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In this document and the accompanying appendix we propose a data model 
(Simulation Data Model) describing numerical computer simulations of 
astrophysical systems. This data model is designed to support various IVOA 
protocols under construction for discovering and accessing the data products 
resulting from such simulations and their possible post-processing. One of these 
is the “Simulation Database (SimDB)” protocol (hence the former name 
SimDB/DM for SimDM), which describes a particular web service that gives 
access to a database containing metadata describing simulations. A separate 
document, “Simulation Database: Serializations and Services” (referred to as 
SimDB Services in the rest of this note) will cover the physical representations of 
the model as used in the SimDB protocol, and how they will be used in the 
SimDB interface. 
 
The SimDM has been developed in the IVOA Theory Interest Group with 
assistance of representatives of relevant working groups, in particular DM and 
Semantics. 
 
 

Link to IVOA Architecture 
 
The figure below shows where SimDM fits within the IVOA architecture: 
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Status of This Document 
This is an IVOA Proposed Recommendation made available for public review. It 
is appropriate to reference this document only as a recommended standard that 
is under review and which may be changed before it is accepted as a full 
recommendation. 
The first release of this document was 2011 April 28.  

A list of current IVOA Recommendations and other technical documents can be 
found at http://www.ivoa.net/Documents/.  
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Conformance related definitions 
 
The words "MUST", "SHALL", "SHOULD", "MAY", "RECOMMENDED", and 
"OPTIONAL" (in upper or lower case) used in this document are to be interpreted 
as described in IETF standard, RFC 2119 [0]. 

The Virtual Observatory (VO) is a general term for a collection of federated 
resources that can be used to conduct astronomical research, education, and 
outreach. The International Virtual Observatory Alliance (IVOA) is a global 
collaboration of separately funded projects to develop standards and 
infrastructure that enable VO applications. The International Virtual Observatory 
(IVO) application is an application that takes advantage of IVOA standards and 
infrastructure to provide some VO service.  
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1 Executive Summary 
 
In this document we make a proposal for an IVOA standard data model for 
describing simulations1. Indeed, apart from limited support for publishing model 
spectra in SSAP, there is as yet no IVOA standard dealing with the publication of 
simulations and their results. The primary goal of our proposal is to support 
discovery of simulations by describing those aspects of them that scientists might 
wish to query on, i.e. it is a model for meta-data describing simulations. This note 
does not propose a protocol for using this model. Two distinct IVOA protocols are 
in the make and both are supposed to use the model, either in its original form or 
in a form derived from the model proposed here, but more suited to the particular 
protocol. 
 
The direct motivation of the model comes from the Simulation Database (SimDB) 
and the former Simulation Data Access Protocol (SimDAP) efforts. Work on 
these standards started under the header Simple Numerical Access Protocol 
(SNAP) in the Theory Interest Group (TIG) since the Victoria interoperability 
meeting, 2006. It was agreed in the Trieste interop 2008 to split SNAP in two 
separate tracks, SimDB and SimDAP. More recently it was deemed useful to 
further split the work on SimDB in two tracks, one focusing on the data model 
alone, the second on its serialisation and usage in the SimDB protocol. This Note 
deals with the data model, referred to as SimDM. 
 
Work on the SimDB specification has been organised via a GoogleCode SVN 
repository in the volute project originally created by Norman Gray for the 
Semantics Working group. The history of the SimDB project can be obtained 
from https://volute.googlecode.com/svn/trunk/projects/theory/snapdm. A large 
part of that though deals with technical issues revolving around a code generator 
we designed to derive relevant resources from the basic data model. Most of that 
development has been moved to a separate GoogleCode project, VO-URP. The 
resources dealing with the SimDB developments have been gathered in the 
subdirectory in 
https://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/. 
The other parts of the volute part of SimDB should be deemed deprecated. 
 
In Section 2 we recall the scientific motivation at the origin of creating SimDM 
and the 4-years history of the developments. Section 3 described our 
methodology whereas the model itself is detailed in Section 4. A few specific 
issues of serialization are addressed in Section 5. The development of SimDM is 
linked to other IVOA efforts that deserve to be mentioned. Section 6 deals on that 

                                            
1 We will use the term simulations for the running of a simulation code as well as for their results. 
And we will often include post-processing codes and their results as well.  
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point. We present some conclusions and describe the next steps for the 
recommendation process in the last Section. 
 

2 History 
 
Numerical computer simulations form an increasingly important component of 
astrophysical research. Such simulations are used to model astrophysical 
processes whose complexity precludes an analytical treatment. The subject of 
these simulations includes every possible astrophysical phenomenon, from the 
structure of stellar atmospheres, the formation of solar systems, the structure of 
galaxies and the description of their constituents, to the formation of the largest 
structures in the universe. 
 
The simulations often result in predictions that can be compared to observations, 
but in general are much richer, including “observables” that can only be derived 
by indirect means from observations. These results can be very large, rivalling 
and often exceeding in size the largest observational catalogues. But they can 
also be relatively small, consisting of individual spectra of say a white dwarf, 
though often in collections resulting from parameter studies. 
 
The design and execution of these simulations has become a specialised field of 
astrophysics, and is these days often performed in large collaborations. And 
while it is still true that their results are studied by these groups only, more and 
more of these theoretical data are being published online (see for instance the 
Appendix B of [26]). 
 
Apart from limited support for publishing theoretical spectra in SSAP, there is as 
yet no IVOA standard dealing with the publication of simulations and their results. 
In earlier documents we have described the issues for defining such standards 
compared to the arguably simpler case of observational data sets (see for 
example [21] and [26]). 
 
The proposal for a standard way of publishing simulations was formulated during 
a workshop in Cambridge, February 2006. The original idea was to create an 
analogue of the simple image access protocol (SIAP, [18]) for N-Body 
simulations: SNAP, the Simple Numerical Access Protocol. During the following 
interoperability meeting in Victoria, May 2006, the scope was expanded to 
include other types of simulation algorithms, and rephrased to something like 
“simulations that reproduce 3+1dimensional space time”. It was felt furthermore 
that not only simulations themselves should be included, but also certain types of 
post-processing such as cluster finders, as long as their results are still aimed at 
producing a description of 3D space at one or more points in time. Over time 
requests have come in to generalise this scope even more, basically to enable 
any type of astrophysical simulation to be handled. 
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An important change that was decided in Victoria 2006 was that instead of the 
SIA protocol, the newer simple spectral access protocol (SSAP, [19]) should be 
followed as an example. This protocol’s main difference with respect to SIAP was 
the explicit data model that was created for spectra and was used as motivation 
for the queryData metadata and the getData data format. Hence SNAP from the 
beginning had a double focus on a data model plus related query protocol on the 
one hand, and a data access and delivery specification on the other hand. 
Shortly before the Trieste interop in the spring of 2008 it was decided to split 
SNAP up along these lines in two separate specifications. A specification for a 
Simulation Database (SimDB) which would support searching for interesting 
simulations and the services providing access to them, and a Simulation Data 
Access Protocol (SimDAP) providing a specification for accessing simulation 
results. 
 
