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MeerKAT

Technical specifications

» 64x 13.5-m Gregorian offset antennas distributed over an 8-km baseline
» Three GHz frequency receivers: 0.6 - 1.0 GHz /0.9 -1.7GHz /1.6 - 3.5 GHz
» Wide field of view: 1 square degree at 1.3 GHz and excellent instantaneous sensitivity

Pathway to the Square Kilomeire Array

» MeerKAT was inaugurated on 13 July 2018 - MeerKAT science ongoing
» To be extended by 20 SKA antennas [MeerKAT extended] - baselines up to 17 km
» To be incorporated in the SKAT-MID (SKA phase 1): ~200 antennas over a 150 km baseline

Data processing infrastructure

» SARAO archive [quick look SDP image] - archive.sarao.ac.zo
» Inter-University Institute for Data Intensive Astronomy (IDIA) - idia.ac.za
» Various dedicated pipelines, e.g. OxKAT (Heywood)

Data releases
» Various project-based releases
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Radio Transients and Variables with MeerKAT

ThunderKAT targeted observations of transients

» Cataclysmic Variables

» Short Gamma-Ray Bursts
» Type la Supernovae

» X-ray Binaries

» ! v‘.

ThunderKAT commensal observations of transients
» Image domain (> 2 sec): commensal imaging of all MeerKAT LSP data

ThunderKA

Principal Investigators: "
Rob Fender (Oxford i . . . . . . .
| ) Other image domain transient observations with MeerKAT via Open Time and DDT:

Patrick Woudt (UCT)
» Tidal disruption events, very high energy (VHE) gamma-ray bursts, novae, etc.

92 researchers from 15

countries (27% from South 3
Africa) i Other commensal observations with MeerKAT of transients:
18 postgraduate students » Time domain (< 2 sec): MeerTRAP
(MSc and PhD)

20 papers / 27 ATels active collaboration between MeerTRAP and ThunderKAT (imaging=localisation)
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Radio Transients with MeerKAT (ThunderKAT)

Radio transients and the exploration of the unknown [commensal with all MeerKAT LSPs]
» Any radio transient discovered in the commensal imaging of MeerKAT survey data

Rank-ordered list of approved MeerKAT Large Survey Projects and components The different depths
MeerTime (binary) and cadences of
4 MHONGOOSE ThunderKAT commensal
g i MeerTIME (MSPs) | | - image-plane search for these MeerkKAT LSPs
ThunderKAT LADUMA o - , tfransients (2 sec and up) allow for an excellent

SOMAGHK . e | in all LSP data coverage of fransient
TRAPUM (Fermi s

MeerTIME (1000 | MeerTRAP commensal phase-space.
ThunderKAT (CVs timing search (< 2 sec) in

MIGHTEE (L band) 88 all LSP data .
. ThunderKAT (GRBs) MeerKAT as a radio

. MeerTime (GCs) - P transient discovery
. TRAPUM (nearby galaxies) |
. TRAPUM (GCs)

. TRAPUM (SNR, PWN, TeV)

. ThunderKAT (SNe la)

. MIGHTEE (S band)

. ThunderKAT (XRBs)

http://www.ska.ac.za/science-engineering/meerkat/observers/observing-programme/large-survey-projects/

Principal Investigators:
Rob Fender (Oxford)
Patrick Woudt (UCT)
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Radio Transients and Variables with MeerKAT

ThunderKAT targeted observations of transients

» Cataclysmic Variables [faint: single epoch ~2-4 hours, several epochs over ~ few days]
» Short Gamma-Ray Bursts  [faint: single epoch 4-6 hours, several epochs of many weeks]
» Type la Supernovae [faint: single epoch 4-6 hours, several epochs of many weeks]

» X-ray Binaries [weekly monitoring when in outburst, 10-15 min per source per epoch]

GX 339-4 (XRB) observed once a week for the full duration of ThunderKAT [5 years]
planned data release of first 2.5 years of GX 339-4 observations around Q3 2022
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with MeerKAT

Targeted observations
ThunderKAT (XRBs)

nature

astronomy

Radio Transients
and Variables

ARTICLES

https:/dol.org/10.1038/541550-020-1023-5
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An extremely powerful long-lived superluminal
ejection from the black hole MAXI J1820+070

