A UWS service to cross-match (very) large catalogues

Thomas Boch, François-Xavier Pineau, Sébastien Derrière and Brice Gassmann

CDS, Observatoire Astronomique de Strasbourg

IVOA Interop, Nara, 07 December 2010
Context

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues:
 - Simbad
 - VizieR
- Algorithms:
- Particularity: deal with (very) large catalogues
Context

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues:
 - Simbad
 - VizieR
- Algorithms:
- Particularity: deal with (very) large catalogues
Context

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues:
 - Simbad
 - Vizier
- Algorithms:
- Particularity: deal with (very) large catalogues
Context

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues:
 - Simbad
 - VizieR
- Algorithms:
- Particularity: deal with (very) large catalogues
Dealing with (very) large catalogues

Example

- **2MASS**
 - ~ 470×10^6 sources
 - minimal data ~ 15 GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B + 8 B)
 - errors (float 4 B + 4 B + 4 B)

- **USNO-B1**
 - ~ 10^9 sources
 - minimal data ~ 28 GB
 - identifier (integer 4 B)
 - positions (double 8 B + 8 B)
 - errors (float 4 B + 4 B)

- **LSST projection at 5 years:**
 - $V > 26$, ~ 3×10^9 unique sources
 - minimal data ~ 96 GB

Problems

- Data size
 - do not fit into memory
- Performance issues
 - data loading
 - looking for candidates

Solutions

- Scalability: Healpix partitioning
- Efficiency:
 - special indexed binary file
 - kd-tree (cone search queries)
 - multithreading
 - parallel processing

Thomas Boch (CDS)
Dealing with (very) large catalogues

Example
- 2MASS
 - ~ 470x10^6 sources
 - minimal data ~ 15 GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B + 8 B)
 - errors (float 4 B + 4 B + 4 B)
- USNO-B1
 - ~ 10^9 sources
 - minimal data ~ 28 GB
 - identifier (integer 4 B)
 - positions (double 8 B + 8 B)
 - errors (float 4 B + 4 B)
- LSST projection at 5 years:
 - V > 26, ~ 3x10^9 unique sources
 - minimal data ~ 96 GB

Problems
- Data size
 - do not fit into memory
- Performance issues
 - data loading
 - looking for candidates

Solutions
- Scalability: Healpix partitioning
- Efficiency:
 - special indexed binary file
 - kd-tree (cone search queries)
 - multithreading
 - parallel processing
Dealing with (very) large catalogues

Example
- **2MASS**
 - \(\sim 470 \times 10^6 \) sources
 - minimal data \(\sim 15 \) GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B+8 B)
 - errors (float 4 B+4 B+4 B)
- **USNO-B1**
 - \(\sim 10^9 \) sources
 - minimal data \(\sim 28 \) GB
 - identifier (integer 4 B)
 - positions (double 8 B+8 B)
 - errors (float 4 B+4 B)
- **LSST projection at 5 years:**
 - \(V > 26, \sim 3 \times 10^9 \) unique sources
 - minimal data \(\sim 96 \) GB

Problems
- **Data size**
 - do not fit into memory
- **Performance issues**
 - data loading
 - looking for candidates

Solutions
- **Scalability:** Healpix partitioning
- **Efficiency:**
 - special indexed binary file
 - \(kd \)-tree (cone search queries)
 - multithreading
 - parallel processing
Healpix

- Hierarchical sky pixelisation
 - level 0 ⇒ 12 pixels
 - level 1 ⇒ 12x4 pixels
 - ...
 - level n ⇒ 12×2^n
- Pixels of equal area
- Developed at NASA: healpix.jpl.nasa.gov
- Available in
 - C, C++
 - Fortran
 - IDL
 - Java
 - ...?
Scalable cross-match

- Independent pixels cross-match
 - but border effects
- Cat. B pixel sources put in a kd-tree
- Optimal partitioning level
 - available memory
 - minimisation of:
 \[
 \sum_{i=0}^{n\text{Pixels}} N_{A_i} \log(1 + N_{B_i} + N_{B_i}^b)
 \]
 - I/O cost

Level 0

Level 1
Scalable cross-match

- Independent pixels cross-match
 - but border effects
- Cat. B pixel sources put in a \(kd \)-tree
- Optimal partitioning level
 - available memory
 - minimisation of:
 \[
 \sum_{i=0}^{n_{\text{Pixels}}} N_{A_i} \log(1 + N_{B_i} + N_{B_i}^b)
 \]
 - I/O cost
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
 - Distribute job pieces on separate machines
- “On the fly” correlation possible
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
 - Distribute job pieces on separate machines
- “On the fly” correlation possible
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
 - Distribute job pieces on separate machines
- “On the fly” correlation possible
Scalable cross-match

