
1

 International

 Virtual

 Observatory

Alliance

Simulation Data Model

Version 1.00-20100428
IVOA DM WG and TIG Proposed Recommendation
2011 April 28

This version:
 1.00-20110428
Latest version:
 1.00-20110427,

http://volute.googlecode.com//svn/trunk/projects/theory/snapdm/specificati
on/WD-SimulationDataModel-v.1.00-20110427.doc

Previous version(s):
 See revision page on GoogleCode:
http://code.google.com/p/volute/source/browse/trunk/projects/theory/snapdm/specification/

Working Group:

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDataModel
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaTheory

Editors:
 Gerard Lemson, Hervé Wozniak

Authors:
 Gerard Lemson, Laurent Bourgès, Miguel Cerviño, Claudio Gheller, Norman Gray,
Franck LePetit, Mireille Louys, Benjamin Ooghe, Rick Wagner, Hervé Wozniak

Abstract

2

In this document and the accompanying appendix we propose a data model
(Simulation Data Model) describing numerical computer simulations of
astrophysical systems. This data model is designed to support various IVOA
protocols under construction for discovering and accessing the data products
resulting from such simulations and their possible post-processing. One of these
is the “Simulation Database (SimDB)” protocol (hence the former name
SimDB/DM for SimDM), which describes a particular web service that gives
access to a database containing metadata describing simulations. A separate
document, “Simulation Database: Serializations and Services” (referred to as
SimDB Services in the rest of this note) will cover the physical representations of
the model as used in the SimDB protocol, and how they will be used in the
SimDB interface.

The SimDM has been developed in the IVOA Theory Interest Group with
assistance of representatives of relevant working groups, in particular DM and
Semantics.

Link to IVOA Architecture

The figure below shows where SimDM fits within the IVOA architecture:

3

Status of This Document
This is an IVOA Proposed Recommendation made available for public review. It
is appropriate to reference this document only as a recommended standard that
is under review and which may be changed before it is accepted as a full
recommendation.
The first release of this document was 2011 April 28.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements

We thank various persons for useful discussions in the course of this work. First
the participants of the Feb 2006 theory workshop in Cambridge, UK, where this
work was started. Second the participants of the April 2007 SNAP workshop in
Garching, Germany, where the design started taking shape. The work has also
been influenced by the participants of the Technical Coordination Group of the
EuroVO-DCA project and participants of the theory workshop organised in the
context of that project in Garching, 2008. Then we want to thank particularly the
following persons for useful discussions and feedback: Jeremy Blaizot, Miguel
Cerviño, Klaus Dolag, Pierro Madau, Adi Nusser, Ray Plante, Volker Springel,
and Alex Szalay. We finally want to thank participants to the theory sessions in
all the interoperability meetings since Victoria 2006, where parts of this work
were discussed.

Conformance related definitions

The words "MUST", "SHALL", "SHOULD", "MAY", "RECOMMENDED", and
"OPTIONAL" (in upper or lower case) used in this document are to be interpreted
as described in IETF standard, RFC 2119 [0].

The Virtual Observatory (VO) is a general term for a collection of federated
resources that can be used to conduct astronomical research, education, and
outreach. The International Virtual Observatory Alliance (IVOA) is a global
collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications. The International Virtual Observatory
(IVO) application is an application that takes advantage of IVOA standards and
infrastructure to provide some VO service.

4

Contents
1 Executive Summary 5
2 History 6
3 SimDM: application, approach and outline 8
3.1 Application(s) of the model 8
3.2 Modelling approach 9
3.3 Phase 1: analysis 9
3.4 Phase 2: domain model 11

4 Logical model overview 14
4.1 Packages 14
 Resource 15
4.2 15
4.3 Physics, models and algorithms 17
4.4 Parameters: definition and values 19
4.5 Target: Goal of experiment 20
4.6 Object types: real and simulated 22
4.7 Results: products and their statistical summary 23
4.8 Data access services 27

5 Serialisations 28
5.1 SimDM/UTYPE 28
5.2 XML 29

6 Dependencies on other IVOA efforts 31
6.1 Registry 31
6.2 Semantics: Use of SKOS Concepts 32
6.3 Data Model 33

6.3.1 UML Profile 33
6.3.2 Characterisation data model 34
6.3.3 UTYPE 34

7 References 35
7.1 Accompanying documents 35
7.2 Relevant IVOA documents 35
7.3 Other sources 36

5

1 Executive Summary

In this document we make a proposal for an IVOA standard data model for
describing simulations1. Indeed, apart from limited support for publishing model
spectra in SSAP, there is as yet no IVOA standard dealing with the publication of
simulations and their results. The primary goal of our proposal is to support
discovery of simulations by describing those aspects of them that scientists might
wish to query on, i.e. it is a model for meta-data describing simulations. This note
does not propose a protocol for using this model. Two distinct IVOA protocols are
in the make and both are supposed to use the model, either in its original form or
in a form derived from the model proposed here, but more suited to the particular
protocol.

The direct motivation of the model comes from the Simulation Database (SimDB)
and the former Simulation Data Access Protocol (SimDAP) efforts. Work on
these standards started under the header Simple Numerical Access Protocol
(SNAP) in the Theory Interest Group (TIG) since the Victoria interoperability
meeting, 2006. It was agreed in the Trieste interop 2008 to split SNAP in two
separate tracks, SimDB and SimDAP. More recently it was deemed useful to
further split the work on SimDB in two tracks, one focusing on the data model
alone, the second on its serialisation and usage in the SimDB protocol. This Note
deals with the data model, referred to as SimDM.

Work on the SimDB specification has been organised via a GoogleCode SVN
repository in the volute project originally created by Norman Gray for the
Semantics Working group. The history of the SimDB project can be obtained
from https://volute.googlecode.com/svn/trunk/projects/theory/snapdm. A large
part of that though deals with technical issues revolving around a code generator
we designed to derive relevant resources from the basic data model. Most of that
development has been moved to a separate GoogleCode project, VO-URP. The
resources dealing with the SimDB developments have been gathered in the
subdirectory in
https://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/.
The other parts of the volute part of SimDB should be deemed deprecated.

In Section 2 we recall the scientific motivation at the origin of creating SimDM
and the 4-years history of the developments. Section 3 described our
methodology whereas the model itself is detailed in Section 4. A few specific
issues of serialization are addressed in Section 5. The development of SimDM is
linked to other IVOA efforts that deserve to be mentioned. Section 6 deals on that

1 We will use the term simulations for the running of a simulation code as well as for their results.
And we will often include post-processing codes and their results as well.

6

point. We present some conclusions and describe the next steps for the
recommendation process in the last Section.

2 History

Numerical computer simulations form an increasingly important component of
astrophysical research. Such simulations are used to model astrophysical
processes whose complexity precludes an analytical treatment. The subject of
these simulations includes every possible astrophysical phenomenon, from the
structure of stellar atmospheres, the formation of solar systems, the structure of
galaxies and the description of their constituents, to the formation of the largest
structures in the universe.

The simulations often result in predictions that can be compared to observations,
but in general are much richer, including “observables” that can only be derived
by indirect means from observations. These results can be very large, rivalling
and often exceeding in size the largest observational catalogues. But they can
also be relatively small, consisting of individual spectra of say a white dwarf,
though often in collections resulting from parameter studies.