SimDB on its own is still a rather complex specification. It has overlap with the 
efforts and results of many working groups, Data Model (DM), Registry, Data 
Access Layer (DAL), Semantics as well as being an integral part of the Theory 
Interest Group (TIG). This issue has been discussed in the Baltimore and 
Strasbourg interops, as it causes a potential problem for the standardisation 
process: an interest group cannot promote a document to a standard, but which 
a working group (WG) could do so. It was decided in Baltimore to postpone that 
decision by creating a focus group led by the TIG and with participation form the 
various WGs.  
 
The current document is the result of a split in original Note that was written for 
SimDB. Such a split was proposed to simplify the standardisation process and 
after some refactoring was performed mid-2009. This current document is the 
first of these and deals exclusively with the data model (SimDM) and 
consequently has a natural place in the DM WG. The second document deals 
with the use of the data model for defining the model for a relational database 
and its related TAP query implementation as well as a service interface for 
uploading simulation descriptions to this database. It is not yet clear whether it 
can find a place in a single WG. 
 
A recent effort has been the proposal for a simpler access standard for small 
scale simulation, the Simple Self-describing Service protocol (S3, [15]). This was 
a result of an investigation started in the Cambridge 2007 interoperability meeting 
whether “micro-physics” simulations as they are sometimes called require special 
attention. For some time this was covered by SSA, at least as far as theory 
spectra were concerned. S3 is actually a direct reworking of an older Theoretical 
Spectral Access Protocol [20].  
 
There were questions in the TIG whether S3 might be incorporated in SimDB 
and/or SimDAP. In the interoperability meeting in Victoria 2010 the decision was 
made that indeed this should be possible. The SimDM was shown to be able to 
incorporate the metadata for S3-like services, and indeed proposes extensions of 
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that. It was decided that the S3 protocol should be merged with/incorporated into 
the SimDAP standard, which from then on will be known by the name Simulation 
Data Access Layer (SimDAL). The appendix document addresses this question 
from a formal point of view, namely by defining how S3-like services can be 
described by the data model. 
 

3 SimDM: application, approach and outline 

3.1 Application(s) of the model 
The data model proposed here was never meant to be created in a vacuum, but 
was always intended to be used in some IVOA standard service. What precisely 
this application was has not always been clear for the SimDM, the goal of which 
has gone through some changes in the course of the project. It started off as a 
SIAP-like service protocol for N-body simulations, SNAP 2 . Then mesh 
simulations were included, leading to our definition that SNAP should support the 
discovery and possibly partial retrieval of simulations involving “evolving objects 
in 3D space”3. Over time the protocol separated into the Simulation Database, a 
more TAP service for querying for simulations, and the SimDAP protocol for 
retrieving actual data products 4 . Recently (and finally) also simulations of a 
different type, “micro-physic simulations”5, or “models”6 have been included, and 
SimDAP has merged with S3 to form SimDAL: a family of access protocols for 
theory data7. 
Consequently the aim and possible applications of the data model have changed 
a little over time. The discussions in the Victoria 2010 interop have finally led to a 
convergence of these ideas and to the following agreement:  

1. The SimDM MUST support the SimDB protocol and the SimDAL service 
protocols.  

2. To do so it MUST allow scientists to describe their simulations in sufficient 
detail for others to decide whether a given simulation is of interest, and to 
query for these simulations.  

3. It SHOULD then offer directions to services for further drilling down or 
downloading simulations or parts of these.  

4. The precise representation of the model in the individual service protocols 
(SimDB, SimDAL) is not prescribed.  

5. If individual protocols will deviate in the details from the SimDM, this will 
be for application specific reasons.  

6. The SimDM will provide the vocabulary for the concepts used in these 
possible alternative representations.  

                                            
2 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/CambridgeTheoryWorkshopFeb06  
3 http://www.ivoa.net/internal/IVOA/InterOpMay2006Theory/closingplenary.ppt  
4 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2008Theory  
5 Coined in Cambridge interop, 2007. 
6 In Victoria 2010, we decided to label all as simulations. See 
http://www.ivoa.net/internal/IVOA/InterOpMay2010Theory/IVOA2010_ModelvsSim.pdf  
7 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2010Theory  
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In the preferred case, these other representations can be considered as different 
views on the core SimDM. This should be interpreted similar to the way relational 
database views provide a mechanism by which slightly different representations 
from the often more normalised data model can be provided.  

3.2  Modelling approach 
With this application area in mind we have followed a somewhat formal approach 
to our data modelling effort, suggested by e.g. [28]. In this approach the 
construction of a data model is divided in three stages. The first is the analysis 
stage, in which one investigates the “domain of the application” one tries to 
model. This stage produces a conceptual, or domain model [33] which is 
relatively abstract and high level. In its design one does not aim to create a 
model directly suited to an application. The emphasis is on identifying important 
concepts and their relationship in the “real world”. One also refrains from giving a 
fully detailed definition of all attributes and other features. Important in this stage 
is interaction with domain experts, in our case scientists. 
The aim of the second stage is the creation of a logical model [34] of the 
application domain. This should be a detailed model supporting the application. It 
should contain all information required to support the application. It should 
however still be implementation neutral, and concentrate on describing the 
precise concepts and semantic relationships between them. In general it will use 
part of the concepts from the domain model, but works them out in more, all, 
detail.  
In the third stage one derives from this logical model one or more physical 
models [35]. These are representations of the logical model in a form that can be 
used directly by the various computational components building the system. 
Examples of this are XML schemas defining valid XML documents, or relational 
schemas for the design of a database storing instances of the model. 
The analysis phase is described in the next few subsections. The logical model is 
defined in full detail in UML using the MagicDraw Community Edition modelling 
tool. MagicDraw stores the model in an XML file following the XMI serialisation 
[30] we have created a fully cross-linked HTML file documenting this model in all 
detail. These 2 files are part of this specification and can (for now8) be found on 
the GoogleCode volute site. 
 