J. S. Bright©'%, R, P. Fender'?, S. E. Motta', D. R. A. Williams', J. Moldon**,

R. M. Plotkin®4, J. C. A. Miller-Jones ¢, |. Heywood'”®, E. Tremou’, R. Beswick®, G. R. Sivakoff ©'°,
S. Corbel ©°", D. A. H. Buckley?, J. Homan''*, E. Gallo™, A. J. Tetarenko©", T. D. Russell ©%,

D. A. Green ™™, D. Titterington™, P. A. Woudt**°, R. P. Armstrong"*%, P. J. Groot 2%, A, Horesh?,
A. ). van der Horst?24, E. G. Kérding?, V. A. McBride?'2%, A. Rowlinson™2¢ and R. A. M. J. Wijers™

Black holes in binary systems execute patterns of outburst activity where two characteristic X-ray states are associated with

different behaviours observed at radio wavelengths. The hard state is iated with radio emission indicative of a conti

ously replenished, collimated, relativistic jet, whereas the soft state is rarely iated with radio emission, and never con-
: ly, implying the ab

of a quasi-steady jet. Here we report radio observations of the black hole transient MAXI

11820+670 during its 2018 outburst. As the black hole transitioned from the hard to soft state, we observed an isolated radio

flare, which, using high ion radio obser

we ct with the launch of bipolar relativistic ejecta. This

flare occurs as the radio emission of the core jet is suppressed by a factor of over 800. We monitor the evolution of the ejecta
over 200 days and to a maximum separation of 10", during which period it remains detectable due to insitu particle accelera-
tion. Using simultaneous radio observations sensitive to different angular scales, we calculate an accurate estimate of energy

of the hing ejection. This energy estimate is far larger than that derived from the state transition radio flare,

suggesting a sysrt;mauc undo:remmate of jet energetics.

mass black hole accreting material via Roche lobe overflow

from a main-sequence companion star. X-ray observations of
such systems, which probe their accretion flow, have revealed the
existence of two primary accretion states, termed hard and soft'.
In the hard state, the X-ray spectrum is non-thermal, and thought
to be dominated by emission from an inner accretion disk corona.
In the soft state, coronal emission is suppressed, and the X-ray
spectrum is well described by thermal emission from the accre-
tion disk itself. Contemporaneous radio observations, which probe
the jets, show that the accretion state of a BHXRB system deter-
mines the form of the outflows it produces' *. During the hard state,
radio emission is from a flat-spectrum, collimated, compact (Solar
System scale) jet', which is quenched in the soft state*'. The most
dramatic outburst behaviour occurs as sources transition from the
hard to the soft accretion state. During the transition, as the core jet
quenches, systems exhibit short-timescale (of the order hours) radio

B lack hole X-ray binary (BHXRB) systems consist of a stellar-

flaring superposed on the decaying core jet flux. These flares have
been associated with the ejection of discrete (apparently no longer
connected spatially to the black hole) knots of material, which can
be observed to move (sometimes apparently superluminally) away
from the black hole, reaching separations tens of thousands times
farther than that of the core jet *. The mechanism(s) causing the
launch of these ejections, as well as the radio flaring, are not well
understood. Jets and ejections represent two of the primary chan-
nels through which galactic black holes return matter and energy
into their surroundings and studying them is key to understanding
feedback processes and their effects on the environment from black
holes over a range of mass scales.

MAXI [1820+070/ASASSN-18ey'*'* (hereafter, ]1820) was dis-
covered at optical wavelengths by the All-Sky Automated Survey for
SuperNovae (ASAS-SN) project on 7 March 2018 (modified Julian
date (MJD) 58184), and around 6d later in X-rays by the Monitor
of All-sky X-ray Image (MAXI"). Soon after, it was classified as
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The black hole X-ray binary MAXI1J1820+070
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ThunderKAT targeted observations of X-ray Binaries

» A substantial number of XRBs show relativistic ejecta resolved
at MeerKAT (angular) resolution
» Besides flux evolution, also capture proper motion of ejecta

An exiremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070
Bright, J.S., et al. Nature Ast 4 (2020) 697

Relativistic X-ray Jets from the Black Hole X-ray binary MAXI J1820+070
Espinasse, M., et al. Astrophysical Journal Letters 895 (2020) L31
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The black hole X-ray binary GX 339-4
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Radio and X-ray detections of GX 3394 in quiescence using MeerKAT
and Swift
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ABSTRACT
The radio-X-ray correlation that characterizes accreting black holes at all mass scales ~ from
stellar mass black holes in binary systems to supermassive black holes powering active galactic