The design and execution of these simulations has become a specialised field of
astrophysics, and is these days often performed in large collaborations. And
while it is still true that their results are studied by these groups only, more and
more of these theoretical data are being published online (see for instance the
Appendix B of [26]).

Apart from limited support for publishing theoretical spectra in SSAP, there is as
yet no IVOA standard dealing with the publication of simulations and their results.
In earlier documents we have described the issues for defining such standards
compared to the arguably simpler case of observational data sets (see for
example [21] and [26]).

The proposal for a standard way of publishing simulations was formulated during
a workshop in Cambridge, February 2006. The original idea was to create an
analogue of the simple image access protocol (SIAP, [18]) for N-Body
simulations: SNAP, the Simple Numerical Access Protocol. During the following
interoperability meeting in Victoria, May 2006, the scope was expanded to
include other types of simulation algorithms, and rephrased to something like
“simulations that reproduce 3+1dimensional space time”. It was felt furthermore
that not only simulations themselves should be included, but also certain types of
post-processing such as cluster finders, as long as their results are still aimed at
producing a description of 3D space at one or more points in time. Over time
requests have come in to generalise this scope even more, basically to enable
any type of astrophysical simulation to be handled.

7

An important change that was decided in Victoria 2006 was that instead of the
SIA protocol, the newer simple spectral access protocol (SSAP, [19]) should be
followed as an example. This protocol’s main difference with respect to SIAP was
the explicit data model that was created for spectra and was used as motivation
for the queryData metadata and the getData data format. Hence SNAP from the
beginning had a double focus on a data model plus related query protocol on the
one hand, and a data access and delivery specification on the other hand.
Shortly before the Trieste interop in the spring of 2008 it was decided to split
SNAP up along these lines in two separate specifications. A specification for a
Simulation Database (SimDB) which would support searching for interesting
simulations and the services providing access to them, and a Simulation Data
Access Protocol (SimDAP) providing a specification for accessing simulation
results.

SimDB on its own is still a rather complex specification. It has overlap with the
efforts and results of many working groups, Data Model (DM), Registry, Data
Access Layer (DAL), Semantics as well as being an integral part of the Theory
Interest Group (TIG). This issue has been discussed in the Baltimore and
Strasbourg interops, as it causes a potential problem for the standardisation
process: an interest group cannot promote a document to a standard, but which
a working group (WG) could do so. It was decided in Baltimore to postpone that
decision by creating a focus group led by the TIG and with participation form the
various WGs.

The current document is the result of a split in original Note that was written for
SimDB. Such a split was proposed to simplify the standardisation process and
after some refactoring was performed mid-2009. This current document is the
first of these and deals exclusively with the data model (SimDM) and
consequently has a natural place in the DM WG. The second document deals
with the use of the data model for defining the model for a relational database
and its related TAP query implementation as well as a service interface for
uploading simulation descriptions to this database. It is not yet clear whether it
can find a place in a single WG.

A recent effort has been the proposal for a simpler access standard for small
scale simulation, the Simple Self-describing Service protocol (S3, [15]). This was
a result of an investigation started in the Cambridge 2007 interoperability meeting
whether “micro-physics” simulations as they are sometimes called require special
attention. For some time this was covered by SSA, at least as far as theory
spectra were concerned. S3 is actually a direct reworking of an older Theoretical
Spectral Access Protocol [20].

There were questions in the TIG whether S3 might be incorporated in SimDB
and/or SimDAP. In the interoperability meeting in Victoria 2010 the decision was
made that indeed this should be possible. The SimDM was shown to be able to
incorporate the metadata for S3-like services, and indeed proposes extensions of

8

that. It was decided that the S3 protocol should be merged with/incorporated into
the SimDAP standard, which from then on will be known by the name Simulation
Data Access Layer (SimDAL). The appendix document addresses this question
from a formal point of view, namely by defining how S3-like services can be
described by the data model.

3 SimDM: application, approach and outline

3.1 Application(s) of the model
The data model proposed here was never meant to be created in a vacuum, but
was always intended to be used in some IVOA standard service. What precisely
this application was has not always been clear for the SimDM, the goal of which
has gone through some changes in the course of the project. It started off as a
SIAP-like service protocol for N-body simulations, SNAP 2 . Then mesh
simulations were included, leading to our definition that SNAP should support the
discovery and possibly partial retrieval of simulations involving “evolving objects
in 3D space”3. Over time the protocol separated into the Simulation Database, a
more TAP service for querying for simulations, and the SimDAP protocol for
retrieving actual data products 4 . Recently (and finally) also simulations of a
different type, “micro-physic simulations”5, or “models”6 have been included, and
SimDAP has merged with S3 to form SimDAL: a family of access protocols for
theory data7.
Consequently the aim and possible applications of the data model have changed
a little over time. The discussions in the Victoria 2010 interop have finally led to a
convergence of these ideas and to the following agreement:

1. The SimDM MUST support the SimDB protocol and the SimDAL service
protocols.

2. To do so it MUST allow scientists to describe their simulations in sufficient
detail for others to decide whether a given simulation is of interest, and to
query for these simulations.

3. It SHOULD then offer directions to services for further drilling down or
downloading simulations or parts of these.

4. The precise representation of the model in the individual service protocols
(SimDB, SimDAL) is not prescribed.

5. If individual protocols will deviate in the details from the SimDM, this will
be for application specific reasons.

6. The SimDM will provide the vocabulary for the concepts used in these
possible alternative representations.

2 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/CambridgeTheoryWorkshopFeb06
3 http://www.ivoa.net/internal/IVOA/InterOpMay2006Theory/closingplenary.ppt
4 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2008Theory
5 Coined in Cambridge interop, 2007.
6 In Victoria 2010, we decided to label all as simulations. See
http://www.ivoa.net/internal/IVOA/InterOpMay2010Theory/IVOA2010_ModelvsSim.pdf
7 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2010Theory

9

In the preferred case, these other representations can be considered as different
views on the core SimDM. This should be interpreted similar to the way relational
database views provide a mechanism by which slightly different representations
from the often more normalised data model can be provided.

3.2 Modelling approach
With this application area in mind we have followed a somewhat formal approach
to our data modelling effort, suggested by e.g. [28]. In this approach the
construction of a data model is divided in three stages. The first is the analysis
stage, in which one investigates the “domain of the application” one tries to
model. This stage produces a conceptual, or domain model [33] which is
relatively abstract and high level. In its design one does not aim to create a
model directly suited to an application. The emphasis is on identifying important
concepts and their relationship in the “real world”. One also refrains from giving a
fully detailed definition of all attributes and other features. Important in this stage
is interaction with domain experts, in our case scientists.
The aim of the second stage is the creation of a logical model [34] of the
application domain. This should be a detailed model supporting the application. It
should contain all information required to support the application. It should
however still be implementation neutral, and concentrate on describing the
precise concepts and semantic relationships between them. In general it will use
part of the concepts from the domain model, but works them out in more, all,
detail.
In the third stage one derives from this logical model one or more physical
models [35]. These are representations of the logical model in a form that can be
used directly by the various computational components building the system.
Examples of this are XML schemas defining valid XML documents, or relational
schemas for the design of a database storing instances of the model.
The analysis phase is described in the next few subsections. The logical model is
defined in full detail in UML using the MagicDraw Community Edition modelling
tool. MagicDraw stores the model in an XML file following the XMI serialisation
[30] we have created a fully cross-linked HTML file documenting this model in all
detail. These 2 files are part of this specification and can (for now8) be found on
the GoogleCode volute site.