3.3 Phase 1:  analysis 
The analysis phase investigates the “world the application lives in”, its “universe 
of discourse” [28] and describes it in a domain model. To get constraints on this 
universe and its contents we follow [36] in trying to gather some 20 science 
questions that the application should be able to answer. The application is here a 
system consisting of the data model together with the protocol and 
implementations. The model will be designed in such a way that it can contain 

                                            
8 Once the specification becomes a working draft the stable versions of these files should be 
placed under the IVOA wiki site. 
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the required information. The protocol and implementations must support efficient 
querying for this information. [36] used this approach in the design of the SDSS 
database. 
To create such a list of questions we have contacted scientists with the question 
that if they were presented with a database of simulation metadata, what 
questions they would want to ask of it to find interesting simulations. The 
following list summarises their answer: 

 What system/object is being simulated?  
 What physical processes are included?  
 How is the system being represented in the simulation (particles 

(Langrangian), (adaptive) mesh (Eulerian)), both, other?  
 How are the physical processes implemented?  
 What numerical approximations were used (e.g. resolution, softening 

parameter)? 
 What observables are available for the system/object, possibly as function 

of time9? As it is a spatial system, at least simulation boxsize, center-of-
mass position.  

 What observables are available for the constituents, i.e. what is the 
schema of the objects from which the simulation built e.g. particles in N-
body simulation, grid cells in an adaptive mesh simulation or particle 
groups in a cluster finder?  

 Per snapshot, per simulation object type, per variable:  
o Characterise the possible values  
o Characterise the result 

 Are post-processing results available?  
 Are services/applications available for accessing the results?  
 Which code ran the simulation?  

o Which version of the code? 
o Is software available? 

 Who ran the simulations?  
 What were values of input parameters?  
 How were initial conditions created? 
 How the results are parametrized? 
 Can I access grids of models? Can I access individual results? 
 Which are the inputs ingredients (usually, which data collections are 

used?) 
 How I can run a simulation? Can I do it on-the-fly? 
 Can include my simulations in the VO in an easy way? What I should do? 
 Can i compare different simulations? Can I compare the simulation with 

my data? 
 Which simulations provide diagnostic tools? (i.e.     

distance/extinction/quasi-scale free quantities) 

                                            
9 Re: Rick Wagner’s example of certain properties only being calculated after a certain stage in 
the simulation is reached.  



11 

 Can I combine the results of different simulations in a single file adapted 
for my needs (e.g. own code)? 

3.4 Phase 2: domain model 
The result of the analysis phase is a model in its own right, albeit rather sparse 
and schematic. For this purpose we have built on previous work by adapting the 
so called Domain model for Astronomy proposed in [12]. This model forms the 
basic structure of the domain model for SimDB, illustrated in Figure 1.  
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Figure 1 Schematic domain model encapsulating the main design constructs in SimDM. 
Elements coloured orange are represented directly in SimDM, possibly with a different 
name. Purple elements are not part of that model, but are used to explain and motivate 
other features that do appear there. 
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Figure 1 is used in a narrative motivating the final structure of the full SimDM. We 
start by assuming the existence of one or more Files that a publisher thinks may 
be of interest to the community because they contain astronomical data. Instead 
of in files the data might also reside in a Database, and to be generic we 
introduce a Storage base class that abstracts the actual physical location of the 
data.  
Registering that files exist somewhere is not of great interest without providing 
information about the contents of the files. The philosophy that we follow is that 
the files are of potential interest because they contain the Results 10  of an 
(astronomical) Experiment, and accordingly their contents must be explained by 
describing the experiment that gave rise to it. Only in this way can one make 
scientific use of the files or other storage resources. 
The abstract Experiment is made concrete by adding some examples of 
experiment types that are important for the current model dealing with 
Simulations and simulation PostProcessing.  
In our model, Experiment represents the actual running of an experiment; to 
describe the design of the experiment (the so-called experimental protocol) we 
introduce the concept of (experimental) Protocol11. This separation between 
design of experiment and the execution is a normalisation that reduces 
redundancy in the model. See the accompanying appendix for a discussion of 
this concept. We mirror the concrete subclasses of Experiment by adding 
concrete subclasses to (experimental) Protocol such as Simulator, which 
represents simulation codes according to which Simulations are run, and 
PostProcessor corresponding to PostProcessing runs. 
The (experimental) Protocol class contains InputParameters. An Experiment 
using a particular (experimental) Protocol only needs to indicate the values for 
these parameters. In this way a single instance of the (experimental) Protocol 
can be reused by many Experiments performed according to it.  
The (experimental) Protocol also defines the possible structure of the results of 
the experiments. In our model Results contain ResultObjects. These objects 
have a given type, represented by the ResultObjectType contained by 
(experimental) Protocol. The ResultObjectType defines the Properties that 
these objects have.  
For example the results of N-body simulations may contain particles having 
properties position, velocity, mass and possibly others. Adaptive Mesh 
Refinement (AMR) simulations produce results that are collections of mesh cells 
of various sizes, positions and contents. Similarly post-processing codes such as 

                                            
10 We do not assume that in reality the relation between the conceptual Result and the concrete 
Storage elements can be modelled by a single reference. Especially for the largely non-
standardised world of simulations a single result can be distributed over many files, but it is also 
possible for one file to contain multiple results. In the current SimDB model we do not attempt to 
model such relations explicitly. We delegate the responsibility for accessing the physical results to 
(web) services and this issue is more explicitly addressed by the SimDAP protocol. 
 
11 Further on, the word protocol will be preceded by the adjective experimental (in parenthesis 
and italicized) to keep clear the distinction with any other IVOA protocol. 
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halo finders produce “halos” and “semi-analytical” galaxy formation codes 
produce galaxies.  
In general a single result can contain objects of different types. For example a 
Smooth Particle Hydrodynamics (SPH) simulation may contain dark matter 
particles, star particles and gas particles. And in general the codes allow one to 
configure which of these exactly are chosen in a given experiment.  
One aspect of the experiment that is not determined by the experimental protocol 
is why the experiment was performed. In the model we introduce the Target 
concept for this, which represents real world objects or processes that are being 
simulated. For example, with the same N-body simulator one may simulate a 
galaxy merger or the evolution of large scale structure of the universe. 
As discussed above, the actual way in which results are stored in files or 
databases is hard, if not impossible to model. Instead we assume that 
Webservices of various kinds may be used to access the results of simulations 
and other SimDB products. 
Some of these will be standardised in the SimDAL specification, but custom 
services may also be introduced. The model allows one to describe the 
experiments and their results, which should allow users to discover results of 
interest, after which the web services can be called for actually accessing these.  
 

