

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Alan Loh, Lucile Coutouly, Christophe Taffoureau, Jordy Marlier, Baptiste Cecconi 2022-04-28, IVOA

Overview

NenuFAR phase array simulations

- NenuFAR
 - Phased-array: dipole antenna → Mini-Array → core array
 - Sensitivity pattern (simulation with nenupy, Loh et al. 2020)
- Contamination in beamformed observations
 - Sky at low-frequency
 - Time/frequency dependency of the beam pattern
 - MOCpy (Fernique et al. 2014, https://cds-astro.github.io/mocpy/)
 - Multi-Order Coverage maps, IVOA standard
 - Description of sky regions (HEALPix sky tessellation)
 - Identification of time/frequency 'contaminated' regions
- NenuFAR observation database
 - ElasticSearch implementation
 - Plans for Obs/EPN-TAP and ObsLocTAP service release

NenuFAR at Nançay Radioastronomy Observatory

NenuFAR

Hierarchical view: from antenna to core array

Antenna

1938 LWA-like radiator antennas

Dual-polarizations inverted V shape elements

Low-Noise Amplifier

~All-sky field of view

Broadband response at 10-85 MHz

Mini-Array

Hexagon tile of **19 antennas Analog beamforming** with delay lines

16384 pointable directions on the sky

Beam width: 46° at 15 MHz, 8° at 85

MHz

Core

96 mini-arrays (400m core) + 6 remote (up to 3km)

Optimal uv plane coverage for snapshots

Relative **MA rotations**: dampen grating lobes

NenuFAR

Hierarchical view: from antenna to core array

Bright radio emission at low frequency

Global Sky Model to Multi-Order Coverage map

Bright radio emission at low frequency

Global Sky Model to Multi-Order Coverage map

NenuFAR direction-dependent sensitivity

Array Factor to Multi-Order Coverage map

NenuFAR direction-dependent sensitivity

Array Factor to Multi-Order Coverage map

Bright emission within NenuFAR beam?

→ MOCs intersections

Time dependency (3C10 tracking, 8 hours)

Time dependency (3C10 tracking, 8 hours)

Frequency dependency (from 10 to 85 MHz)

Frequency dependency (from 10 to 85 MHz)

Source contamination identification

Intersecting NenuFAR beam with sky model spatial coverages (at various (
u,t))

Source contamination identification

Intersecting NenuFAR beam with sky model spatial coverages (at various (
u,t))

Source contamination identification

Intersecting NenuFAR beam with sky model spatial coverages (at various (
u,t))

Bright source contamination

Constructing a (ν, t) -diagram

Data artefact identification

Bright sources, diffuse Galactic emission through NenuFAR grating lobes

Data artefact identification

Bright sources, diffuse Galactic emission through NenuFAR grating lobes

Data artefact identification

Bright sources, diffuse Galactic emission through NenuFAR grating lobes

In the 'near' future...

- ObsTAP / EPN-TAP
 - From the instrument configuration ElasticSearch database
 - Possibly more than one target per observation
 - Solar System objects included (mainly Sun and Jupiter)
 - Data quicklooks (low-rate dynamic spectra)
 - NenuFAR ~FoV TMOCs (files at various frequencies)?
- ObsLocTAP (Observation Locator Table Access Protocol)
 - Access to the NenuFAR public planning
 - Multi-wavelength/instrument coordinated observations

Thanks!