
Data Access Layer Interface

 International

    Virtual

    Observatory

Alliance

IVOA Data Access Layer Interface

Version 1.0
IVOA Internal Working Draft 2010-11-24

Interest/Working Group:

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDAL

This version:

WD-DALI-1.0-20101124

Latest version:

Not yet issued

Previous version(s):

Editors:

TBD

Authors:

TBD

- 1 -

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDAL


Data Access Layer Interface

Abstract

This document describes the Data Access Layer Interface (DALI). DALI defines 
the base web service interface common to all Data Access Layer (DAL) services. 
This standard defines the behaviour of common resources, the meaning and use 
of  common  parameters,  success  and  error  responses,  and  DAL  service 
registration. The goal of this specification is to define the common elements that 
are shared across DAL services in order to encourage (require?) consistency 
across  concrete DAL service specifications  and to  enable standard  re-usable 
client and service implementations and libraries to be written and widely adopted.

- 2 -



Data Access Layer Interface

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested  
parties. It is a draft document and may be updated, replaced, or obsoleted by  
other documents at any time. It is inappropriate to use IVOA Working Drafts as  
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be 
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents
 1   Introduction.......................................................................................................5

 1.1  General Principles.......................................................................................5

 1.2  The Role in the IVOA Architecture..............................................................5

 1.3  Document Roadmap...................................................................................5

 2   Resources.........................................................................................................6

 2.1  Asynchronous Execution: DALI-async........................................................6

 2.2  Synchronous Execution: DALI-sync............................................................7

 2.3  Availability: VOSI-availability.......................................................................8

 2.4  Capabilities: VOSI-capabilities....................................................................8

 2.5  Content: VOSI-tables..................................................................................8

 3   Parameters........................................................................................................9

 3.1  REQUEST...................................................................................................9

 3.2  VERSION....................................................................................................9

 3.3  FORMAT.....................................................................................................9

 3.4  MAXREC...................................................................................................10

 3.5  RUNID.......................................................................................................10

 3.6  Case of Parameters..................................................................................11

 3.7  Order and Cardinality of Parameters........................................................11

 3.8  Parameter Indirection................................................................................11

 3.9  Missing or null-valued parameters............................................................11

 3.10  Literal Values: Numbers, Boolean, Date, and Time................................12

- 3 -

http://www.ivoa.net/Documents/


Data Access Layer Interface

 3.11  Range Values..........................................................................................12

 3.12  List Values...............................................................................................13

 3.13  Qualifiers.................................................................................................14

 4   Responses......................................................................................................15

 4.1  Successful Requests.................................................................................15

 4.2  Errors.........................................................................................................16

 4.3  Overflows..................................................................................................17

 4.4  Redirection................................................................................................17

 4.5  Use of VOTable.........................................................................................17

 5   References......................................................................................................20

- 4 -



Data Access Layer Interface

 1 Introduction
The Data  Access  Layer  Interface  (DALI)  defines  resources,  parameters,  and 
responses  common  to  all  DAL  services  so  that  concrete  DAL  service 
specifications need not repeat these common elements.

 1.1 General Principles

TODO: define scope and context, mainly by referring background material like 
DAL2 note, etc.

 1.2 The Role in the IVOA Architecture

TODO: include architecture diagram and show where DALI fits in there

TODO:  elaborate  on  related  standards,  e.g.:  UWS,  VOResource,  VOSI, 
VOTable, 

 1.3 Document Roadmap

TODO: brief summary of subsequent sections once they are nailed down

- 5 -



Data Access Layer Interface

 2 Resources

DAL services are implemented as HTTP REST [ref] web services. The primary 
resource in a DAL service is a job. A DAL job is defined by parameters (see  3 ) 
and can be executed either synchronously or asynchronously. A concrete service 
specification defines the job parameters and the manner of execution is defined 
by separate resources below.

In  addition to  job list  resources,  DAL services also implement  several  Virtual 
Observatory Support Interface (VOSI) resources to describe service availability, 
capabilities, and content.