30:00

nuclei - is one of the most important pieces of observational evidence supporting the existence
of a connection between the accretion process and the generation of collimated outflows — or
jets — in accreting systems. Although recent studies suggest that the correlation extends down
to low luminosities, only a handful of stellar mass black holes have been clearly detected,
and in general only upper limits (especially at radio lengths) can be obtained during
quiescence. We recently obtained detections of the black hole X-ray binary (XRB) GX 339-4
in quiescence using the Meer Karoo Array Telescope (MeerKAT) radio telescope and Swift
X-ray Telescope instrument on board the Neil Gehrels Swift Observatory, probing the lower
end of the radio-X-ray correlation. We present the properties of ion and of the |
generation of jets in the poorly studied low-accretion rate regime for this canonical black hole
XRB system.

30 arcminutes O¥ @ Q1 &
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Key words: radio continuum: transients - X-rays: binarics.
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1 INTRODUCTION of the collapsed star is revealed by X-ray and radio activity whose

\o

X-ray binaries (XRBs) are binary systems composed of a compact
stellar remnant (a black hole or a neutron star) and a companion star
with active mass accretion on to the stellar remnant. The presence

* E-mail: evangelia.tremou@ cea.fr (ET), stephane.corbel @cea fr (SC)

(relative and absolute) swrength depends on the accretion rate on W
the compact object and the state of the accretion disc that forms
around the compact object. In low-mass XRBs, the accretion from
a low-mass donor star occurs through Roche lobe overflow: matter
streams from the companion star to the compact one, forming
an accretion disc that redistributes angular momentum and emits
copious radiation peaking in the X-rays.

12020 The Author(s)

Publishcd by Oxford University Press on behalf of the Royal Astronomical Socicty
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The first radio transient discovered by MeerKAT

Radio Transients

17 F din

gx_deep_CORRCOL_DDE.app.restored.fits
WCS: (17:03:10.0, -48:25:42); Image: (3925, 4929); value: =-1.71515e-6 Jy/beam
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and Variables
with MeerKAT

MKT J170456.2-482100 (radio)

Commensal observati
- ThunderKAT

GX339-4 (radio)

MKT J170456.2-482011: the
first transient discovered by
MeerKAT

Driessen, L.N., et al. MNRAS
491 (2020) 560

Declination
50:00

MNRAS 491, 560-575 doi:10.1093/mnras/stz3027

Advance Access publication 2019 October 30

MKT J170456.2—482100: the first transient discovered by MeerKAT
2018-04-14
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ABSTRACT

We report the discovery of the first transient with MeerKAT, MKT J170456.2—482100,
discovered in ThunderKAT images of the low-mass X-ray binary GX339—4.
MKT J170456.2—4821001is variable in the radio, reaching a maximum flux density of
0.71 £ 0.11 mJy on 2019 October 12, and is undetected in 15 out of 48 ThunderKAT cpochs.
MKT J170456.2—482100is coincident with the chromospherically active K-type sub-giant
TYC 8332-2529-1, and ~ 18 yr of archival optical photometry of the star shows that it varies
with a period of 21.25 £ 0.04 d. The shape and phase of the optical light curve changes over
time, and we detect both X-ray and UV emission at the position of MKT J170456.2—482100,
which may indicate that TYC 8332-2529-1 has large star spots. Spectroscopic analysis shows
that TYC 8332-2529-11is in a binary, and has a line-of-sight radial velocity amplitude of
43kms~'. We also observe a spectral feature in antiphase with the K-type sub-giant, with a
line-of-sight radial velocity amplitude of ~ 12+ 10kms ', whose origins cannot currently
be explained. Further observations and investigation are required to determine the nature of

20:00

/L6 prepnE/SeIuW) Wwod dno o we pede//. sd iy Woly papeojumo(

the MKT J170456.2—482100 system.

