
Thomas Boch, on behalf of
 Grégory Mantelet
 Brice Gassmann

CDS UWS LibraryCDS UWS Library

UWS
Universal Worker Service pattern

 What is it ?
A pattern for a Web-Service which has to manage
asynchronous jobs.

 How does it work ?
1 URL => 1 Action

 What are the possible actions ?
Create a job, Set job parameters, Execute a job, Get job
results, Get list of jobs, etc...

Quick description
UWS as a Tree

runId
owner

startTime
endTime

executionDuration
destructionTime

quote

results
error

parameters
phase

● A UWS is structured as a tree, in which a job is a leaf.
● Each node is considered as a web resource...

JobUWS JobList

jobIdnameBase URL

A job has information about its execution
(phase, start/end time, max. duration,

results, error, ...)

Quick description
UWS commands

Job

Get Summary

Get Job ID
Get Run ID
Get Owner

Set RunID

...

Execute
Abort

Get List

Add new Job

Destroy

Set Parameter
Set ExecutionDuration
Set DestructionTime

Get Results

UWS JobList

jobIdnameBase URL

● ...which can be manipulated thanks to some commands...

Most of the returned data are returned, by
default, in XML according to the XML

schema available at this adress:
http://www.ivoa.net/xml/UWS/v1.0

http://www.ivoa.net/xml/UWS/v1.0

Quick description
UWS URLs

{baseURL} {baseURL}/{name} {baseURL}/{name}/{jobId}

For instance: (if baseURL = http://foo.org, name = myJobList, jobId = 123Job)
● Get Job List http://foo.org/myJobList in HTTP-GET
● Add Job http://foo.org/myJobList in HTTP-POST with/without some job

parameters
● Get Job Summary http://foo.org/myJobList/123Job in HTTP-GET
● Execute the job http://foo.org/myJobList/123Job/phase in HTTP-POST with

PHASE=RUN
● Get Job Results http://foo.org/myJobList/123Job/results in HTTP-GET
●

JobUWS JobList jobId

nameBase URL

● ...which correspond to REST based URLs.

http://foo.org/
http://foo.org/myJobList
http://foo.org/myJobList
http://foo.org/myJobList/123Job
http://foo.org/myJobList/123Job/phase
http://foo.org/myJobList/123Job/results

The UWS Library
Goal

 Main Goal:
Providing a generic way to implement as quickly and

as simply as possible the default behaviours of UWS.

 Notes:
 Developed in Java
 Designed to be used in Servlets

The UWS Library
Functionalities

 Implemented UWS functionalities described in standard:
 Interpreting each HTTP requests sent as UWS commands (managed

HTTP methods: GET, POST, PUT and DELETE)
 Stopping the job when its execution is longer than its imposed

duration
 Destroying the job at its imposed destruction time
 Returning a UWS content in other formats than XML (in version 3)
 Managing a job execution queue (in version 3)

 Additionnal functionalities are also available:
 Customizing the UWS home page (accessible via {baseURL})
 Linking each returned XML with a XSLT style-sheet
 Adding custom commands to a UWS (in version 3)

The UWS Library
Quick HOW TO 1/2

To create your own job, you must:
1. Extend AbstractJob
2. Implement:

➔ JobWork(): what the job must do
➔ IsQueuedRequired(): whether this job can be managed in a queue

Example: JobChrono (a job which stops after a given
number of seconds):

http://saada.u-strasbg.fr/uwstuto/gettingStarted.html#jobChrono

http://saada.u-strasbg.fr/uwstuto/gettingStarted.html#jobChrono

The UWS Library
Quick HOW TO 2/2

To create a UWS, you must:
1. Create a HttpServlet
2. Override the doGet and doPost functions
3. In doGet:

i. Call the doPost function
4. In doPost:

i. At the first call, initialize your UWS
ii.Otherwise, call the function executeRequest of your UWS

instance

Example: UWSTimers (a UWS which manages
instances of JobChrono):
http://saada.u-strasbg.fr/uwstuto/gettingStarted.html#servletTimers

http://saada.u-strasbg.fr/uwstuto/gettingStarted.html#servletTimers

The UWS Library
Download/Tutorial

 Download:
http://saada.u-strasbg.fr/saada/spip.php?article219

 Released under LGPL3 licence

 Documentation/Tutorial at:
http://saada.u-strasbg.fr/uwstuto/

 Some answers or suggestions ?
gregory.mantelet@astro.unistra.fr

http://saada.u-strasbg.fr/saada/spip.php?article219
http://saada.u-strasbg.fr/uwstuto/
mailto:gregory.mantelet@astro.unistra.fr

Suggestions for the UWS pattern

 Add an attribute progression to a Job
 Readable at any time
 Writable by the job only during its execution

 Allows for multiple jobLists
 Add a new resource: uws

 it has, optionnaly, a name and a description
 it gives a list of job lists

 Propose a structure for a JSON format

Example of the XML content of
uws

<uws name="uwsName">
<description>...</description>
<jobLists>

<jobListRef name="jlName"
href= ".../uwsName/jlName" />

...
</jobLists>

</uws>

Services using the library

 Used in SAADA (ObsTAP implementation)
 Used in CDS cross-match service

Developer's feedback

Using the UWS library for the CDS X-match service

Thomas Boch

On behalf of: Brice Gassmann

UWS library for X-match service
Client Server

Servlet
Manage a

map of UWS
objects

Dispatch
the request

to the
correct UWS

UWS for user B

User A

User B

UWS for user A

Job 1 Job 2Request
handler Xmatch Xmatch

Provided by UWS library Written by the developer

sessionId
+ other params

UWS for user CUser C

UWS library for X-match service

Thanks to the library, enabling UWS on the X-match
service was seamless
Only 2 classes to extend
 AbstractUWS to associate a user id to a UWS
 AbstractJob to manage the additional parameters and perform the

X-match itself
...and a servlet to write
 Manage a <userId, uws> map
 Dispatch the requests to the correct UWS objects (one UWS

instance per user)

UWS library for X-match service

Easy interaction between user Web interface and the
service

 UWS is REST based => perfect for AJAX requests
 But: JSON is not handled yet

Possibility to plug specific ”actions” to extend inner
commands of UWS

 deleteJobs to delete a selection of jobs
 getJobs to get the list of jobs in JSON format

(should we use HTTP Accept header to manage this ?)

Dealing with multiple users

 Current implementation creates one UWS instance per
user

 Not optimal
 Would be prettier if a userId or sessionId could be passed

as a parameter of /jobList

Open questions
How do we isolate different users ?
 User A should not be able to see jobs from user B
 UWS document has a section about Security

considerations (authentication/authorization)
 Does it also apply to privacy ?

 Our implementation use session IDs to isolate users'
jobs

 Good pratice for privacy ?
 Is there a proper (standardized) way to do that ?

JSON representation of objects

Suggested JSON format

*** UWS ***
{

"name": "uwsName",
"description": "uwsDescription",
"jobLists": [

{ "name": "jlName", "href": "jlUrl" },
...

]
}

*** JobList ***
{

"name": "jlName",
"jobs": [

{ "id": "jobId", "href": "jobUrl", "phase": "jobPhase" },
...

]
}

*** Job ***
{
"jobId": "",
"runId": "",
"owner": "",
"phase": "",
"quote": "",
"executionDuration": "",
"destruction": "",
"startTime": "",
"endTime": "",
"error": { "type": "", "hasDetail": "", "message": ""},
"parameters": [
{ "paramName": "", "paramValue": "" },
...
],
"results": [
{ "id": "", "type": "", "href": "" }
...
]
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