A  concrete  DAL  service  must  define  at  least  one  DALI-async  or  DALI-sync 
resource. It may define both with the same job semantics (e.g. TAP-1.0) or it may 
define one with one kind of  job and the other with a separate kind of  job (a 
service that does some things synchronously and others asynchronously).

resource type resource name required

DALI-async service specific service specific

DALI-sync service-specific service specific

VOSI-availability /availability yes

VOSI-capabilities /capabilities yes

VOSI-tables /tables service specific

A simple query-only DAL service like ConeSearch can be easily described as 
having a single DALI-sync resource where the job is a query and the response is 
the result of the query. Slightly more complex services like SIA and SSA ...

 2.1 Asynchronous Execution: DALI-async

Asynchronous resources are resources that represent a list of asynchronous jobs 
as defined by the Universal Worker Service (UWS) pattern [ref]. Requests can 
create,  modify,  and delete jobs in the job list.  Special  requests to modify the 
phase of the job cause the job to execute or abort.

As specified in UWS, a job is created by using the HTTP POST method to modify 
the job list. The response will always be an HTTP redirect (status code 303) and 
the Location (HTTP header) will contain the URL to the job (a child resource of  
the job list).

POST http://example.com/base/async-jobs

< HTTP/1.1 303 See Other

- 6 -



Data Access Layer Interface

< Location: http://example.com/base/async-jobs/123

The job description (an XML document defined by the UWS schema) can always 
be retrieved by accessing the job URL with the HTTP GET method:

GET http://example.com/base/async-jobs

[sample UWS xml job description here]

In  addition  to  the  UWS  job  metadata,  DAL  jobs  are  defined  by  a  set  of 
parameter-value pairs.  The client  may add new parameters  by  modifying  the 
current list of parameters via the HTTP POST method:

POST FOO=bar http://example.com/base/async-jobs/123/parameters

The UWS standard allows parameters to be POSTed along with the initial job-
creation request, or POSTed to the job URL, or POSTed to the parameter list  
(the parameters child resource) directly (as in the above example). This is easily 
implemented by simply applying all  UWS-specific parameters to the UWS job 
itself and putting all remaining parameters into the parameter list. 

TODO: examples of all resources one can post DAL parameters to

A concrete DAL service specification will specify one or more asynchronous job-
list resources and whether they are mandatory or optional. It  may mandate a 
specific resource name to support simple client use, or it can allow the resource 
name to be described in the service metadata (see  2.4 ).

 2.2 Synchronous Execution: DALI-sync

Synchronous  resources  are  resources  that  accept  a  request  (a  DAL  job 
description) and return the response (the result) directly. Synchronous requests 
can be made using either the HTTP GET or POST method. The parameters used 
to specify the job are the same for synchronous and asynchronous DAL jobs. A 
synchronous job is created by a GET or POST request to a synchronous job list, 
executed automatically, and the result returned in the response. The web service 
is permitted to split the operation of a synchronous request into multiple HTTP 
requests as long as it  is transparent to standard clients.  This means that the 
service  may  use HTTP redirects  (status  code  302  or  303)  and the  Location 
header to execute a synchronous job in multiple steps. For example, a service 
may

• immediately execute and return the result in the response, or

• the response is an HTTP redirect (status code 303) and the Location (HTTP 
header) will contain a URL; the client accesses this URL with the HTTP 
GET method to execute the job and get the result

Clients  should  generally  expect  to  get  redirects  and  follow  them in  order  to 
complete requests.

A concrete DAL service specification will specify one or more synchronous job-
list resources and whether they are mandatory or optional. It  may mandate a 

- 7 -



Data Access Layer Interface

specific resource name to support simple client use, or it can allow the resource 
name to be described in the service metadata (see  2.4 ).

 2.3 Availability: VOSI-availability

VOSI-availability [ref] defines a simple web resource that reports on the current 
ability  of  the  service  to  perform.  In  DAL  services,  this  resource  is  always 
accessed as a resource named availability that is a child of the base URL for the 
service. 

All DAL services must implement the /availability resource.