Key words: stars: activity - binaries: spectroscopic —stars: flare - stars: peculiar,

1 INTRODUCTION

The radio sky contains many variable and transient sources, often
found in follow-up observations of transients detected at other
wavelengths such as optical, gamma-ray, and X-ray (e.g. Sood &
Campbell-Wilson 1994; Zaudereret al. 2011; Chandra & Frail 2012;
Horeshetal. 2013; Fong etal. 2015; Marsh et al. 2016; Hallinan etal.
2017; Bright et al. 2019). Blind searches for radio transients using

fi present many chall particularly modest field
of view (FoV) and limited observing cadence (e.g. Murphy et al.
2013; Mooley etal. 2016, 2018). With current wide FoV (= 1deg®)
instruments such as MeerKAT (Camilo et al. 2018), the Australian
Square Kilometer Array Pathfinder (ASKAP; Johnston et al. 2008;
Schinckel et al. 2012), APERTIF (Maan & van Leeuwen 2017), the
LOw Frequency Array (LOFAR; van Haarlem et al. 2013), and the
Murchison Wide Field Array (MWA; Tingay etal. 2012), surveying
large areas of sky with various cadences and improved sensitivity is
now possible. These new instruments could result in the discovery
of tens to hundreds of transients (e.g. O'Brien et al, 2015).

* E-mail: laura@driessen.net.au

Radio transients are commonly divided into two categories:
coherent and incoherent (e.g. Pietka, Fender & Keane 2015);
and both types of transient are investigated in the time domain
with high-time resolution (milliseconds or less), and in image
plane observations with a range of integration time-scales. In this
publication we will focus on image plane searches. Current image
plane transient searches include the Amsterdam-ASTRON Radio
Transients Facility and Analysis Centre (AARTFAAC; Prasad et al.
2016; Kuiack et al. 2019), and the ASKAP Survey for Variables and
Slow Transients (VAST; Murphy et al. 2013). Large surveys such
as the Very Large Array (VLA) Sky Survey (VLASS; Lacy et al.
2019) are also being used to scarch for transients (Hallinan et al.
2013). It was originally theorized that image plane, low-frequency
transient searches would detect many transient radio sources, but to
date only one transient each has been found with LOFAR (Carbone
et al. 2016; Stewart et al. 2016), the Long Wavelength Array (LWA:
Varghese et al. 2019) and the MWA (Murphy et al. 2017), and no
transients have been found with the VLA Low Band lonospheric
and Transient Experiment (VLITE; Polisensky et al. 2016). The rate
of low-frequency Galactic transients may be higher, as inferred from
the Galactic Center Radio Transients detected by VLA and Giant
Metrewave Radio Telescope (GMRT: ¢.g. Hyman et al. 2005, 2009;

© 2019 The Author(s)
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ABSTRACT

We present 21 new long-term variable radio sources found commensally in 2 yr of weekly MeerKAT monitoring of the low-mass
X-ray binary GX 339~4. The new sources are vary on time-scales of weeks to months and have a variety of light-curve shapes
and spectral index properties. Three of the new variable sources are coincident with multi length o ts; and one
of these is coincident with an optical source in deep MeerLICHT images. For most sources, we cannot eliminate refractive
scintillation of active galactic nuclei as the cause of the variability. These new variable sources represent 2.2 + 0.5 per cent of
the unresolved sources in the field, which is consistent with the 1-2 per cent variability found in past radio variability surveys.
However, we expect to find short-term variable sources in the field and these 21 new long-term variable sources. We present the
radio light curves and spectral index variability of the new variable sources, as well as the absol y and hes to
coincident sources at other wavelengths.

AQ £SELGSO/LE0SHZLSG)

y

Key words: radio continuum: galaxies —radio continuum: general.

and the (more) Karoo Array Telescope (MeerKAT; Camilo et al.
2018) are uncovering large samples of dynamic sources in the radio
‘We are entering a new cra of radio astronomy where we can execute sky and facilitating their detailed light-curve analyses without the

1 INTRODUCTION

2202 pdy 9Z o

untargeted, image-plane scarches for variable and transient sources
using sensitive instruments with wide ficld capabilitics. Instruments
such as the Australian Square Kilometre Array Pathfinder (ASKAP;'
Hotan ctal. 2021), the Karl G. Jansky Very Large Array (VLA; Perley
ct al. 2011), the Low Frequency Array (LOFAR: van Haarlem ct al.
2013), the Murchison Wide Field Array (MWA; Tingay et al. 2012),

* E-mail: laura@driessen net au
'hups:/iwww.atnf csiro.su/projects/askap/index_himl

© 2022 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

need for targeting each source individually.

Previous surveys and investigations of the changing radio sky in
the image plane have revealed that ~1-2 per cent of radio point
sources at L-band (1.4 GHz) are vanable (see e.g. Ofck et al. 2011,
for a review).” Many of these past scarches for variable sources used
the VLA. For example, Canlli, Ivison & Frail (2003) scarched the

ISee  hup:/fwww.tauceti caltech.edwkunaliradio- transient-surveys/index ht
ml for an up-to-date list of untargeted radio surveys.