4 Logical model overview  
The actual SimDM that we propose here is a logical model in the sense of [34] 
based on the domain model described in 3.4. It is still implementation neutral, but 
it is fully detailed and represented in UML. It has a human readable HTML 
representation which contains the detailed description of all elements [6]. That 
document should be consulted for the details of the model.  
Here we introduce the main concepts and motivate the main design decisions. 
Where possible we try to give a link into the HTML document the first time we 
describe a concept from the model. This will then be a bold-faced link. The link 
will consist of a root URL to the location of the HTML document, followed by a 
#<UTYPE> that identifies the description of the actual concept in the HTML 
document. This we feel is very much in the spirit of the use cases of UTYPEs. 

4.1 Packages 
UML Packages are subsets of classes and data types that are deemed to belong 
together. Whilst not essential to the model, we have used them to provide some 
level of modularity. Their main role is played in the XML schemas derived from 
the model. Each package has its own type-schema (see 5.2) which provides a 
somewhat finer level of reuse.  
The diagram in Figure 2 shows the packages we use and their dependencies. 
The simdb package contains the other packages. This hierarchy is reflected in 
the UTYPEs, see section 5.1. The colours assigned to the packages correspond 
to the colours of classes in the diagrams in later sections. The subdivision in the 
one parent and four child packages follows the resource class hierarchy 
described next. 
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Figure 2 The packages of the SimDM and their relationships. The simdb package is the 
parent of four “child” packages. These are related to each other through directed 
dependency links indicated by the dashed arrows. 
 

4.2 Resource 
 
The SimDM aims to describe simulations and related concepts. The current 
model does so with of the order of 40 separate object types, or classes. Most of 
these classes themselves represent parts of other classes. They group together 
properties or relationships used in the definition of their “parent”. The composition 
relation is used to represent these kinds of parent-child relationships [2] 
But among the classes in the model there are some that are not used like this. 
These classes represent concepts that can stand on their own, are not use to 
describe part of a larger concept. These we will call “root entity classes”. In the 
model they can be identified by the fact that neither they, nor any of their sub or 
base classes are part of another class, a child in a parent-child relation. 
These are the classes that represent the model’s core concepts and their 
identification is a first important choice in the modelling effort. In the current 
model there actually two separate collections of classes that are root entities. 
There is the Party class, which represents an individual or organisation, and is 
not so important for the moment. We will focus here on the root entity classes in 
the Resource hierarchy, illustrated in Figure 3. 
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Figure 3 Root entity classes for SimDM. 
 
From the bottom up, we have concrete classes Simulation and Simulator, 
PostProcessing and PostProcessor, Project and Service. 
Simulation and PostProcessing are both subclasses of the abstract Experiment 
and Simulator and PostProcessor are both (experimental) Protocols. All the 
entities are ultimately subclasses of Resource. 
Our choice for the root entities follows the domain model in concentrating on the 
scientific experiments as a whole. The Experiment class contains classes 
representing the actual results (Result) that people may wish to access, but 
those are not the core concepts in our model. This is in contrast for example to 
the spectrum data model [11]. Part of our motivation is that an experiment can 
exist without having (yet) produced any results, but to have results (as defined 
here) one always needs an experiment. This is a clear example of a parent-child 
dependency, where the child’s life-cycle depends on that of the parent. The 
standard way to model such relationships is using a composition relation and that 
is how we have modelled it. More about the way we model results below in 4.7. 
The separation between (experimental) Protocol and Experiment is another 
important feature that we directly take over from the domain model. This design 
was already motivated in Section 3.4 and is related to the Measurement-Protocol 
pattern in [27]. That pattern says that when one does a measurement (of some 
property) it is important to remember the protocol by which the measurement was 
made ([27], p65). In [12] this was extended to experiments, which in general 
consist of large numbers of “measurements”, all done in similar ways. Whereas 
the term measurement seems to be more applicable to observations, it is simple 
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to generalise the concept a bit and apply it to the calculation of properties during 
a simulation. Actually this is similar to the CalculatedMeasurement in [27],  
An important reason to keep this separation between Experiment and 
(experimental) Protocol also in our logical model is to avoid having to redefine 
the parameters and other aspects of a simulation code each time a simulation is 
run.  
The Service did not appear in the original domain model in [12], but we 
introduced it in the model in 3.4 under the name WebService. In our model it 
represents a way to provide access to results of experiments. We could have 
tried modelling the way results are stored in files etc, but deemed it too complex 
to do so. This is in contrast for example to the spectrum data model, where we 
can model the data directly and even can predefine the representation of the 
data. There an access reference to the data files can be given to download a 
result. For simulations this is in general not possible. In many cases simulation 
codes have their particular proprietary formats, often storing single results over 
multiple files. Hence we merely allow users to describe services by which one 
can access results, but leave the details to the SimDAL service specifications. 
The Project class represents an aggregation of Experiments and (experimental) 
Protocols that combine to define a scientific project. This class is introduced to 
allow for example publishers to group simulations and post-processing runs that 
were produced with a common goal. It was inspired by a discussion on whether 
some of the SimDM/Resources could be registered as Registry Resources as 
well12. Many of the simulations registered in a SimDB will not qualify for the same 
reasons that individual images do not qualify to be registered. Resources in an 
IVOA compatible registry are relatively coarse grained; correspond to archives 
full of images published through a SIAP service for example. A Project can be 
used to define such collections also in SimDM. And indeed one may wish to 
register such collections separately in a registry. 
The root of the hierarchy of entities is formed by the Resource class. This class is 
introduced as a convenience to hold on to information common to all its sub 
classes. Its name is obviously inspired by the Registry’s Resource [13] and it also 
holds on to curation information. It “is not a” Registry Resource though in the 
strict OO modelling sense. For example it does not inherit all features of that 
class. But this is mainly because, as mentioned above, most SimDM Resources 
will not qualify as Registry Resources.  

4.3 Physics, models and algorithms 
 
An important characteristic of simulation codes is what physical systems and 
processes are, or can be, modelled and how these are represented in the 
program. The Simulator class represents computer codes that create numerical 
models of the world. Simulators do so by representing physical processes using 
numerical algorithms that act on model representations of real world objects. In 
our model, see Figure 4, physical processes are represented by the Physics 

                                            
12 Thanks to Ray Plante for his contributions to this discussion. 
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class. It is contained in the Simulator class, not in the general (experimental) 
Protocol. In effect a Simulator protocol is distinguished from other  (experimental) 
protocols in that it models and implements physical processes. 
Physical processes are implemented using particular Algorithms. Other 
(experimental) protocols also have Algorithms, but these are assumed to process 
existing results, and do not model physical processes. Examples of these are 
particular algorithms for extracting clusters from results of N-body simulations. 
 

 
Figure 4 Modelling the representation of physical processes and objects. 