TODO: put example XML here

 2.4 Capabilities: VOSI-capabilities

VOSI-capabilities  [ref]  defines  a  simple  web  resource  that  returns  an  XML 
document  describing  the  service.  In   DAL  services,  this  resource  is  always 
accessed as a resource named capabilities that is a child of the base URL for the 
service.  The  VOSI-capabilities  described  all  the  resources  exposed  by  the 
service, including which standards each resource implements. 

All DAL services must implement the /capabilities resource.

TODO: put  basic  example  output  here? probably  [xref]  to  section  on service 
registration

 2.5 Content: VOSI-tables

VOSI-tables [ref] defines a simple web resource that returns an XML document 
describing the  content  of  the  service.  In   DAL services  which include it,  this 
resource is always accessed as a resource named tables that is a child of the 
base URL for the service. The document format is defined by the VODataService 
[ref]  standard  and allows the  service  to  describe  their  content  as  a  tableset: 
schemas, tables, and columns. TODO: example tables document

A  concrete  DAL  service  specification  will  specify  if  the  /tables resource  is 
mandatory or optional.

TODO: put simple example XML here? 

- 8 -



Data Access Layer Interface

 3 Parameters
A  DAL  job  is  defined  by  a  set  of  parameter-value  pairs.  Some  of  these 
parameters are standard meaning and are defined here, but most are defined by 
the service specification or another standard (e.g. PQL [ref]). 

 3.1 REQUEST

The REQUEST parameter specifies the type of the DAL job at the highest level. 
In many cases, a service will have only one possible value (e.g. TAP-1.0 only 
supports REQUEST=doQuery), but this parameter is still used in such cases as 
future versions or non-standard (site-specific  features)  may support  additional 
values.

 3.2 VERSION

The VERSION parameter is used so the client can specify which version of the 
service standard they are using to make the request. This allows implementers to 
support multiple versions of a standard in a single web service and with a single 
resource for the DAL job list.

TODO: put version negotiation rules here

 3.3 FORMAT

The FORMAT parameter  is  used so  the  client  can specify  the  format  of  the 
response  (e.g.  the  output  of  the  job).  While  the  list  of  supported  values  are 
specific  to  a  concrete  service  specification,  the  general  usage  is  to  support 
values that are content-types (mimetypes) for known formats as well as shortcut 
symbolic values. 

table type MIME type(s) short form

VOTable application/x-votable+xml
text/xml

votable

comma separated values text/csv csv

tab separated values text/tab-separated-values tsv

FITS file application/fits fits

pretty-printed text text/plain text

pretty-printed Web page text/html html

A DAL service  must accept a  FORMAT parameter indicating a format that the 
service  supports  and  should   fail  (xref  to  error  handling  section)  where  the 

- 9 -



Data Access Layer Interface

FORMAT  parameter  specifies  a  format  not  supported  by  the  service 
implementation.

A  concrete  DAL  service  specification  will  specify  any  mandatory  or  optional 
formats as well as new formats not listed above; it may also place limitations on 
the structure for formats that are flexible.  For example, a resource that responds 
with tabular output only may impose a limitation that FITS files only contain FITS 
tables, possibly only of specific types (ascii or binary). 

If a client requests a format by specifying the mimetype (as opposed to one of 
the short forms), the response that delivers that content must set that mimetype 
in the Content-Type header. This is only an issue when a format has multiple  
acceptable mimetypes (e.g. VOTable).

DAL services  are  free  to  support  custom formats  by  accepting  non-standard 
values for the FORMAT parameter. 

 3.4 MAXREC

For resources performing discovery (querying for an arbitrary number of records), 
the  resource  must accept  a  MAXREC parameter  specifying  the  maximum 
number of records to be returned. If  MAXREC is not specified in a request, the 
service  may apply a default value or  may  set no limit.  If the size of the result 
exceeds this value, the service must only return the requested number of rows. If 
the result set is truncated in this fashion, it must include an overflow indicator as 
specified in  4.3 .

The service must support the special value of MAXREC=0. This value indicates 
that, in the event of an otherwise valid request, a valid response be returned 
containing metadata, no results, and an overflow indicator as above. The service 
is  not  required  to  execute  the  request  and  the  overflow  indicator  does  not 
necessarily  mean that  there  is  at  least  one record  satisfying  the  query.  The 
service may perform validation and may try to execute the request, in which case 
a MAXREC=0 request can fail.