3.3 Phase 1: analysis
The analysis phase investigates the “world the application lives in”, its “universe
of discourse” [28] and describes it in a domain model. To get constraints on this
universe and its contents we follow [36] in trying to gather some 20 science
questions that the application should be able to answer. The application is here a
system consisting of the data model together with the protocol and
implementations. The model will be designed in such a way that it can contain

8 Once the specification becomes a working draft the stable versions of these files should be
placed under the IVOA wiki site.

10

the required information. The protocol and implementations must support efficient
querying for this information. [36] used this approach in the design of the SDSS
database.
To create such a list of questions we have contacted scientists with the question
that if they were presented with a database of simulation metadata, what
questions they would want to ask of it to find interesting simulations. The
following list summarises their answer:

 What system/object is being simulated?
 What physical processes are included?
 How is the system being represented in the simulation (particles

(Langrangian), (adaptive) mesh (Eulerian)), both, other?
 How are the physical processes implemented?
 What numerical approximations were used (e.g. resolution, softening

parameter)?
 What observables are available for the system/object, possibly as function

of time9? As it is a spatial system, at least simulation boxsize, center-of-
mass position.

 What observables are available for the constituents, i.e. what is the
schema of the objects from which the simulation built e.g. particles in N-
body simulation, grid cells in an adaptive mesh simulation or particle
groups in a cluster finder?

 Per snapshot, per simulation object type, per variable:
o Characterise the possible values
o Characterise the result

 Are post-processing results available?
 Are services/applications available for accessing the results?
 Which code ran the simulation?

o Which version of the code?
o Is software available?

 Who ran the simulations?
 What were values of input parameters?
 How were initial conditions created?
 How the results are parametrized?
 Can I access grids of models? Can I access individual results?
 Which are the inputs ingredients (usually, which data collections are

used?)
 How I can run a simulation? Can I do it on-the-fly?
 Can include my simulations in the VO in an easy way? What I should do?
 Can i compare different simulations? Can I compare the simulation with

my data?
 Which simulations provide diagnostic tools? (i.e.

distance/extinction/quasi-scale free quantities)

9 Re: Rick Wagner’s example of certain properties only being calculated after a certain stage in
the simulation is reached.

11

 Can I combine the results of different simulations in a single file adapted
for my needs (e.g. own code)?

3.4 Phase 2: domain model
The result of the analysis phase is a model in its own right, albeit rather sparse
and schematic. For this purpose we have built on previous work by adapting the
so called Domain model for Astronomy proposed in [12]. This model forms the
basic structure of the domain model for SimDB, illustrated in Figure 1.

12

Figure 1 Schematic domain model encapsulating the main design constructs in SimDM.
Elements coloured orange are represented directly in SimDM, possibly with a different
name. Purple elements are not part of that model, but are used to explain and motivate
other features that do appear there.

13

Figure 1 is used in a narrative motivating the final structure of the full SimDM. We
start by assuming the existence of one or more Files that a publisher thinks may
be of interest to the community because they contain astronomical data. Instead
of in files the data might also reside in a Database, and to be generic we
introduce a Storage base class that abstracts the actual physical location of the
data.
Registering that files exist somewhere is not of great interest without providing
information about the contents of the files. The philosophy that we follow is that
the files are of potential interest because they contain the Results 10 of an
(astronomical) Experiment, and accordingly their contents must be explained by
describing the experiment that gave rise to it. Only in this way can one make
scientific use of the files or other storage resources.
The abstract Experiment is made concrete by adding some examples of
experiment types that are important for the current model dealing with
Simulations and simulation PostProcessing.
In our model, Experiment represents the actual running of an experiment; to
describe the design of the experiment (the so-called experimental protocol) we
introduce the concept of (experimental) Protocol11. This separation between
design of experiment and the execution is a normalisation that reduces
redundancy in the model. See the accompanying appendix for a discussion of
this concept. We mirror the concrete subclasses of Experiment by adding
concrete subclasses to (experimental) Protocol such as Simulator, which
represents simulation codes according to which Simulations are run, and
PostProcessor corresponding to PostProcessing runs.
The (experimental) Protocol class contains InputParameters. An Experiment
using a particular (experimental) Protocol only needs to indicate the values for
these parameters. In this way a single instance of the (experimental) Protocol
can be reused by many Experiments performed according to it.
The (experimental) Protocol also defines the possible structure of the results of
the experiments. In our model Results contain ResultObjects. These objects
have a given type, represented by the ResultObjectType contained by
(experimental) Protocol. The ResultObjectType defines the Properties that
these objects have.
For example the results of N-body simulations may contain particles having
properties position, velocity, mass and possibly others. Adaptive Mesh
Refinement (AMR) simulations produce results that are collections of mesh cells
of various sizes, positions and contents. Similarly post-processing codes such as

10 We do not assume that in reality the relation between the conceptual Result and the concrete
Storage elements can be modelled by a single reference. Especially for the largely non-
standardised world of simulations a single result can be distributed over many files, but it is also
possible for one file to contain multiple results. In the current SimDB model we do not attempt to
model such relations explicitly. We delegate the responsibility for accessing the physical results to
(web) services and this issue is more explicitly addressed by the SimDAP protocol.

11 Further on, the word protocol will be preceded by the adjective experimental (in parenthesis
and italicized) to keep clear the distinction with any other IVOA protocol.

14

halo finders produce “halos” and “semi-analytical” galaxy formation codes
produce galaxies.
In general a single result can contain objects of different types. For example a
Smooth Particle Hydrodynamics (SPH) simulation may contain dark matter
particles, star particles and gas particles. And in general the codes allow one to
configure which of these exactly are chosen in a given experiment.
One aspect of the experiment that is not determined by the experimental protocol
is why the experiment was performed. In the model we introduce the Target
concept for this, which represents real world objects or processes that are being
simulated. For example, with the same N-body simulator one may simulate a
galaxy merger or the evolution of large scale structure of the universe.
As discussed above, the actual way in which results are stored in files or
databases is hard, if not impossible to model. Instead we assume that
Webservices of various kinds may be used to access the results of simulations
and other SimDB products.
Some of these will be standardised in the SimDAL specification, but custom
services may also be introduced. The model allows one to describe the
experiments and their results, which should allow users to discover results of
interest, after which the web services can be called for actually accessing these.

4 Logical model overview
The actual SimDM that we propose here is a logical model in the sense of [34]
based on the domain model described in 3.4. It is still implementation neutral, but
it is fully detailed and represented in UML. It has a human readable HTML
representation which contains the detailed description of all elements [6]. That
document should be consulted for the details of the model.
Here we introduce the main concepts and motivate the main design decisions.
Where possible we try to give a link into the HTML document the first time we
describe a concept from the model. This will then be a bold-faced link. The link
will consist of a root URL to the location of the HTML document, followed by a
#<UTYPE> that identifies the description of the actual concept in the HTML
document. This we feel is very much in the spirit of the use cases of UTYPEs.