 
Finally, (experimental) protocols need objects to represent the structure of the 
physical systems they model. For example, N-body simulations need particles 
that represent mass moving around. The model uses the 
RepresentationObjectType for this. This class defines the smallest components 
that are being used by the algorithms and are generally stored in the results of 
the experiments. Note that much of the structure of the 
RepresentationObjectType is defined on a base class, ObjectType that will be 
discussed in 4.6 below. 
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4.4 Parameters: definition and values 

 
Figure 5 Modelling the parameters: definition under  (experimental) Protocol, values under 
Experiment. 
 
Software codes generally require some level of configuration before they are 
executed. In many cases this translates into a collection of parameters that must 
be given values. The parameters are defined by the code and we model this by 
an InputParameter class that is contained by (experimental) Protocol. Assigning 
values to these parameters however is the responsibility of the experimenter and 
is explicitly modelled as a ParameterSetting class contained by Experiment.  
Input parameters are defined by a name, datatype, label and other properties 
familiar for example from the PARAM field in VOTable13. Most of these are 
inherited from the Field class, which will be discussed 4.6 below.  
Because the details of the parameter are defined on the InputParameter class, 
the ParameterSetting would not require more than a pointer (the 
inputParameter reference) to the appropriate input parameter and a value. A 
problem for this model though is what data type to assign to a possible value 
attribute. We have no knowledge in advance on the data type of the input 
parameter for which a value is set. This is only known at the instance level, not at 

                                            
13 We generalize the ucd attribute on VOTable’s PARAM and FIELD to a label attribute with 
stereotype <<skosconcept>>. 
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the model level. We do not know whether a certain parameter will be integer, or 
real, or maybe a string. Our current solution is to allow two different 
representations of a value, namely a numericValue, of type real and a 
stringValue.  
This issue and the usability problems it causes will need to be discussed and 
handled at the IVOA protocol level14. One approach is for example the SimTAP 
idea detailed in the SimDAL document [23]. 
 

4.5 Target: Goal of experiment 

 
Figure 6 Modelling the goal, or target of a generic resource as objects and/or processes. 

 
Generally the first piece of information that the scientists we polled were 
interested in regarding simulations was what was simulated. I.e. what type of 
object: a galaxy merger, a galaxy cluster, the large scale structure of the 
universe? This information in general says something about the goal that the 
scientists running the simulation had.  
In certain cases the simulation code itself may completely prescribe the type of 
objects and physical processes that are modelled. As example take population 
synthesis models such as the Galaxev library15, producing spectra of galaxies.  
But many simulation codes allow many different types of objects to be modelled, 
and even allow one to vary which processes are actually modelled. Also in many 
cases the actual object that is being simulated is not an intrinsic property of the 
simulation code, but is a derived property of the actual simulation. For example 
an N-Body code in general does not contain “galaxy particles”. But one can use it 
to follow the evolution of millions of low mass particles that are in a particular 
configuration that together model a galaxy. But it can also be a globular cluster, 
or a filament in the large scale structure.  

                                            
14 Statistical summary has the same problem, see 4.7 
15 Bruzual and Charlot, 2003: http://www.cida.ve/~bruzual/bc2003  
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To cover the concept of the target of an experiment or protocol, or the goal of a 
project, we add two classes, TargetObject and TargetProcess. A TargetObject 
represents an object, or a physical system in the real world, such as a galaxy, a 
star etc. TargetProcess represents a physical process such as gravitational 
clustering or turbulence. This recognises the fact that some simulations are run 
with the goal of investigating a process, rather than producing a model of a 
physical system.  
Both these classes are subclasses of Target, which itself is again a subclass of 
ObjectType defined in the next section. Target is contained by Resource so that 
by inheritance they are available to all sub classes. We do not model the Target 
objects in full detail. For example we rely on a semantic label attribute to give a 
standardised name to the type of object.  
One important task of a Target is that it allows one to subdivide the different 
Results of an Experiment. A Result may have a target reference, pointing to the 
target it contains and indicated what type of object is contained in the result16. 

                                            
16 NB This is in principle an elegant structure for defining what set of Products should be joined to 
form a Result. It was proposedduring the Victoria interop 2010. We need to see how it works in 
practice.  
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4.6 Object types: real and simulated 

 
Figure 7 The model needs to describe the types of objects that are being simulated/used. 
We model this in quite some detail in a hierarchy of object types, with properties, grouping 
of properties and child objects corresponding to nested objects. 
 
In a few places in the model we need to represent the fact that different 
simulation codes and (experimental) protocols, or different experiments, need to 
describe the types of objects they use or produce. For example, the 
(experimental) Protocol must be able to describe the building blocks of the model 
world it represents.  
These building blocks are described by properties and we simply mimic an object 
oriented design here. That is, we allow users to define ObjectTypes, with 
properties and the possibility of relations between parent and child objects.  
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We have encountered this situation in the RepresentationObjectType in 4.3 and 
the Target (Object and Process) in 4.5.  
To gather the common features of these we introduce the ObjectType class. An 
ObjectType contains a collection of Property-s that corresponds to the simple 
attributes used to describe an object. Property is a subclass of Field which 
defines its main attributes such as name, description and data type. Also a 
Protocol’s InputParameter is a Field, similar to the way a VOTable’s PARAM and 
FIELD share a common structure. Another similarioty with the VOTable structure 
is the possibility to group Property-s in a PropertyGroup.  
To model (hierarchical) relations between different Objects an object has a 
collection of ChildObject-s, which represents an aggregation of other 
ObjectType-s.  
 
 

4.7 Results: products and their statistical summary 
We assume users of a Simulation Database will want to gain access to results of 
simulations and related experiments. This is the same as we assume of users of 
Simple Image Access or Simple Spectral Access services. For those services the 
user knows what to expect, a FITS image in one, a spectrum serialised according 
to the spectrum data model in the other.  
Such expectations are not realistic for simulations though. The main problem is 
that we have no a priori knowledge about the contents of their results. Arguably 
somewhat simplistically one may claim that images and spectra contain pixels 
with known properties (space, wavelength, flux). Results of simulations, even 
when constrained to 3+1D simulations, can contain as their fundamental 
constituents: point particles, particles with size and structure, mesh cells of fixed 
or varying size, Voronoi cells17, structured halos, galaxies, radiation fields, galaxy 
merger trees etc. And any of these object types can come with any collection of 
properties: position, velocity, mass, temperature, chemical composition, entropy 
etc. 
 

                                            
17 http://www.mpa-garching.mpg.de/~volker/arepo/ 
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Figure 8 Domain model for results. 