 3.5 RUNID

The  service  should implement  the  RUNID parameter,  used  to  tag  service 
requests with identifier of  a larger job of which the request may be part.  The 
RUNID parameter is defined in [ref].

For example, if a cross match portal issues multiple requests to remote services 
to carry out a cross-match operation, all would receive the same RUNID, and the 
service logs could later be analyzed to reconstruct the service operations initiated 
in response to the job.

- 10 -



Data Access Layer Interface

The service  should ensure that  RUNID is preserved in any service logs and 
should pass on the RUNID value in any calls to other services.

 3.6 Case of Parameters

Parameter  names  are  not  case  sensitive;  a  DAL  service  must  treat  upper-, 
lower-, and mixed-case parameter names as equal. Parameter values are case 
sensitive unless a concrete DAL service specification explicitly states that the 
values  of  a  specific  parameter  are  to  be  treated  as  case-insensitive.  For 
example,  the  following  are  equivalent:  FOO=bar,  Foo=bar,  foo=bar.  Unless 
explicitly stated by the service specification, these are not equivalent: FOO=bar, 
FOO=Bar, FOO=BAR.

In  this  document,  parameter  names  are  typically  shown  in  uppercase  for 
typographical clarity, not as a requirement.

 3.7 Order and Cardinality of Parameters

Parameters in a request may be specified in any order.

When request parameters are duplicated with conflicting values, the response 
from the service is undefined.  The  service may reject the request or it may pick 
one value for the parameter. Clients should not repeat parameters in a request. 
If a parameter has multiple values, a single parameter-value pair must be used 
and the value must use the list syntax in  3.12 .

TBD: Forms in web apps that allow selection of multiple values do  
include the same parameter name multiple times, once for each  
value posted. We should discuss this prohibition as it makes it hard  
to use simple web forms directly.

 3.8 Parameter Indirection

The value of any parameter can be taken indirectly from an external object rather  
than specified directly, if specified in the description of an individual parameter. 
The ‘@’ character is used to denote this symbolic reference:

FOO=@something

The meaning or interpretation of the referenced symbolic value (‘@’ target) is 
defined by the individual parameter. 

TBD: Typical use is to refer to a list or table of values that is also  
included with the request, e.g. referred to in a separate parameter  
or included as inline content. May need some guidance/examples  
to clarify what this does.

- 11 -



Data Access Layer Interface

 3.9 Missing or null-valued parameters

If a parameter is not included in a query its value is unset; no value has been 
specified.  If a parameter is given a null value, e.g., “...&FOO=&...”, the parameter 
value  has been set  and the  value  is  the  null  string.   Whether  or  not  a  null  
parameter value is significant is defined by the individual parameter.  If only the 
parameter name is given, e.g., “...&FOO&...”, it is the same as if the parameter 
was not specified, and the parameter value is unset.

TBD: Are there any practical cases where we need to differentiate  
between not set and set to null?

 3.10 Literal Values: Numbers, Boolean, Date, and Time

Integer  numbers  must be  represented  in  a  manner  consistent  with  the 
specification for integers in XML Schema Datatypes [10]. 

Real numbers must be represented in a manner consistent with the specification 
for  double-precision numbers in  XML Schema Datatypes.  This  representation 
allows for integer, decimal and exponential notations.

Boolean  values  must  be  represented  in  a  manner  consistent  with  the 
specification for Boolean in XML Schema Datatypes. The values 0 and false are 
equivalent. The values 1 and true are equivalent.  

FOO=1

FOO=true

BAR=0

BAR=false

Absence of an optional value is equivalent to false.

Date and time values must be represented as ISO 8601 formatted strings with a 
T character separating the date and time components. Fractions of a second are 
permitted but not required. For example:

2000-01-02T15:20:30

is January 2, 2000 at 3:20 PM (plus 30 seconds). Services must interpret all date 
and time values as UTC [ref].