4.1 Packages
UML Packages are subsets of classes and data types that are deemed to belong
together. Whilst not essential to the model, we have used them to provide some
level of modularity. Their main role is played in the XML schemas derived from
the model. Each package has its own type-schema (see 5.2) which provides a
somewhat finer level of reuse.
The diagram in Figure 2 shows the packages we use and their dependencies.
The simdb package contains the other packages. This hierarchy is reflected in
the UTYPEs, see section 5.1. The colours assigned to the packages correspond
to the colours of classes in the diagrams in later sections. The subdivision in the
one parent and four child packages follows the resource class hierarchy
described next.

15

Figure 2 The packages of the SimDM and their relationships. The simdb package is the
parent of four “child” packages. These are related to each other through directed
dependency links indicated by the dashed arrows.

4.2 Resource

The SimDM aims to describe simulations and related concepts. The current
model does so with of the order of 40 separate object types, or classes. Most of
these classes themselves represent parts of other classes. They group together
properties or relationships used in the definition of their “parent”. The composition
relation is used to represent these kinds of parent-child relationships [2]
But among the classes in the model there are some that are not used like this.
These classes represent concepts that can stand on their own, are not use to
describe part of a larger concept. These we will call “root entity classes”. In the
model they can be identified by the fact that neither they, nor any of their sub or
base classes are part of another class, a child in a parent-child relation.
These are the classes that represent the model’s core concepts and their
identification is a first important choice in the modelling effort. In the current
model there actually two separate collections of classes that are root entities.
There is the Party class, which represents an individual or organisation, and is
not so important for the moment. We will focus here on the root entity classes in
the Resource hierarchy, illustrated in Figure 3.

16

Figure 3 Root entity classes for SimDM.

From the bottom up, we have concrete classes Simulation and Simulator,
PostProcessing and PostProcessor, Project and Service.
Simulation and PostProcessing are both subclasses of the abstract Experiment
and Simulator and PostProcessor are both (experimental) Protocols. All the
entities are ultimately subclasses of Resource.
Our choice for the root entities follows the domain model in concentrating on the
scientific experiments as a whole. The Experiment class contains classes
representing the actual results (Result) that people may wish to access, but
those are not the core concepts in our model. This is in contrast for example to
the spectrum data model [11]. Part of our motivation is that an experiment can
exist without having (yet) produced any results, but to have results (as defined
here) one always needs an experiment. This is a clear example of a parent-child
dependency, where the child’s life-cycle depends on that of the parent. The
standard way to model such relationships is using a composition relation and that
is how we have modelled it. More about the way we model results below in 4.7.
The separation between (experimental) Protocol and Experiment is another
important feature that we directly take over from the domain model. This design
was already motivated in Section 3.4 and is related to the Measurement-Protocol
pattern in [27]. That pattern says that when one does a measurement (of some
property) it is important to remember the protocol by which the measurement was
made ([27], p65). In [12] this was extended to experiments, which in general
consist of large numbers of “measurements”, all done in similar ways. Whereas
the term measurement seems to be more applicable to observations, it is simple

17

to generalise the concept a bit and apply it to the calculation of properties during
a simulation. Actually this is similar to the CalculatedMeasurement in [27],
An important reason to keep this separation between Experiment and
(experimental) Protocol also in our logical model is to avoid having to redefine
the parameters and other aspects of a simulation code each time a simulation is
run.
The Service did not appear in the original domain model in [12], but we
introduced it in the model in 3.4 under the name WebService. In our model it
represents a way to provide access to results of experiments. We could have
tried modelling the way results are stored in files etc, but deemed it too complex
to do so. This is in contrast for example to the spectrum data model, where we
can model the data directly and even can predefine the representation of the
data. There an access reference to the data files can be given to download a
result. For simulations this is in general not possible. In many cases simulation
codes have their particular proprietary formats, often storing single results over
multiple files. Hence we merely allow users to describe services by which one
can access results, but leave the details to the SimDAL service specifications.
The Project class represents an aggregation of Experiments and (experimental)
Protocols that combine to define a scientific project. This class is introduced to
allow for example publishers to group simulations and post-processing runs that
were produced with a common goal. It was inspired by a discussion on whether
some of the SimDM/Resources could be registered as Registry Resources as
well12. Many of the simulations registered in a SimDB will not qualify for the same
reasons that individual images do not qualify to be registered. Resources in an
IVOA compatible registry are relatively coarse grained; correspond to archives
full of images published through a SIAP service for example. A Project can be
used to define such collections also in SimDM. And indeed one may wish to
register such collections separately in a registry.
The root of the hierarchy of entities is formed by the Resource class. This class is
introduced as a convenience to hold on to information common to all its sub
classes. Its name is obviously inspired by the Registry’s Resource [13] and it also
holds on to curation information. It “is not a” Registry Resource though in the
strict OO modelling sense. For example it does not inherit all features of that
class. But this is mainly because, as mentioned above, most SimDM Resources
will not qualify as Registry Resources.

4.3 Physics, models and algorithms

An important characteristic of simulation codes is what physical systems and
processes are, or can be, modelled and how these are represented in the
program. The Simulator class represents computer codes that create numerical
models of the world. Simulators do so by representing physical processes using
numerical algorithms that act on model representations of real world objects. In
our model, see Figure 4, physical processes are represented by the Physics

12 Thanks to Ray Plante for his contributions to this discussion.

18

class. It is contained in the Simulator class, not in the general (experimental)
Protocol. In effect a Simulator protocol is distinguished from other (experimental)
protocols in that it models and implements physical processes.
Physical processes are implemented using particular Algorithms. Other
(experimental) protocols also have Algorithms, but these are assumed to process
existing results, and do not model physical processes. Examples of these are
particular algorithms for extracting clusters from results of N-body simulations.

Figure 4 Modelling the representation of physical processes and objects.

Finally, (experimental) protocols need objects to represent the structure of the
physical systems they model. For example, N-body simulations need particles
that represent mass moving around. The model uses the
RepresentationObjectType for this. This class defines the smallest components
that are being used by the algorithms and are generally stored in the results of
the experiments. Note that much of the structure of the
RepresentationObjectType is defined on a base class, ObjectType that will be
discussed in 4.6 below.

19

4.4 Parameters: definition and values

Figure 5 Modelling the parameters: definition under (experimental) Protocol, values under
Experiment.

Software codes generally require some level of configuration before they are
executed. In many cases this translates into a collection of parameters that must
be given values. The parameters are defined by the code and we model this by
an InputParameter class that is contained by (experimental) Protocol. Assigning
values to these parameters however is the responsibility of the experimenter and
is explicitly modelled as a ParameterSetting class contained by Experiment.
Input parameters are defined by a name, datatype, label and other properties
familiar for example from the PARAM field in VOTable13. Most of these are
inherited from the Field class, which will be discussed 4.6 below.
Because the details of the parameter are defined on the InputParameter class,
the ParameterSetting would not require more than a pointer (the
inputParameter reference) to the appropriate input parameter and a value. A
problem for this model though is what data type to assign to a possible value
attribute. We have no knowledge in advance on the data type of the input
parameter for which a value is set. This is only known at the instance level, not at

13 We generalize the ucd attribute on VOTable’s PARAM and FIELD to a label attribute with
stereotype <<skosconcept>>.

20

the model level. We do not know whether a certain parameter will be integer, or
real, or maybe a string. Our current solution is to allow two different
representations of a value, namely a numericValue, of type real and a
stringValue.
This issue and the usability problems it causes will need to be discussed and
handled at the IVOA protocol level14. One approach is for example the SimTAP
idea detailed in the SimDAL document [23].