 
 
 
Precisely for this reason users will want to have knowledge about the contents of 
simulation results to decide which simulations might be of interest to them. 
Hence the model must support description of the results explicitly and Figure 8 
illustrates how this is achieved in the domain model: 
Experiments produce Results that consist of Objects (pixel, N-Body particle etc) 
of a particular (Object)Type. The ObjectType defines the structure of Object as a 
collection of Properties (position, velocity, flux etc), and an Object, being an 
instance of the ObjectType, assigns values to these properties. Which 
ObjectTypes and Properties are available is defined by the (experimental)  
Protocol according to which the Experiment is run. 
 
The SimDM deviates from the domain model in that it does not include the Object 
and ValueAssignment classes. Including these would imply that positions, 
velocities etc for all particles in a simulation are added to the metadata 
description. For the purposes of SimDB, i.e. discovery of potentially interesting 
simulations this would be overkill. It is certainly possible to include data as in the 
domain model, the spectrum data model is a case in point. But that model has a 
different purpose, namely providing a serialisation of spectra in a standard 
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manner. Furthermore, individual spectra are quite small and have a well defined 
structure. 
How we model results and their contents in SimDB is shown in Figure 9. Results 
have one or more Products. A Product represents one of the possible multiple 
collections of objects of a single ObjectType represented in a Result. It is in 
general possible to choose which ObjectTypes from a (experimental) Protocol 
are included in an Experiment. For example many SPH codes support 
simulations where only dark matter particles are represented, as well as 
simulation which include gas and star particles. It is even possible to include 
some object types only after a certain time. This is the main motivation for  

 

 
Figure 9 Modelling Results, Products and their contents. 
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It is in certain cases useful to have some more quantitative information about a 
simulation. For example, apart from the fact that a simulation has N-Body 
particles with properties position, velocity and mass, it might be of interest to 
know that the typical mass of the particles is 1010 solar masses.  
We support this by allowing users to describe properties of the collections of 
objects in a Product using a class we call StatisticalSummary. This reflects our 
belief that statistics is the appropriate way to introduce some quantitative aspects 
of these large collections of objects. StatisticalSummary is contained in Product. 
It assigns statistical values such as a mean or a min/max value to Properties of 
the Product.objectType. Which statistic is used is described by the statistic 
attribute.  
The data type of the value is a problem, similar to discussed for the value of 
ParameterSetting 
Extensions of this statistical summary to more detailed summaries such as 
histograms can be easily imagined, but have been left out for the model as they 
will have less relevance for discovery, which is the main use case for the model.  
One further feature is important and pertains to the boolean aPriori attribute. 
This attribute describes whether the statistic that is used in the summary is an a 
priori or an a posteriori statistic. An a posteriori statistic is calculated using the 
results after they have been obtained during the running of the experiment. For 
example an a posteriori mean will likely correspond to the usual expression,  


N

i
ia

N

1
, 

where the ia are the values of some property.  

In contrast a priori statistics characterise the possible values of the observables 
before the experiment is run. In certain cases a priori knowledge is available that 
restricts the possible values that certain properties may obtain in an experiment. 
An example is a lower bound set on the number of particles that a cluster must 
contain to be included in the result of a cluster extraction of an N-Body 
simulation. This can be indicated by a StatisticalSummary object with 
statistic=min and aPriori=true.  
Knowledge about the a priori statistics is important in the interpretation of the 
results. In the previous example, when interpreting the mass multiplicity function 
of a cluster catalogue extracted from an N-Body simulation, it is clearly important 
to know what the lower limit was on the mass of clusters.  
In general a priori statistics are the result of, and may often be derived from the 
input parameters. However this derivation may not be obvious and will in general 
require intimate knowledge of the parameters of a (experimental) protocol. The a 
priori statistic may then facilitate the discovery of catalogues that should contain 
halos of a certain mass. 
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4.8 Data access services 

 
Figure 10 The model for (web) services giving access to SimDB resources. 

 
The goal of the Simulation Database is to allow scientists to find simulations of 
possible interest. Once these are found the question is what can be done with 
them. Clearly knowledge of their existence will be useless if the researcher will 
not be able to somehow gain access to the results. The usual way this is done in 
the IVOA, for example in the simple image and spectral access protocols, is that 
the result of a discovery query contains an access URL that may be used to 
download the actual image or spectrum, where moreover the format of the 
returned resource, FITS, VOTable or XML document will be known beforehand. 
It was perceived from the beginning of the SNAP project even that for the type of 
simulations that were supposed to be described a simple download would be 
unfeasible simply based on the size of many of the typical N-Body or AMR 
simulations. This assumption still holds and the SimDAL protocol is designed to 
define special purpose services for retrieving parts of such simulations for 
example. 
Also in the data model we want to indicate how the relation is between the results 
and services. This part may be used in the SimDB specification to allow users to 
register services and the Resources they give access to.  
In the model the Service class, already introduced in 4.2, represents such 
access services (see Figure 10). This class can be explicitly linked to the 
Resources it gives access to through a collection of  AccessibleResource-s.  
This part of the model is still rather summarily treated and may need to be 
updated depending on developments in the SimDAL specification. 
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5 Serialisations 
According to policies of the data modelling working group, first decided in 
Cambridge, 2003, a data model should be presented using a UML diagram, a 
corresponding XML schema and a list of UTYPEs. We have created these both 
using rules that derive the products directly from the XMI serialisation of the UML 
data model.  

5.1 SimDM/UTYPE 
The original goal of the data model presented here was to define the structure of 
a relational database supporting the Simulation Database service specification. A 
first draft of a note proposing that spec can be found in [22]. SimDB will use TAP 
[10] to define the IVOA protocol for querying this database using ADQL. The 
results of such queries will be tabular and serialiased as VOTables. Such a 
VOTable will contain a filtered subset of the information in the database, but in 
general in a different form compared to the structure of the data model. To 
indicate the meaning of data elements in such a VOTable, the IVOA has invented 
the concept of UTYPEs. 
A UTYPE is a “pointer into a data model” 18 . The VOTable XML schema 
implements this concept as attributes on various elements, e.g. FIELD and 
TABLE and many other elements. The value of such a UTYPE attribute should 
identify an element in a data model that is represented by the element itself. For 
example a table might point to a class definition in a data model, and a column 
(FIELD) to an attribute. 
It has become common practice to provide for an IVOA data model a list of 
UTYPEs. The Spectrum data model (see [11]) was the first to add explicit 
UTYPE-s for each of the attributes in its model and the Characterisation data 
model [16]has followed that example. We follow these examples by assigning 
UTYPE-s explicitly to all elements in the model.  
Our goal was not to have to make this a separate effort, but if possible to 
generate the list of UTYPEs directly from the model. Our goal was to assign 
UTYPEs to all identifiable elements in our model and these should be unique.  
To this end we define a set of production rules phrased using the special names 
in our UML profile. We have made a guess as to what the format for UTYPEs will 
be. In the previous data models a UTYPE existed of a word consisting of dot-
separated “atoms”, similar to UCDs, but without the “;”. We use a slightly different 
format to make the distinction between different syntactic elements from the 
profile somewhat clearer and also to guarantee uniqueness of each UTYPE 
within the data model context. Once (if?) a format is settled on within the IVOA 
we will easily be able to adjust our definitions.  
The important point we want to make is that it is possible to define simple rules 
that can automatically produce unique UTYPE-like words for all elements of a 