 3.11 Range Values

Parameters thats specify a range of values use the forward slash (“/”) character 
as the separator between elements of the range specification (as in the ISO 8601 
date specification after which this convention is patterned).  For example,a range 
consisting of all values from 5E-7 to 8E-7 inclusive would be:

FOO=5E-7/8E-7

If a third field is specified it is a step size for traversing the indicated range, such 
as the above range in steps of 1E-8 (30 steps):

- 12 -



Data Access Layer Interface

FOO=5E-7/8E-7/1E-8

If a parameter permits a step size the semantics of the step size are defined by 
the specific parameter.

An open range may be specified by omitting either range value.  If the first value 
is omitted the range is open toward lower values.  If the second value is omitted 
the range is open toward higher values.  Omitting both values indicates an infinite 
range which accepts all values.  For example, an open range which accepts all 
values less than or equal to 5 would  be encoded as shown  below:

FOO=/5

Range values can only be used with parameters which specify numeric and date 
values.

TBD:  String  ranges  could  potentially  be  defined,  but  advanced  
string  processing  would  probably  require  a  different  and  more  
complex facility. Also, when used with strings one would need to  
specify a way to escape the separator character in values, which  
gets ugly.

 3.12 List Values

Parameters which are multi-valued (a list of values) use the comma (“,”) as the 
separator between successive items in the list.  Embedded white space is not 
permitted.  The values in  the list  may be of  any data type ( 3.10  ),  including 
ranges ( 3.11 ). For example, the list of values including A and B would be:

FOO=A,B

The order of  values in a list  may be arbitrary or important  depending on the 
parameter. For example, one parameter may be defined as matching any value 
(logical OR), e.g.:

GENRE=rock,classical,folk

in which case the order does not matter, while another parameter may be defined 
with some structure, e.g.:

POS=20,30

where the two values together are coordinates (longitude and latitude) and the 
order does matter. The importance and meaning of the order of values in a list is  
specified for each parameter.

The range and list syntax may be used together to specify a list of ranges, e.g.:

FOO=1/2,5/6

In some lists, individual entries may be empty, and should be represented by the 
empty string.  Thus, two successive commas indicate an empty item, as does a 
leading comma or a trailing comma.  An empty list should be interpreted either 

- 13 -



Data Access Layer Interface

as  a  list  containing  no  items,  or  as  a  list  containing  a  single  empty  item, 
depending upon the context.

 3.13 Qualifiers

If specified by the definition of a particular parameter, a single-valued parameter, 
range,  or  list  may be  qualified  by  appending a semicolon (“;”)  followed by a 
qualifier string.  This could be used to specify an alternate coordinate system, 
e.g.:

POS=180.0,1.0;GALACTIC

could  specify  a  position  in  galactic  coordinates.   In  some  cases,  multiple 
semicolons  may  be  used  to  delimit  separate  sub-lists  or  clauses  within  the 
parameter value.

- 14 -



Data Access Layer Interface

 4 Responses

All DAL service requests eventually result in one of three kinds of responses: 
successful  HTTP  status  code  (200)  and  a  service-  and  resource-specific 
representation of the results, an HTTP status code (??) and an unspecified error 
document, or a redirect HTTP status code (302 or 303) with a URL in the HTTP 
header.

 4.1 Successful Requests

Successfully executed requests should result in a response with HTTP status 
code 200 (OK) and a response in the format requested by the client (see  3.3 ) or 
in the default format for the service. The service should set the following HTTP 
headers to the correct values where possible.

Content-Type mimetype of the response

Content-Encoding encoding/compression of the response

Content-Length size of the response in bytes (generally not known for 
dynamically generated and streamed response)

Last-Modified timestamp  when  the  resource  was  last  changed  (not 
applicable to dynamically generated response)

For jobs executed using a DALI-async resource,  the result(s)  must be made 
available as child resources of the result list and directly accessible there. For 
jobs that inherently create a single result, this result must be named result in the 
result list and be directly accessible by that name, e.g.:

GET http://example.com/base/joblist/123/results/result

For  concrete  DAL  service  specifications  where  multiple  result  files  may  be 
produced,  the  specification  may  dictate  the  names  or  it  may  leave  it  up  to 
implementations to chose suitable names.