Single machine
- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid
- Parallel processing
 - Distribute job pieces on separate machines
- “On the fly” correlation possible
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
 - Distribute job pieces on separate machines
- “On the fly” correlation possible
Loading data: indexed binary files

Index files
- One by healpix level
- For each pixel
 - offset
 - nSources

Binary data file
- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - ...
- Sources ordered by healpix pixel index
Loading data: indexed binary files

Index files
- One by healpix level
- For each pixel
 - offset
 - nSources

Binary data file
- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - ...
- Sources ordered by healpix pixel index
Loading data: indexed binary files

Index files
- One by healpix level
- For each pixel
 - offset
 - nSources

Binary data file
- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - ...
- Sources ordered by healpix pixel index

<table>
<thead>
<tr>
<th>level 2 index file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idx</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
kd-tree

What is a *kd*-Tree?

- A space-partitioning data structure
- Allows for fast k-nearest neighbour/cone search queries
 - nearest neighbour query in $O(\log(n))$

Problem

- Naive implementation can be memory consuming
- We want a memory efficient *kd*-tree (capacity > 1 billion sources)

Solution

- To use a single array (sorted using a *kd*-tree scheme)
What is a kd-Tree?

- A space-partitioning data structure
- Allows for fast k-nearest neighbour/cone search queries
 - nearest neighbour query in $O(\log(n))$

Problem

- Naive implementation can be memory consuming
- We want a memory efficient kd-tree (capacity > 1 billion sources)

Solution

- To use a single array (sorted using a kd-tree scheme)
What is a *kd*-Tree?
- A space-partitioning data structure
- Allows for fast *k*-nearest neighbour/cone search queries
 - nearest neighbour query in $O(\log(n))$

Problem
- Naive implementation can be memory consuming
- We want a memory efficient *kd*-tree (capacity > 1 billion sources)

Solution
- To use a single array (sorted using a *kd*-tree scheme)
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

\[
\begin{align*}
\alpha & \quad S_1 \quad S_2 \quad S_3 \quad S_4 \quad S_5 \quad S_6 \quad S_7 \quad S_8 \quad S_9 \quad S_{10} \quad S_{11} \quad S_{12} \quad S_{13} \quad S_{14} \quad S_{15} \\
\delta & \quad S_3 \\
\alpha & \quad S_{10} \\
\delta & \quad S_8 \\
\alpha & \quad S_{11} \\
\delta & \quad S_4 \\
\alpha & \quad S_2 \\
\end{align*}
\]
A kd-tree can be a simple sorted array of sources
Algorithm: quicksort alternating the sorted coordinate

Creation speed up by using multi-threading
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

Creation speed up by using multi-threading
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

Creation speed up by using multi-threading
A \(kd\)-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

\[
\begin{align*}
\alpha & \leq \alpha S_3 \\
\delta S_3 & \leq \delta \\
\delta S_{10} & \leq \delta S_{10} \\
\alpha & \leq \alpha S_{11} \\
\delta S_{10} & \leq \delta S_3 \\
\delta & \leq \delta S_8 \\
\delta S_8 & \leq \delta S_8 \\
\alpha & \leq \alpha S_2 \\
\alpha S_2 & \leq \alpha \\
\alpha S_1 & \leq \alpha S_1 \\
\alpha S_2 & \leq \alpha S_2 \\
\alpha S_3 & \leq \alpha S_3 \\
\alpha S_4 & \leq \alpha S_4 \\
\alpha S_5 & \leq \alpha S_5 \\
\alpha S_6 & \leq \alpha S_6 \\
\alpha S_7 & \leq \alpha S_7 \\
\alpha S_8 & \leq \alpha S_8 \\
\alpha S_9 & \leq \alpha S_9 \\
\alpha S_{10} & \leq \alpha S_{10} \\
\alpha S_{11} & \leq \alpha S_{11} \\
\alpha S_{12} & \leq \alpha S_{12} \\
\alpha S_{13} & \leq \alpha S_{13} \\
\alpha S_{14} & \leq \alpha S_{14} \\
\alpha S_{15} & \leq \alpha S_{15}
\end{align*}
\]

Creation speed up by using multi-threading
A \textit{kd-tree} can be a simple sorted array of sources
Algorithm: \textit{quicksort} alternating the sorted coordinate

Thread 1

Thread 2

Creation speed up by using multi-threading
A **kd-tree** can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

Efficiency

Thread 1

Thread 2

Thread 3

Thread 4

Creation speed up by using multi-threading
Modified \textit{kd}-tree and multithreading