4.5 Target: Goal of experiment

Figure 6 Modelling the goal, or target of a generic resource as objects and/or processes.

Generally the first piece of information that the scientists we polled were
interested in regarding simulations was what was simulated. I.e. what type of
object: a galaxy merger, a galaxy cluster, the large scale structure of the
universe? This information in general says something about the goal that the
scientists running the simulation had.
In certain cases the simulation code itself may completely prescribe the type of
objects and physical processes that are modelled. As example take population
synthesis models such as the Galaxev library15, producing spectra of galaxies.
But many simulation codes allow many different types of objects to be modelled,
and even allow one to vary which processes are actually modelled. Also in many
cases the actual object that is being simulated is not an intrinsic property of the
simulation code, but is a derived property of the actual simulation. For example
an N-Body code in general does not contain “galaxy particles”. But one can use it
to follow the evolution of millions of low mass particles that are in a particular
configuration that together model a galaxy. But it can also be a globular cluster,
or a filament in the large scale structure.

14 Statistical summary has the same problem, see 4.7
15 Bruzual and Charlot, 2003: http://www.cida.ve/~bruzual/bc2003

21

To cover the concept of the target of an experiment or protocol, or the goal of a
project, we add two classes, TargetObject and TargetProcess. A TargetObject
represents an object, or a physical system in the real world, such as a galaxy, a
star etc. TargetProcess represents a physical process such as gravitational
clustering or turbulence. This recognises the fact that some simulations are run
with the goal of investigating a process, rather than producing a model of a
physical system.
Both these classes are subclasses of Target, which itself is again a subclass of
ObjectType defined in the next section. Target is contained by Resource so that
by inheritance they are available to all sub classes. We do not model the Target
objects in full detail. For example we rely on a semantic label attribute to give a
standardised name to the type of object.
One important task of a Target is that it allows one to subdivide the different
Results of an Experiment. A Result may have a target reference, pointing to the
target it contains and indicated what type of object is contained in the result16.

16 NB This is in principle an elegant structure for defining what set of Products should be joined to
form a Result. It was proposedduring the Victoria interop 2010. We need to see how it works in
practice.

22

4.6 Object types: real and simulated

Figure 7 The model needs to describe the types of objects that are being simulated/used.
We model this in quite some detail in a hierarchy of object types, with properties, grouping
of properties and child objects corresponding to nested objects.

In a few places in the model we need to represent the fact that different
simulation codes and (experimental) protocols, or different experiments, need to
describe the types of objects they use or produce. For example, the
(experimental) Protocol must be able to describe the building blocks of the model
world it represents.
These building blocks are described by properties and we simply mimic an object
oriented design here. That is, we allow users to define ObjectTypes, with
properties and the possibility of relations between parent and child objects.

23

We have encountered this situation in the RepresentationObjectType in 4.3 and
the Target (Object and Process) in 4.5.
To gather the common features of these we introduce the ObjectType class. An
ObjectType contains a collection of Property-s that corresponds to the simple
attributes used to describe an object. Property is a subclass of Field which
defines its main attributes such as name, description and data type. Also a
Protocol’s InputParameter is a Field, similar to the way a VOTable’s PARAM and
FIELD share a common structure. Another similarioty with the VOTable structure
is the possibility to group Property-s in a PropertyGroup.
To model (hierarchical) relations between different Objects an object has a
collection of ChildObject-s, which represents an aggregation of other
ObjectType-s.

4.7 Results: products and their statistical summary
We assume users of a Simulation Database will want to gain access to results of
simulations and related experiments. This is the same as we assume of users of
Simple Image Access or Simple Spectral Access services. For those services the
user knows what to expect, a FITS image in one, a spectrum serialised according
to the spectrum data model in the other.
Such expectations are not realistic for simulations though. The main problem is
that we have no a priori knowledge about the contents of their results. Arguably
somewhat simplistically one may claim that images and spectra contain pixels
with known properties (space, wavelength, flux). Results of simulations, even
when constrained to 3+1D simulations, can contain as their fundamental
constituents: point particles, particles with size and structure, mesh cells of fixed
or varying size, Voronoi cells17, structured halos, galaxies, radiation fields, galaxy
merger trees etc. And any of these object types can come with any collection of
properties: position, velocity, mass, temperature, chemical composition, entropy
etc.

17 http://www.mpa-garching.mpg.de/~volker/arepo/

24

Figure 8 Domain model for results.

Precisely for this reason users will want to have knowledge about the contents of
simulation results to decide which simulations might be of interest to them.
Hence the model must support description of the results explicitly and Figure 8
illustrates how this is achieved in the domain model:
Experiments produce Results that consist of Objects (pixel, N-Body particle etc)
of a particular (Object)Type. The ObjectType defines the structure of Object as a
collection of Properties (position, velocity, flux etc), and an Object, being an
instance of the ObjectType, assigns values to these properties. Which
ObjectTypes and Properties are available is defined by the (experimental)
Protocol according to which the Experiment is run.

The SimDM deviates from the domain model in that it does not include the Object
and ValueAssignment classes. Including these would imply that positions,
velocities etc for all particles in a simulation are added to the metadata
description. For the purposes of SimDB, i.e. discovery of potentially interesting
simulations this would be overkill. It is certainly possible to include data as in the
domain model, the spectrum data model is a case in point. But that model has a
different purpose, namely providing a serialisation of spectra in a standard

25

manner. Furthermore, individual spectra are quite small and have a well defined
structure.
How we model results and their contents in SimDB is shown in Figure 9. Results
have one or more Products. A Product represents one of the possible multiple
collections of objects of a single ObjectType represented in a Result. It is in
general possible to choose which ObjectTypes from a (experimental) Protocol
are included in an Experiment. For example many SPH codes support
simulations where only dark matter particles are represented, as well as
simulation which include gas and star particles. It is even possible to include
some object types only after a certain time. This is the main motivation for

Figure 9 Modelling Results, Products and their contents.

26

It is in certain cases useful to have some more quantitative information about a
simulation. For example, apart from the fact that a simulation has N-Body
particles with properties position, velocity and mass, it might be of interest to
know that the typical mass of the particles is 1010 solar masses.
We support this by allowing users to describe properties of the collections of
objects in a Product using a class we call StatisticalSummary. This reflects our
belief that statistics is the appropriate way to introduce some quantitative aspects
of these large collections of objects. StatisticalSummary is contained in Product.
It assigns statistical values such as a mean or a min/max value to Properties of
the Product.objectType. Which statistic is used is described by the statistic
attribute.
The data type of the value is a problem, similar to discussed for the value of
ParameterSetting
Extensions of this statistical summary to more detailed summaries such as
histograms can be easily imagined, but have been left out for the model as they
will have less relevance for discovery, which is the main use case for the model.
One further feature is important and pertains to the boolean aPriori attribute.
This attribute describes whether the statistic that is used in the summary is an a
priori or an a posteriori statistic. An a posteriori statistic is calculated using the
results after they have been obtained during the running of the experiment. For
example an a posteriori mean will likely correspond to the usual expression,


N

i
ia

N

1
,

where the ia are the values of some property.