TBD: In TAP we specfied that the query result was named result  
explicitly, but then when people/apps download the file it may end  
up with just that name in the local filesystem and thus collide with  
other downloaded TAP results. This can be avoided on the server-
side by using a redirect to a URL that ends in a sensible filename  
and/or setting the Content-Disposition header... would it be better  
to always let the implementor name the result with a suitable (file)  
name directly?

- 15 -

http://example.com/base/joblist/123/results/result


Data Access Layer Interface

 4.2 Errors

If the service detects an exceptional condition, it must return an error document 
with an appropriate HTTP-status code. DAL services distinguish three classes of 
errors:

• Errors in the use of the HTTP protocol

• Errors in the use of the specific DAL protocol, including an invalid request

• Errors caused by a failure of the service to complete a valid request

Error documents for HTTP-level errors are not specified since responses to these 
errors  may  be  generated  by  service  containers  and  cannot  be  controlled  by 
service implementations. There are several cases where a DAL service could 
return an HTTP error. First, a DALI-async resource could return a 404 (not found) 
error if the client accesses a job within the UWS joblist that does not exist, or  
accesses a child resource of the job that does not exist (e.g. the error resource of  
a job that has not run and failed, or a specific result resource in the result list  that 
does not exist). Second, access to a resource could result in an HTTP 401 (not 
authorized) response if  authentication is required or an HTTP 403 (forbidden) 
error if the client is not allowed to access the requested resource.

Error documents describing errors in use of the DAL service protocol  must be 
VOTable documents as described in [xref];   any result-format specified in the 
request  is  ignored.  In  all  cases,  these are  errors  that  occur  when the  job  is 
executed and do not override any error behaviour for a UWS resource which 
specifies the behaviour and errors associated with interacting with the job itself. 

If  the  invalid  job  is  being  executed  using  a  DALI-async  resource,  the  error 
document  must  be  accessible  from  the  <DALI-async>/<jobid>/error  resource 
(specified by UWS) and when accessed via that resource it must be returned 
with an HTTP status code should be 200, e.g.:

GET http://example.com/base/joblist/123/error

If  the error document is being returned directly after a DALI-sync request, the 
service must  use HTTP status code 200 (successfully returning a response to 
the request).

Error documents describing the failure of the service to execute a valid job are 
returned as above,  but  the VOTable document  must  ??? to  indicate that  the 
request was valid but failed due to (i) an internal limitation or (ii) a transient failure 
and may succeed in the future.

TBD:  How  do  we  generically  divide  errors  into  these  3  types:  
invalid, internal limitation/refusal, or transient failure?

- 16 -

http://example.com/base/joblist/123/error


Data Access Layer Interface

 4.3 Overflows

If a request is executed by a DAL service, the number of records in the results  
may exceed a limit requested by the user (using the MAXREC parameter) or a 
limit  set  by  the  service  implementation  (the  default  or  maximum  value  of 
MAXREC). In these cases, the request is said to have 'overflowed'. Typically, a 
service will  not detect an overflow until  some part of the results have already 
been sent to the client.

If an overflow occurs, the service must produce a table of results that is valid, in 
the required output format, and which contains all the results up to the point of 
overflow. Since an output overflow is not an error condition, the MIME type and 
the HTTP status-code of the response must be the same as for any successful 
request.

If  the  output  format  is  VOTable,  section  Error:  Reference  source  not  found 
describes the method by which the overflow is reported. No method of reporting 
an overflow is defined for formats other than VOTable.

 4.4 Redirection

A concrete DAL service specification may require that HTTP redirects (302 or 
303) be used to communicate the location of an alternate resource which should 
be accessed by the client via the HTTP GET method. For example, the UWS 
pattern  used  for  DALI-async  ( 2.1  )  requires  this  behaviour.  Even  when  not 
required, concrete DAL service specifications must allow implementors to use 
redirects and clients should follow these redirects using normal HTTP semantics 
[ref].