                                            
18 See 6.3.3 for our position on the discussion that is still going on regarding UTYPEs. 
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data model, i.e. the only discussion that may be required is on the rules for doing 
so IF a fixed format is preferred (see Norman Gray’s ideas19 on why this might 
not be necessary).  
The following BNF-like expressions define the particular rules we have used for 
deriving the UTYPEs from the UML model: 
 
utype   := [model-utype | package-utype | class-utype | 
    attribute-utype | collection-utype | 
    reference-utype | container-utype  
model-utype  :=  <model-name> 
package-utype := model-utype “:/” package-hierarchy 
package-hierarchy :=  <package-name> [“/” <package-name>]* 
class-utype  := package-utype “/” <class-name> 
attribute-utype := class-utype “.” attribute 
attribute  := [primitive-attr | struct-attr] 
primitive-attr := <attribute-name> 
struct-attr  := <attribute-name> “.” attribute 
collection-utype := class-utype “.” <collection-name> 
reference-utype := class-utype “.” <reference-name> 
container-utype := class-utype “.” “CONTAINER” 
identifier-utype := class-utype “.” “ID” 
 
For the SimDM these rules produce a list of UTYPEs for the model. For each 
model element we provide the UTYPE in the HTML documentation in [6] and we 
provide a complete list at the end of that document20. Note also that a URL of the 
type  

<URL-to-HTML-doc>#<utype>  
will link one directly to the documentation for the corresponding data model 
element. This is in conformance  with a suggestion made by Norman Gray19. 
 
When representing components of the data model in a VOTable (for example), 
these UTYPEs SHOULD be used, in particular when the VOTable contains 
results of ADQL queries to a SimDB/TAP implementation (see SimDB Services)..   
Alternative views and representations of the SimDM, for example in SimDAP, 
SHOULD use these UTYPEs to refer to elements in the model.  
 

5.2 XML  
A specification for an IVOA data model should (must?21) contain an XML schema 
that defines how to serialise data model instances as XML documents. Similar to 
the case of UTYPEs we did not want to make the design of these schemas a 
separate effort; instead we want to derive the schema from the model. To do so 

                                            
19 http://nxg.me.uk/note/2009/utype-proposals/  
20 
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html#uty
pes   
21 See “Rules” on http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/HowToParticipate This 
“decision” was made in the Cambridge 2003 interoperability meeting together with the 
requirement that data models must be specified in UML.  
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we have defined rules for relating XML Schema constructs to our UML model. 
These rules are a completion of those described in [37]. It is based also on a 
view of what such schemas should look like, restricting the possible set of 
constructs to be used in schemas representing data models. These design rules 
have earlier been discussed with and accepted by the Registry and VOTable 
working groups. 
We give here only a short description of these rules. First of all we define two 
different types of schemas. First we define “type schemas”, XSD documents 
containing only type definitions. For each object type(class) and value type we 
generate a corresponding complexType or simpleType. Attributes map to 
elements of a corresponding data type (simple or complex), collections to 
elements of a type corresponding to the class. References are harder to 
represent and will be discussed below. 
We next generate a “document schema” containing root elements. The elements 
in the document schema define the valid XML documents one can write and we 
choose only “root-entity classes” for their type. That is, only classes at the root of 
collection trees can be represented as a document. Fragments of these are not 
allowed. For example, only a complete Simulator or Simulation can be 
represented in a document, not only a single result, or parameter setting.  
Note that this is a choice made for the Simulation Database service specification. 
The document schema depends on the type schemas through XML schema 
import declarations. This separation allows flexible usage of the type schemas, 
for example other services might make a different choice from the types to serve 
as valid root elements. 
The root schema for the SimDM/XSD representation can be found here22. The 
type schemas and a predefined base schema can be found in the same directory 
and subdirectories of it. We refer to the SimDB Services document for more 
details on the XML schema serialisation and their use in the SimDB service 
protocol. 
Only the mapping of references deserves special attention. Our choice of 
mapping from UML to XSD elements and our definition of root elements imply 
that many references must be able to link between different XML documents. For 
example the (experimental) protocol reference23 in an XML document describing 
an Experiment must be able to identify a (experimental) Protocol that is defined 
in a different XML document. To do this identification we assume we must rely on 
an agent that can interpret a serialisation of a reference and use it to look up a 
corresponding document. Therefore we map references to elements of a 
particular complexType that we define in a base schema24. That same schema 
defines a type to be used for representing identifiers of objects and the reference 
serialisation must be able to reproduce such an identifier.  

                                            
22 
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDB_root.xsd  
23 UTYPE: SimDB:/simdb/experiment.Experiment.protocol or 
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html#Si
mDB:simdb/experiment/Experiment.protocol  
24 http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/base.xsd  
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Further technical details of this mapping will be described in the appropriate 
service definition document. 
 

6 Dependencies on other IVOA efforts 
 
IVOA documents are assumed to specify dependencies on other IVOA efforts. 
We have from the beginning realised that the SimDB effort touches upon various 
other specifications and general efforts of other working groups [22]. Here we 
discuss these relations as far as they pertain to the Simulation data model. 

6.1 Registry 
The correspondence between the full Simulation Database specification and the 
IVOA Registry will be discussed in the SimDB Service note [22]. Here we will 
address the relation between the SimDM and the Registry Data Model as defined 
in [14]. 
 

 
Figure 11 UML rendering of the Resource complexType from [14]. 