In contrast a priori statistics characterise the possible values of the observables
before the experiment is run. In certain cases a priori knowledge is available that
restricts the possible values that certain properties may obtain in an experiment.
An example is a lower bound set on the number of particles that a cluster must
contain to be included in the result of a cluster extraction of an N-Body
simulation. This can be indicated by a StatisticalSummary object with
statistic=min and aPriori=true.
Knowledge about the a priori statistics is important in the interpretation of the
results. In the previous example, when interpreting the mass multiplicity function
of a cluster catalogue extracted from an N-Body simulation, it is clearly important
to know what the lower limit was on the mass of clusters.
In general a priori statistics are the result of, and may often be derived from the
input parameters. However this derivation may not be obvious and will in general
require intimate knowledge of the parameters of a (experimental) protocol. The a
priori statistic may then facilitate the discovery of catalogues that should contain
halos of a certain mass.

27

4.8 Data access services

Figure 10 The model for (web) services giving access to SimDB resources.

The goal of the Simulation Database is to allow scientists to find simulations of
possible interest. Once these are found the question is what can be done with
them. Clearly knowledge of their existence will be useless if the researcher will
not be able to somehow gain access to the results. The usual way this is done in
the IVOA, for example in the simple image and spectral access protocols, is that
the result of a discovery query contains an access URL that may be used to
download the actual image or spectrum, where moreover the format of the
returned resource, FITS, VOTable or XML document will be known beforehand.
It was perceived from the beginning of the SNAP project even that for the type of
simulations that were supposed to be described a simple download would be
unfeasible simply based on the size of many of the typical N-Body or AMR
simulations. This assumption still holds and the SimDAL protocol is designed to
define special purpose services for retrieving parts of such simulations for
example.
Also in the data model we want to indicate how the relation is between the results
and services. This part may be used in the SimDB specification to allow users to
register services and the Resources they give access to.
In the model the Service class, already introduced in 4.2, represents such
access services (see Figure 10). This class can be explicitly linked to the
Resources it gives access to through a collection of AccessibleResource-s.
This part of the model is still rather summarily treated and may need to be
updated depending on developments in the SimDAL specification.

28

5 Serialisations
According to policies of the data modelling working group, first decided in
Cambridge, 2003, a data model should be presented using a UML diagram, a
corresponding XML schema and a list of UTYPEs. We have created these both
using rules that derive the products directly from the XMI serialisation of the UML
data model.

5.1 SimDM/UTYPE
The original goal of the data model presented here was to define the structure of
a relational database supporting the Simulation Database service specification. A
first draft of a note proposing that spec can be found in [22]. SimDB will use TAP
[10] to define the IVOA protocol for querying this database using ADQL. The
results of such queries will be tabular and serialiased as VOTables. Such a
VOTable will contain a filtered subset of the information in the database, but in
general in a different form compared to the structure of the data model. To
indicate the meaning of data elements in such a VOTable, the IVOA has invented
the concept of UTYPEs.
A UTYPE is a “pointer into a data model” 18 . The VOTable XML schema
implements this concept as attributes on various elements, e.g. FIELD and
TABLE and many other elements. The value of such a UTYPE attribute should
identify an element in a data model that is represented by the element itself. For
example a table might point to a class definition in a data model, and a column
(FIELD) to an attribute.
It has become common practice to provide for an IVOA data model a list of
UTYPEs. The Spectrum data model (see [11]) was the first to add explicit
UTYPE-s for each of the attributes in its model and the Characterisation data
model [16]has followed that example. We follow these examples by assigning
UTYPE-s explicitly to all elements in the model.
Our goal was not to have to make this a separate effort, but if possible to
generate the list of UTYPEs directly from the model. Our goal was to assign
UTYPEs to all identifiable elements in our model and these should be unique.
To this end we define a set of production rules phrased using the special names
in our UML profile. We have made a guess as to what the format for UTYPEs will
be. In the previous data models a UTYPE existed of a word consisting of dot-
separated “atoms”, similar to UCDs, but without the “;”. We use a slightly different
format to make the distinction between different syntactic elements from the
profile somewhat clearer and also to guarantee uniqueness of each UTYPE
within the data model context. Once (if?) a format is settled on within the IVOA
we will easily be able to adjust our definitions.
The important point we want to make is that it is possible to define simple rules
that can automatically produce unique UTYPE-like words for all elements of a

18 See 6.3.3 for our position on the discussion that is still going on regarding UTYPEs.

29

data model, i.e. the only discussion that may be required is on the rules for doing
so IF a fixed format is preferred (see Norman Gray’s ideas19 on why this might
not be necessary).
The following BNF-like expressions define the particular rules we have used for
deriving the UTYPEs from the UML model:

utype := [model-utype | package-utype | class-utype |
 attribute-utype | collection-utype |
 reference-utype | container-utype
model-utype := <model-name>
package-utype := model-utype “:/” package-hierarchy
package-hierarchy := <package-name> [“/” <package-name>]*
class-utype := package-utype “/” <class-name>
attribute-utype := class-utype “.” attribute
attribute := [primitive-attr | struct-attr]
primitive-attr := <attribute-name>
struct-attr := <attribute-name> “.” attribute
collection-utype := class-utype “.” <collection-name>
reference-utype := class-utype “.” <reference-name>
container-utype := class-utype “.” “CONTAINER”
identifier-utype := class-utype “.” “ID”

For the SimDM these rules produce a list of UTYPEs for the model. For each
model element we provide the UTYPE in the HTML documentation in [6] and we
provide a complete list at the end of that document20. Note also that a URL of the
type

<URL-to-HTML-doc>#<utype>
will link one directly to the documentation for the corresponding data model
element. This is in conformance with a suggestion made by Norman Gray19.

When representing components of the data model in a VOTable (for example),
these UTYPEs SHOULD be used, in particular when the VOTable contains
results of ADQL queries to a SimDB/TAP implementation (see SimDB Services)..
Alternative views and representations of the SimDM, for example in SimDAP,
SHOULD use these UTYPEs to refer to elements in the model.

5.2 XML
A specification for an IVOA data model should (must?21) contain an XML schema
that defines how to serialise data model instances as XML documents. Similar to
the case of UTYPEs we did not want to make the design of these schemas a
separate effort; instead we want to derive the schema from the model. To do so

19 http://nxg.me.uk/note/2009/utype-proposals/
20
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html#uty
pes
21 See “Rules” on http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/HowToParticipate This
“decision” was made in the Cambridge 2003 interoperability meeting together with the
requirement that data models must be specified in UML.