 4.5 Use of VOTable

VOTable is a general format. In DAL services we require that it be used in a  
particular way. The result VOTable document must comply with VOTable v1.2 or 
greater [ref]. For columns containing coordinate values, the coordinate system 
metadata should be provided as described in [ref].

For  resources  where  the  job  is  a  query,  the  VOTable  must contain  a 
RESOURCE element  identified  with  the  attribute  type="results",  containing  a 
single  TABLE element  with  the  results  of  the  query.  Additional  RESOURCE 
elements may be present, but the usage of any such elements is not defined 
here.

The  RESOURCE element  must contain, before the  TABLE element, an  INFO 
element  with  attribute  name =  "QUERY_STATUS".  The  value attribute  must 
contain one of the following values:

- 17 -



Data Access Layer Interface

1. “OK”,  meaning  that  the  query  executed  successfully  and  a  result  table  is 
included in the resource

2. “ERROR”,  meaning  that  an  error  was  detected  at  the  level  of  the  TAP 
protocol or the query failed to execute

The content of the INFO element conveying the status  should be a message 
suitable for display to the user describing the status. 

<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="QUERY_STATUS" value="OK">Successful query</INFO>

<INFO name=”QUERYY_STATUS" value="ERROR">

value out of range in POS=45,91

</INFO>

Additional  INFO elements  may be provided, e.g., to echo the input parameters 
back to the client in the query response (a useful feature for debugging or to self-
document the query response), but clients should not depend on these. 

<RESOURCE type=”results”>

<INFO name=”QUERY_STATUS” value=”ERROR”>

missing REQUEST parameter

</INFO>

<INFO name=”SPECIFICATION” value=”TAP”/>

<INFO name=”VERSION” value=”1.0”/>

...

</RESOURCE>

If an overflow occurs (result exceeds MAXREC), the service must close the table 
and append another INFO element to the RESOURCE (after the TABLE) with 
name=”QUERY_STATUS” and the value=”OVERFLOW”. 

<RESOURCE type=”results”>

<INFO name=”QUERY_STATUS” value=”OK”/>

...

<TABLE>...</TABLE>

<INFO name=”QUERY_STATUS” value=”OVERFLOW”/>

</RESOURCE>

In the above example, the TABLE should have exactly MAXREC rows.

If an error occurs while writing the rows of the VOTable, the service must close 
the  table  and  append  another  INFO  element  to  the  RESOURCE,  after  the 

- 18 -



Data Access Layer Interface

TABLE, with name=”QUERY_STATUS” and the value=”ERROR”. 

<RESOURCE type=”results”>

<INFO name=”QUERY_STATUS” value=”OK”/>

...

<TABLE>...</TABLE>

<INFO name=”QUERY_STATUS” value=”ERROR”>

unexpected IO error while converting something

</INFO>

</RESOURCE>

The content of these trailing INFO elements is optional and intended for users; 
client software should not depend on it.

Thus,  one  INFO  element  with  name=”QUERY_STATUS”  and  value=”OK” or 
value=”ERROR” must be included before the TABLE. If  the TABLE does not 
contain  the  entire  result,  one  INFO  element  with  value=”OVERFLOW” or 
value=”ERROR”  must be included after the table. 

TBD: QUERY_STATUS seems meaningful when the job is a query  
(e.g. for data discovery or querying TAP or ConeSearch), but it is  
not completely generic... or it is implying the HTTP query string of a  
simple  HTTP  GET  request,  which  is  also  no  longer  the  only  
scenario. Is it worth defining a more general name for status at the  
expense of making SIAv2 and SSAv2 different from v1? 