21 new long-term variables in the GX 339-4 field
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21 new long-term variables
in the GX 339-4 field: two
years of MeerKAT monitoring ~
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Radio Tihsients Variables and transients in the MAXI J1820 field

and Variables

Search and identification of transient and variable sources using
MeerKAT observations: a case study on the MAXI J1820+070 field

Rowlinson, A., et al. MNRAS submitted (2022) arXiv:2203.16918
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1 INTRODUCTION

The past decade has been the renaissance of the radio transient sky.
While a number of transient and variable radio sources were known
for many years from targeted searches of sources discovered at other
observing frequencies, for example X-ray binaries (XRBs), active

* E-mail: barowlinson@uva.nl

© 2015 The Authors

galactic nuclei (AGNs) and gamma-ray burst (GRB) afterglows, the
typical radio transient sky was not well probed. The rapid develop-
ment of new instrumentation has enabled us to conduct large scale
surveys to systematically explore the radio transient sky over a range
of timescales. At high time resolution, typically <1 second. this led
to the discovery of a new category of radio transient sources referred
to as Fast Radio Bursts (FRBs: Lorimer et al. 2007) that are pushing
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Radio Tihsients Variables and transients in the MAXI J1820 field

and Variables

Search and identification of transient and variable sources using NVSS J182029+063419
MeerKAT observations: a case study on the MAXI J1820+070 field

Rowlinson, A., et al. MNRAS submitted (2022) arXiv:2203.16918 e
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- Observing cadence set by ThunderKAT observations of MAXI J1820+070 (XRB)

ABSTRACT
Many transient and variable sources detected at multiple wavelengths are also observed to
vary at radio frequencies. However, these samples are typically biased towards sources that

B - Frequency averaged into 4 bands (width: 215 MHz), see figure top-right

gamma-rays. Taking advantage of new state-of-the-art radio facilities that provide high quality
wide-field images with fast survey speeds, we can now conduct unbiased surveys for transient
and variable sources at radio frequencies. In this paper, we present an unbiased survey using

observations obtained by MeerKAT, a mid-frequency (~1.4 GHz) radio array in South Africa’s M
Karoo Desert. The observations used were obtained as part of a weekly monitoring campaign —
for X-ray binaries (XRBs) and we focus on the field of MAXI J1820+070. We develop S p e C rO I I l ex O e G C e p O C
methods to optimally filter transient and variable candidates that can be directly applied to
other datasets. In addition to MAXI J1820+070. we identify four likely active galactic nuclei,

one source that could be a Galactic source (pulsar or quiescent X-ray binary) or an AGN, and

T - quasi-simultaneous optical-radio information allows inifial classification (see figure top-left)

Key words: radio continuum: transients

1 INTRODUCTION galactic nuclei (AGNs) and gamma-ray burst (GRB) afterglows, the
typical radio transient sky was not well probed. The rapid develop-
ment of new instrumentation has enabled us to conduct large scale
surveys to systematically explore the radio transient sky over a range
of timescales. At high time resolution, typically <1 second. this led
to the discovery of a new category of radio transient sources referred
to as Fast Radio Bursts (FRBs: Lorimer et al. 2007) that are pushing

The past decade has been the renaissance of the radio transient sky.
While a number of transient and variable radio sources were known
for many years from targeted searches of sources discovered at other
observing frequencies, for example X-ray binaries (XRBs), active

* E-mail: barowlinson@uva.nl
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Radio Transients and Variables with MeerKAT

Key parameters from the observations:

» Frequency range: UHF, L or S-band

» Frequency resolution: 4096 or 32768 channels [typically binned o 107 or 215 MHZz]
» Time information: UTC start, end, etc.

» Time resolution: 2 or 8 seconds [typically binned to one block length: 10-15 min]

Key parameters from the analysis (with uncertainties, respectively):

» Position

» Proper motion of (relativistic) ejecta (in some cases)

» Flux (Stokes |) for each frequency bin

» Polarisation measurement (e.g. Stokes V) for each frequency bin

» Spectral index [across 4 or 8 frequency bands with MeerKAT L-band]

Key parameters for the light curve:

» Sampling time (cadence) - can be averaged to different time scales to explore
variability on different time scales
» Note: for commensal transient searches, cadence is determined by others

» TraP variability indices: V and #
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