30

we have defined rules for relating XML Schema constructs to our UML model.
These rules are a completion of those described in [37]. It is based also on a
view of what such schemas should look like, restricting the possible set of
constructs to be used in schemas representing data models. These design rules
have earlier been discussed with and accepted by the Registry and VOTable
working groups.
We give here only a short description of these rules. First of all we define two
different types of schemas. First we define “type schemas”, XSD documents
containing only type definitions. For each object type(class) and value type we
generate a corresponding complexType or simpleType. Attributes map to
elements of a corresponding data type (simple or complex), collections to
elements of a type corresponding to the class. References are harder to
represent and will be discussed below.
We next generate a “document schema” containing root elements. The elements
in the document schema define the valid XML documents one can write and we
choose only “root-entity classes” for their type. That is, only classes at the root of
collection trees can be represented as a document. Fragments of these are not
allowed. For example, only a complete Simulator or Simulation can be
represented in a document, not only a single result, or parameter setting.
Note that this is a choice made for the Simulation Database service specification.
The document schema depends on the type schemas through XML schema
import declarations. This separation allows flexible usage of the type schemas,
for example other services might make a different choice from the types to serve
as valid root elements.
The root schema for the SimDM/XSD representation can be found here22. The
type schemas and a predefined base schema can be found in the same directory
and subdirectories of it. We refer to the SimDB Services document for more
details on the XML schema serialisation and their use in the SimDB service
protocol.
Only the mapping of references deserves special attention. Our choice of
mapping from UML to XSD elements and our definition of root elements imply
that many references must be able to link between different XML documents. For
example the (experimental) protocol reference23 in an XML document describing
an Experiment must be able to identify a (experimental) Protocol that is defined
in a different XML document. To do this identification we assume we must rely on
an agent that can interpret a serialisation of a reference and use it to look up a
corresponding document. Therefore we map references to elements of a
particular complexType that we define in a base schema24. That same schema
defines a type to be used for representing identifiers of objects and the reference
serialisation must be able to reproduce such an identifier.

22
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDB_root.xsd
23 UTYPE: SimDB:/simdb/experiment.Experiment.protocol or
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html#Si
mDB:simdb/experiment/Experiment.protocol
24 http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/base.xsd

31

Further technical details of this mapping will be described in the appropriate
service definition document.

6 Dependencies on other IVOA efforts

IVOA documents are assumed to specify dependencies on other IVOA efforts.
We have from the beginning realised that the SimDB effort touches upon various
other specifications and general efforts of other working groups [22]. Here we
discuss these relations as far as they pertain to the Simulation data model.

6.1 Registry
The correspondence between the full Simulation Database specification and the
IVOA Registry will be discussed in the SimDB Service note [22]. Here we will
address the relation between the SimDM and the Registry Data Model as defined
in [14].

Figure 11 UML rendering of the Resource complexType from [14].

32

In Figure 11 we present a UML rendering of the Resource complexType as
inferred from the Resource Registry VOResource XML Schema [14]. Comparing
that model to SimDM/Resource we can see that these two models for Resource
are related, but not identical. In data modelling terms, it is not true that a
SimDM/Resource is a Registry/Resource (or vice versa). Curation is modelled
differently and arguably with less detail in SimDM, but the main difference is in
the Content. SimDM provides a very detailed and specialised model for the
Content of Simulations and related resources, by modelling provenance,
motivation and results characterisation. This higher level of detail gives rise to a
higher level of granularity in the types of resources stored in a SimDB, which in
general will be to fine grained for registration in a Registry. This is similar to the
case of a single image, which is not a Registry/Resource, whereas a SIAP-
compatible service, providing access to many images, is.
A SimDB service itself will have to be registered (see chapter for that discussion),
i.e. a SimDB service is a Registry/Resource. In discussion with Ray Plante (IVOA
Interoperability meeting May 2007, Beijing) on this issue it was proposed that
some part of the contents could also be registered in a Registry directly, i.e. we
should be able to identify Registry/Resource-s in SimDB. Considerations to
decide on how to make this identification would be for example that all data
products resulting from a well-defined (and published) scientific project could
qualify. To represent such a possibility for now we have introduced another
subclass of SimDM/Resource: SimDM/Project. This is not much more than an
annotated aggregation of other SimDM/Resources, with some additional
attributes describing the motivation etc. The metadata of a SimDM/Project is not
the same as that of a Registry/Resource, however we propose that we should be
able to define a transformation (possibly implemented again in XSLT) to
transform a SimDM/Project and produce a Registry/XML representation.

6.2 Semantics: Use of SKOS Concepts
In the SimDM, observables, object types, properties, parameters that play a role
in a given simulation have to be defined explicitly, for the world of simulations is
too large to define all possibilities explicitly in the model itself. This in contrast for
example to the spectrum data model [11] where we know that a flux is
determined for a wavelength interval, or a model for images where a flux is
determined for a spatial pixel. In principle the publisher of a SimDM/Resource
has all freedom to name and describe these entities. For other users to
understand the meaning of them, we have where appropriate, added an attribute
corresponding to a semantic label. This is similar to the situation in VOTable,
where FIELD-s can be given a UCD (or UTYPE) that allows users to understand
the meaning of a column in the table.
In SimDM we need to generalise this concept as UCDs are not sufficient for our
purpose. For example target object types are not covered by the list of UCDs and
the same for other elements in our model. The Semantics WG has specified that
such vocabularies should follow the SKOS specification [25]. They have also
defined a number of such semantic vocabularies in the SKOS format, for

33

example of astronomical objects. We try to anticipate their results by introducing
a special type of attribute in our UML profile that corresponds to a concept in a
given ontology.
Technically, in the UML profile we have defined a stereotype <<skosconcept>>
that can be assigned to an attribute in the UML model. Attributes with this
stereotype must define a value for the tag "broadestSKOSConcept".
The intent of this is as follows (thanks to Norman Gray for providing the original
text with this formal definition):
<<skosconcept>> attributes take a skos:Concept as their value. In each case,
the value is given as a single skos:Concept: such attributes may take any
skos:Concept which is a narrower concept than this single typing concept. To be
precise, for a typing concept T, any concept c is a valid value for this property, if
either:

 c skos:broaderTransitive T

or if there exists a concept X such that

 c skos:broaderTransitive X. X skos:broadMatch T

This just means that, if c is in the same vocabulary as T, then it's connected by a
chain of any number of skos:broader, and if it's in a different vocabulary, then
there is some X which is in the same vocabulary as c, with a cross-vocabulary
link between X and T.

In several cases -- particularly those vocabularies which have been created for
SimDM -- there will be a single top concept which everything is narrower than. In
other vocabularies -- such as the AstroObject in the thesaurus version of the
ontology of object types -- the natural typing concept is not a top concept, or is
not the only top concept. This definition also does indicate that it's legitimate for
concept c to come from a different vocabulary from T: the fact that c has been
declared to be narrower than T, either implicitly or explicitly, is to be taken to be
the expression of the vocabulary designer's intention that this be a legitimate
value for this property.

6.3 Data Model

6.3.1 UML Profile
The data model proposed in this document is fully defined in all detail through a
UML model. UML is a large language and we have consciously restricted
ourselves to a subset of the possible modelling elements. We have also added a
few modelling elements using the extension mechanisms UML provides through
stereotypes, tags and predefined data types. This combination of restriction and
extensions is referred to as a UML Profile. The details of our profile are described
in a separate document [2], added as an Appendix to the current WD.

34

One reason to put so much emphasis on the UML model is that it allows us to
derive various products of this specification automatically. To this end we use the
modelling frame work under development in the VO-URP project25, which is a
spin-off of the SimDB effort. Using XSLT scripts developed in VO-URP we can
generate HTML documentation (including UTYPE lists) [6], XML schema
definitions [7] etc directly from the XMI representation of the UML model.