- 19 -



Data Access Layer Interface

 5 References
[1] D. Tody, F. Bonnarel, M. Dolensky, J. Salgado, DAL-WG, IVOA Data Access 

Layer Service Architecture and Standard Profile, IVOA Note 5 October 2008.
http://www.ivoa.net/internal/IVOA/SiaInterface/DAL2_Architecture.pdf

[2] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF 
RFC 2119. http://www.ietf.org/rfc/rfc2119.txt 

[3] T. Berner-Lee, R. Fielding  L. Masinter,  Uniform Resource Identifiers (URI):  
Generic Syntax, IETF RFC 2396.  http://www.ietf.org/rfc/rfc2396.txt

[4] P. Biron & A. Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C 
Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-2/

[5] R.  Fielding,  J.  Mogul,  H.  Frystyk,  L.  Masinter,  P.  Leach,  T.  Berners-Lee, 
Hypertext  Transfer  Protocol  –  HTTP/1.1,  IETF  RFC  2616.  http://www.rfc-
editor.org/rfc/rfc2616.txt

[6] N. Freed & N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part  
One: Format of Internet Message Bodies, IETF RFC 2045. 

http://www.ietf.org/rfc/rfc2045.txt

[7]  Y. Shafranovich,  Common Format and MIME Type for  Comma-Separated  
Values (CSV) Files, IETF RFC 4180. 

http://www.ietf.org/rfc/rfc4180.txt

[8] IANA, MIME Media Types, 

http://www.iana.org/assignments/media-types/text/tab-separated-values

[9]  GWS-WG, G. Rixon (ed.),  IVOA Support  Interfaces Version 1.00,  IVOA Working 
Draft,  25  August  2009.
http://www.ivoa.net/Documents/VOSI/1.0

[10]  P.  Harrison & G. Rixon,  Universal  Worker Service Version 1.0,  IVOA Proposed 
Recommendation,  09  September  2009.
http://www.ivoa.net/Documents/UWS/1.0

[11] F.  Ochsenbein (ed.),  R. Williams,  VOTable Format DefinitionVersion 1.2, 
IVOA  Proposed  Recommendation  29  September  2009.  
http://www.ivoa.net/Documents/VOTable/1.2

[12] R, Plante (ed.), A. Stébé, K. Benson, P. Dowler, M. Graham, G. Greene, P. 
Harrison,  G.  Lemson,  A.  Linde,   G.  Rixon  &  IVOA  Registry-WG, 
VODataService: a VOResource Schema Extension for Describing Collections  
and Services Version 1.1.  IVOA Proposed Recommendation, 03 September 
2009  
http://www.ivoa.net/Documents/VODataService/1.1

[13]  P.  Dowler,  G.  Rixon,  D.  Tody,  DAL-WG,  Table  Access  Protocol,  IVOA 
Recommendation  27  March  2010.  
http://www.ivoa.net/Documents/TAP/1.  0  

- 20 -

http://www.ivoa.net/Documents/VOTable/1.2
http://www.ivoa.net/Documents/VODataService/1.1
http://www.ivoa.net/Documents/VOTable/1.2
http://www.ivoa.net/Documents/UWS/1.0
http://www.ivoa.net/Documents/VOSI/1.0
http://www.iana.org/assignments/media-types/text/tab-separated-values
http://www.ietf.org/rfc/rfc4180.txt
http://www.ietf.org/rfc/rfc4180.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.w3.org/TR/xmlschema-2/
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2119.txt


Data Access Layer Interface

- 21 -


	 1  Introduction
	 1.1  General Principles
	 1.2  The Role in the IVOA Architecture
	 1.3  Document Roadmap

	 2  Resources
	 2.1  Asynchronous Execution: DALI-async
	 2.2  Synchronous Execution: DALI-sync
	 2.3  Availability: VOSI-availability
	 2.4  Capabilities: VOSI-capabilities
	 2.5  Content: VOSI-tables

	 3  Parameters
	 3.1  REQUEST
	 3.2  VERSION
	 3.3  FORMAT
	 3.4  MAXREC
	 3.5  RUNID
	 3.6  Case of Parameters
	 3.7  Order and Cardinality of Parameters
	 3.8  Parameter Indirection
	 3.9  Missing or null-valued parameters
	 3.10  Literal Values: Numbers, Boolean, Date, and Time
	 3.11  Range Values
	 3.12  List Values
	 3.13  Qualifiers

	 4  Responses
	 4.1  Successful Requests
	 4.2  Errors
	 4.3  Overflows
	 4.4  Redirection
	 4.5  Use of VOTable

	 5  References