\textbf{Modified \textit{kd}-tree}

- Classical \textit{kd}-tree adapted for euclidian spaces
- Solution 1: (rejected)
 - cartesian coordinates \((x, y, z)\)
 - \(\Rightarrow\) time consuming (conversion)
 - \(\Rightarrow\) memory consuming (+50%)
- Solution 2: (approved)
 - spherical coordinates \((\alpha, \delta)\)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

\textbf{Multithreading}

- Single \textit{kNN} or cone search query not multithread
- Pool of threads executing multiple queries simultaneously
Modified *kd*-tree and multithreading

Modified *kd*-tree

- Classical *kd*-tree adapted for euclidian spaces
- **Solution 1:** (rejected)
 - cartesian coordinates \((x, y, z)\)
 - \(\rightsquigarrow\) time consuming (conversion)
 - \(\rightsquigarrow\) memory consuming (+50%)
- **Solution 2:** (approved)
 - spherical coordinates \((\alpha, \delta)\)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

Multithreading

- Single *kNN* or cone search query not multithread
- Pool of threads executing multiple queries simultaneously
Modified \textit{kd-tree} and multithreading

\textbf{Modified \textit{kd-tree}}

- Classical \textit{kd-tree} adapted for euclidian spaces
- Solution 1: (rejected)
 - cartesian coordinates \((x, y, z)\)
 - \(\rightsquigarrow\) time consuming (conversion)
 - \(\rightsquigarrow\) memory consuming (+50%)
- Solution 2: (approved)
 - spherical coordinates \((\alpha, \delta)\)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

\textbf{Multithreading}

- Single \textit{kNN} or cone search query not multithread
- Pool of threads executing multiple queries simultaneously
Test Machine

- Dell machine 2600€ (~$3600):
 - 24 GB of 1333 MHz memory
 - 2x Quad Core 2.27 GHz (Xeon)
 - 16 threads (Hyper-Threading)
 - High speed HDD (10000 rpm)
Test results

Full catalogue cross-correlation

SDSS DR7 (∼357 000 000 sources)
Simple cross-match: ∼9 min
- radius of 5″
- Healpix level 3 (∼7.3°)
- Level 9 borders (∼7′)
- ∼49 209 000 associations

2MASS (∼470 000 000 sources)
With elliptical errors: ∼10 min
- distance of 3.44σ
- distance max of 5″
- Healpix level 3
- ∼37 507 000 associations
Test results

Full catalogue cross-correlation

SDSS DR7 ($\sim 357\,000\,000$ sources)

- Simple cross-match: ~ 9 min
 - radius of $5''$
 - Healpix level 3 ($\sim 7.3\degree$)
 - Level 9 borders ($\sim 7'$)
 - $\sim 49\,209\,000$ associations

2MASS ($\sim 470\,000\,000$ sources)

- With elliptical errors: ~ 10 min
 - distance of 3.44σ
 - distance max of $5''$
 - Healpix level 3
 - $\sim 37\,507\,000$ associations
Test results

Full catalogue cross-correlation

SDSS DR7 (∼357 000 000 sources)

2MASS (∼470 000 000 sources)

- Simple cross-match: ∼9 min
 - radius of 5″
 - Healpix level 3 (∼7.3°)
 - Level 9 borders (∼7’)
 - ∼49 209 000 associations

- With elliptical errors: ∼10 min
 - distance of 3.44σ
 - distance max of 5″
 - Healpix level 3
 - ∼37 507 000 associations
Test results

Full all-sky catalogues cross-correlation

2MASS (\(\sim 470 \, 000 \, 000\) sources) USNO-B1 (\(\sim 1 \, 046 \, 000 \, 000\) sources)

- Simple cross-match: \(~30\) min
 - radius of 5"
 - Healpix level 3
 - Level 9 borders
 - \(\sim 583 \, 300 \, 000\) associations
General architecture
UWS layer

- Provided by a Java library developed at CDS by Grégory Mantelet
 - Documentation and tutorial: http://saada.u-strasbg.fr/uwstuto/index.html
 - Distributed under LPGL licence
 - Will be presented at GWS2 session on Friday
- Internal UWS enables communication between master and slaves
Web interface

- Simple front-end to access the UWS interface
- Job submission, retrieval of jobs status through **JSON calls**
- Integrated with the CDS login service (used for the Annotations and the Portal)
 - allow users to upload (and cross-match) their own tables
- Demonstration
Lessons learned

Hardware
For our application:
- RAM frequency **does** matter (lots of memory access)
- Hyper-Threading **does** matter (on 8 cores, 16 threads \(\sim 2x\) faster than 8 threads)

Software: don’t have *a priori*
- Efficient full Java code
- Efficient modified kd-trees (in our case)

Service
- Existing and future (very) large catalogues can be processed
- Bottleneck is data transfer (without surprise)
 - service colocated with data