6.3.2 Characterisation data model
As described in section 4.7, the model allows one to characterise the results of
experiments statistically using the StatisticalSummary class. This part of the
model addresses similar problems for simulations as does the Characterisation
Data Model for observations. We have not followed that model in detail, but have
tried to incorporate its main ideas, giving a new interpretation to some of these26.
We believe the best way to reconcile the two approaches is to see both as
specialisations of a more abstract model defining statistical characterisations of
data products. A proposal for such a “domain model for characterisation was
given in [32].

6.3.3 UTYPE
Section 5.1 describes how we generate UTYPEs for the different elements in our
data model. The rules we use to do so have been subsumed in a draft for a Note
on UYUPE-s by Mireille Louys [17]. One problem we have with that Note is that
the concepts used in the grammar, and that are direct reflections of syntactic
modelling elements in our UML profile, have not been defined. For models
defined with different UML syntax the grammar does not help.
Some have argued against any semantic meaning to a UTYPE string. It should
not be necessary to parse it to find out what its meaning is. Instead one should
be able to follow it , but could/should be opaque. It should simply be assigned to
the modelling elements. In that case the only requirement would be that a unique
list of strings is created and that

Our assumption has been that a UTYPE should allow one to uniquely identify a
concept in a data model. We do not assume that our particular form to do so
need to be taken over. But, as we describe in 5.1, if one wants to simply derive a
list of unique strings to be associated to concepts that play a role in data models
designed with our UML profile, these rules may help. Clearly if the syntax were to
change we can accept that.
The effort on understanding what UTYPEs really are, how they are to be used, or
defined is in our opinion not completed. But we feel that our approach is
compatible with any possible interpretation, and sufficiently flexible to proposed
changes in precise syntax, were they required.

25 http://code.google.com/p/vo-urp/
26 This follows ideas presented in China 2007, see
http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTheDomain.ppt

35

7 References

7.1 Accompanying documents
[1] This document, at web address

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/PR-
SimulationDataModel-v.1.00-20110428.doc

[2] The appendix, at web address
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/Simula
tionDataModel_Appendix.doc

[3] SimDM UML diagram obtained from MagicDraw :
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/Si
mDM.xml

[4] A PNG representation of the main diagram, ‘all’, in the model, extracted form
MagicDraw in
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/Si
mDM.png

[5] “Intermediate representation” of the model. An XML document containing all
relevant information from the model in a more readable format than XMI. This
document is generated from the XMI and is itself the source of all other generated
products.
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/Si
mDM_INTERMEDIATE.xml27

[6] HTML representation of the SimDM in
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/Si
mDM.html

[7] XML schema documents derived from the data model and defining the
representation of data model instances in XML. Divided over various documents.
The “element schema” document defining all root elements can be found here:
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/Si
mDM_root.xsd . All type schemas can be found in the same folder,
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd
and sub-folders of it.

7.2 Relevant IVOA documents
[8] Gheller C., Wagner R. et al, Simulation Data Access Protocol (SimDAP),

http://code.google.com/p/volute/source/browse/trunk/projects/theory/snap/SimDAP.
html

[9] R. Hanisch, IVOA Document Standards,
http://www.ivoa.net/Documents/latest/DocStd.html

[10] TAP specification, we reference the version that was up for RFC:
http://www.ivoa.net/Documents/TAP/20090607/WD-TAP-1.0-20090607.html

[11] Jonathan McDowell et al (2007) IVOA Spectral Data Model
http://www.ivoa.net/Documents/latest/SpectrumDM.html

27 The XML schema file defining the structure of the representation in [5] can be found in the VO-
URP project: http://vo-urp.googlecode.com/svn/trunk/xsd/intermediateModel.xsd

36

[12] A Unified Domain Model for Astronomy
Lemson, G., Dowler, P, Banday, A.J., 2004
http://www.aspbooks.org/a/volumes/article_details/?paper_id=861 see also
http://www.ivoa.net/internal/IVOA/IvoaDataModel/DomainModelv0.9.1.doc

[13] Bob Hanisch et al, Resource metadata for the virtual observatory
http://www.ivoa.net/Documents/latest/RM.html

[14] Ray Plante et al 2008, VOResource : an XML Encoding Schema for Resource
Metadata
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html

[15] Carlos Rodrigo et al, S3 : proposal for a simple protocol to handle theoretical data
(microsimulations)
http://www.ivoa.net/Documents/latest/S3TheoreticalData.html

[16] Mireille Louys et al (2008) Data Model for Astronomical Data Set Characterisation
Version
http://www.ivoa.net/Documents/latest/CharacterisationDM.html

[17] Mireille Louys et al (2009) Utype : A data model field name convention Version 0.3
http://www.ivoa.net/internal/IVOA/Utypes/WD-Utypes-0.3-20090522.pdf

[18] Paul Harrison et al, Simple Image Access specification Version 1.0
http://www.ivoa.net/Documents/SIA/

[19] Doug Tody et al, Simple Spectral Access specification version 1.04
http://www.ivoa.net/Documents/latest/SSA.html

[20] Theoretical Spectral Access Protocol
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IVOATheoryTSAP

[21] Theory in the VO
G. Lemson and J. Colberg (2003)
http://www.ivoa.net/pub/papers/TheoryInTheVO.pdf

[22] Proposal for a Simulation Database Standard, IVOA Note 11 July 2008
G. Lemson et al (2008)
http://www.ivoa.net/Documents/latest/SimDBTrack.html

[23] Simulation Data Access Layer v0.1
Claudio Gheller etal (2010)
https://volute.googlecode.com/svn/trunk/projects/theory/snap/SimDAL-0.1.html

[24] IVOA Astronomical Data Query Language
Inaki Ortiz etal (2008)
http://www.ivoa.net/Documents/latest/ADQL.html

[25] Vocabularies in the Virtual Observatory
S. Derriere etal (2009)
http://www.ivoa.net/Documents/latest/Vocabularies.html

7.3 Other sources
[26] Framework for the inclusion of theory data and services in the VObs

Santi Cassisi et al 2008
http://cds.u-strasbg.fr/twikiDCA/pub/EuroVODCA/Deliverables/EuroVO-
DCA_D11_MPG_Final.pdf

[27] Martin Fowler (1997) Analysis Patterns
Addison Wesley Longman, Inc

[28] Terry Halpin (2001) Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design
Morgan Kauffmann Publishers

[29] XML schema, http://www.w3.org/XML/Schema

37

[30] MOF 2.0/XMI Mapping, V2.1.1
http://www.omg.org/spec/XMI/2.1/PDF

[31] OMG Unified Modeling Language (OMG UML), Infrastructure Version 2.2
http://www.omg.org/docs/formal/09-02-04.pdf

[32] G.Lemson (2007) Characterisation in the domain
Presentation at IVOA interoperability meeting Bejing 2007.
http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTh
eDomain.ppt

[33] http://en.wikipedia.org/wiki/Conceptual_data_model
[34] http://en.wikipedia.org/wiki/Logical_data_model
[35] http://en.wikipedia.org/wiki/Physical_data_model
[36] Data Mining the SDSS SkyServer Database

J. Gray etal 2002
http://www.sdss.jhu.edu/ScienceArchive/pubs/msr-tr-2002-01.pdf

[37] Model Based Schema
G. Lemson, 2004. PPT presented during Registry video conference 2004-05-13
http://www.g-
vo.org/www/uploads/Documentation/Registry_XSD_videocon20040513-14.ppt

