/InputParameters, obtained in the Metadata request. The Data query part
searches for SimDB/Experiments executed with the protocol and having
particular SimDB/ParameterSettings.
Each S3 Experiment presumably produces a single Result. The Result type does
not yet exist in the SimDB/DM, where its place is taken by the Snapshot class,
which is a special type of Result. Introducing the generic Result class has been
discussed before precisely for this purpose of supporting more general simulation
types.
Note that SimDB/TAP already supports querying for the input parameters of any
protocol, and for experiments (and their results) where these parameters have
been set to particular values, thought S3’s query interface is arguable much
simpler. It also allows one to register an S3 service, albeit so far only as a
“custom” WebSevice linked to the particular protocol.
So we see that a SimDB implementation can already support most functionality
of S3. Some features of S3 could be added to SimDB to complete this support.
For example a new “S3” literal in the ServiceType enumeration and a more
generic Result class could be easily added. SimDB/WebService might be
declared (using a reference) to implement a (rather than “be a”) SimDB/Protocol
in its own right, which allows it to define its own extra parameters.

By construction, SimDB/TAP offers more generic query capabilities than S3’s
Data query . This comes at the cost of more complex syntax especially due to
need to support multiple Protocols, but S3 could be built on top of SimDB/TAP.

@@TBD feedback form S3 authors please!@@

Appendix C An intermediate representation for data
models

The UML language is not very familiar to most IVOA developers. To define it one
requires moreover a graphical design tool such as MagicDraw. The XMI
representation of these, though XML, is very complex to read and interpret, as it
is meant to be able to epxress UML models in all their generaility. As shown in
Appendix A we use a much more limited set of UML modelling elements. We
have therefore defined a much simpler XML representation of this profile, which
moreover is much more easily read and interpreted.

The latter was important for our code generator (VO-URP) in various ways. It
allows the XSLT scripts used to generate XSDs, TAP metadata, DDLs, Java
code, HTML documentation etc to be much simpler than if they had to be written
against the XMI files. It also forms a nice representation for providing runtime
metadata objects for the generated classes.

As first step in our simulation pipeline we generate this intermediate
representation. The document itself is structured according to an XML schema
that represents the UML profile rather directly and that we here shortly describe.
This schema is located here.

This transformation is implemented in the xmi2intermediate.xsl XSLT script. The
latest version of the intermediate representation for the SimDB data model can
be found in this location, all other generation scripts work on this intermediate
representation, not on the XMI document itself. Variations in tool-generated XMI
or different versions of XMI can now be supported by appropriately adjusting the
xmi2intermediate.xsl script. In principle this XML document is expressive enough,
and simple enough to allow for simple text editing.

Appendix D SimDB/TAP_SCHEMA
The following VOTable document provides the contents of the complete
SimDB/TAP_SCHEMA. We have chosen this representation over for example
the

@@TBD This is a place holder section that is waitin g to be filled once the
TAP_SCHEMA is fixed. @@

@@TBD Is a filled VOTable representing the TAP_SCHE MA tables an
acceptable form to pre-define the SimDB/TAP_SCHEMA?
I choose it because it is likely more detailed than the VODataService
representation. @@

@@TBD Shall we reproduce the VOTable here, or is it sufficient to have a
link to the online version?
@@