 



32 

In Figure 11 we present a UML rendering of the Resource complexType as 
inferred from the Resource Registry VOResource XML Schema [14]. Comparing 
that model to SimDM/Resource we can see that these two models for Resource 
are related, but not identical. In data modelling terms, it is not true that a 
SimDM/Resource is a Registry/Resource (or vice versa). Curation is modelled 
differently and arguably with less detail in SimDM, but the main difference is in 
the Content. SimDM provides a very detailed and specialised model for the 
Content of Simulations and related resources, by modelling provenance, 
motivation and results characterisation. This higher level of detail gives rise to a 
higher level of granularity in the types of resources stored in a SimDB, which in 
general will be to fine grained for registration in a Registry. This is similar to the 
case of a single image, which is not a Registry/Resource, whereas a SIAP-
compatible service, providing access to many images, is.  
A SimDB service itself will have to be registered (see chapter for that discussion), 
i.e. a SimDB service is a Registry/Resource. In discussion with Ray Plante (IVOA 
Interoperability meeting May 2007, Beijing) on this issue it was proposed that 
some part of the contents could also be registered in a Registry directly, i.e. we 
should be able to identify Registry/Resource-s in SimDB. Considerations to 
decide on how to make this identification would be for example that all data 
products resulting from a well-defined (and published) scientific project could 
qualify. To represent such a possibility for now we have introduced another 
subclass of SimDM/Resource: SimDM/Project. This is not much more than an 
annotated aggregation of other SimDM/Resources, with some additional 
attributes describing the motivation etc. The metadata of a SimDM/Project is not 
the same as that of a Registry/Resource, however we propose that we should be 
able to define a transformation (possibly implemented again in XSLT) to 
transform a SimDM/Project and produce a Registry/XML representation.  
 

6.2 Semantics: Use of SKOS Concepts 
In the SimDM, observables, object types, properties, parameters that play a role 
in a given simulation have to be defined explicitly, for the world of simulations is 
too large to define all possibilities explicitly in the model itself. This in contrast for 
example to the spectrum data model [11] where we know that a flux is 
determined for a wavelength interval, or a model for images where a flux is 
determined for a spatial pixel. In principle the publisher of a SimDM/Resource 
has all freedom to name and describe these entities. For other users to 
understand the meaning of them, we have where appropriate, added an attribute 
corresponding to a semantic label. This is similar to the situation in VOTable, 
where FIELD-s can be given a UCD (or UTYPE) that allows users to understand 
the meaning of a column in the table.  
In SimDM we need to generalise this concept as UCDs are not sufficient for our 
purpose. For example target object types are not covered by the list of UCDs and 
the same for other elements in our model. The Semantics WG has specified that 
such vocabularies should follow the SKOS specification [25]. They have also 
defined a number of such semantic vocabularies in the SKOS format, for 
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example of astronomical objects. We try to anticipate their results by introducing 
a special type of attribute in our UML profile that corresponds to a concept in a 
given ontology.  
Technically, in the UML profile we have defined a stereotype <<skosconcept>> 
that can be assigned to an attribute in the UML model. Attributes with this 
stereotype must define a value for the tag "broadestSKOSConcept".  
The intent of this is as follows (thanks to Norman Gray for providing the original 
text with this formal definition): 
<<skosconcept>> attributes take a skos:Concept as their value. In each case, 
the value is given as a single skos:Concept: such attributes may take any 
skos:Concept which is a narrower concept than this single typing concept. To be 
precise, for a typing concept T, any concept c is a valid value for this property, if 
either: 
 
    c skos:broaderTransitive T  
 
or if there exists a concept X such that 
 
    c skos:broaderTransitive X. X skos:broadMatch T 
 
This just means that, if c is in the same vocabulary as T, then it's connected by a 
chain of any number of skos:broader, and if it's in a different vocabulary, then 
there is some X which is in the same vocabulary as c, with a cross-vocabulary 
link between X and T. 
 
In several cases -- particularly those vocabularies which have been created for 
SimDM -- there will be a single top concept which everything is narrower than.  In 
other vocabularies -- such as the AstroObject in the thesaurus version of the 
ontology of object types -- the natural typing concept is not a top concept, or is 
not the only top concept.  This definition also does indicate that it's legitimate for 
concept c to come from a different vocabulary from T: the fact that c has been 
declared to be narrower than T, either implicitly or explicitly, is to be taken to be 
the expression of the vocabulary designer's intention that this be a legitimate 
value for this property. 

6.3 Data Model 

6.3.1 UML Profile 
The data model proposed in this document is fully defined in all detail through a 
UML model. UML is a large language and we have consciously restricted 
ourselves to a subset of the possible modelling elements. We have also added a 
few modelling elements using the extension mechanisms UML provides through 
stereotypes, tags and predefined data types. This combination of restriction and 
extensions is referred to as a UML Profile. The details of our profile are described 
in a separate document [2], added as an Appendix to the current WD. 
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One reason to put so much emphasis on the UML model is that it allows us to 
derive various products of this specification automatically. To this end we use the 
modelling frame work under development in the VO-URP project25, which is a 
spin-off of the SimDB effort. Using XSLT scripts developed in VO-URP we can 
generate HTML documentation (including UTYPE lists) [6], XML schema 
definitions [7] etc directly from the XMI representation of the UML model.  

6.3.2 Characterisation data model 
As described in section 4.7, the model allows one to characterise the results of 
experiments statistically using the StatisticalSummary class. This part of the 
model addresses similar problems for simulations as does the Characterisation 
Data Model for observations. We have not followed that model in detail, but have 
tried to incorporate its main ideas, giving a new interpretation to some of these26. 
We believe the best way to reconcile the two approaches is to see both as 
specialisations of a more abstract model defining statistical characterisations of 
data products. A proposal for such a “domain model for characterisation was 
given in [32].  
 

6.3.3 UTYPE 
Section 5.1 describes how we generate UTYPEs for the different elements in our 
data model. The rules we use to do so have been subsumed in a draft for a Note 
on UYUPE-s by Mireille Louys [17]. One problem we have with that Note is that 
the concepts used in the grammar, and that are direct reflections of syntactic 
modelling elements in our UML profile, have not been defined. For models 
defined with different UML syntax the grammar does not help. 
Some have argued against any semantic meaning to a UTYPE string. It should 
not be necessary to parse it to find out what its meaning is. Instead one should 
be able to follow it , but could/should be opaque. It should simply be assigned to 
the modelling elements. In that case the only requirement would be that a unique 
list of strings is created and that 
 
Our assumption has been that a UTYPE should allow one to uniquely identify a 
concept in a data model. We do not assume that our particular form to do so 
need to be taken over. But, as we describe in 5.1, if one wants to simply derive a 
list of unique strings to be associated to concepts that play a role in data models 
designed with our UML profile, these rules may help. Clearly if the syntax were to 
change we can accept that. 
The effort on understanding what UTYPEs really are, how they are to be used, or 
defined is in our opinion not completed. But we feel that our approach is 
compatible with any possible interpretation, and sufficiently flexible to proposed 
changes in precise syntax, were they required. 
 
                                            
25 http://code.google.com/p/vo-urp/ 
26 This follows ideas presented in China 2007, see 
http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTheDomain.ppt    
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