


…
○
○
○
○

○

○
○ /table

○
○

○



○
○ /tables capability

○
○

○
○



A tool designed for discovering data exposed in any TAP service.
No prior knowledge about the data content
 

Accessing TAP services with a WEB browser.
Accessing meta-data
Accessing data
Query editor
Downloading results
Interoperability

Accessing simultaneously multiple TAP services
Services merged in a single view

Using the browser facilities as much as possible for data display
VOTables displayed as HTML tables
File with universal types (PNG, JPEG, PDF, text…) are taken in charge by the browser
Astronomical data format can be redirected to SAMP clients



TAP Service

Registry

TAP Service TAP ServiceTAP Service

Several TAP services - One single view



TAP Service

Registry

TAP Service TAP ServiceTAP Service

Merging on one Web page data 
asynchronously loaded from 
different servers is quite difficult 
or impossible for security 
reasons (cross-domain)



TAP Service

TAP Service
TAP ServiceTAP Service

Registry

Proxy 
(JEE)

✓ The proxy is the actual  client TAP

✓ The Web page is a view on the data 
available on the proxy

✓ The proxy/browser communication  is done 
by AJAX queries with an  ad-hoc protocol



Proxy 
(JEE)

✓ XML files (and VOTables) received by the proxy 
are translated in JSON.

✓ All data and meta-data are cached by the proxy 

✓ Errors are processed at proxy level

Node base
(cache meta)

User base
(cache data)

TAP requests - HTTP GET/POST

Meta data (XML) - data (VOTables)

TAP Service

JSON
HTTP 
 GET



✓ The /tables output is split into individual per table files

✓ Documented table joins are taken out from the TAP_SCHEMA

✓ Declared capabilities are tested one by one
○ sync, async, upload, table joins

✓ Job results are converted on the fly in JSON messages (Stilts)

Capability 
testing

/availalbility
sync
async
upload
join

table list : tables.json
col. def.: {table}_att.json joins: {table}_joinkeys.json

/tables
or
TAP_SCHEMA 
if /tables KO

TAP_SCHEMA
query 

pr
ox

y
TA

P 
se

rv
eu

r



Search bar for TAP 
services

Path of the current 
resource

Tree of accessible 
resources

Query editor

Query result

Job management



SELECT ivoid, access_url, res_title
FROM rr.capability

NATURAL JOIN rr.interface
NATURAL JOIN rr.resource

WHERE standard_id='ivo://ivoa.net/std/tap' 
  AND intf_type = 'vs:paramhttp'

✓ The proxy gets the description of all TAP 
services harvested by the GAVO TAP-Regext

✓ Registry data are searched by a TAP query

✓ The list of declared services is sent to each 
client at starting time.



✓ A suggest-list shows out the TAP services matching the typed text.



✓ Jobs are systematically executed in asynchronous mode (if supported).

✓ The interface waits 10” at the most on the result.

✓ Output of previous jobs remain accessible
○ To display the result
○ To refine the query
○ To be put in the shopping cart
○ To be send to SAMP clients



✓ Constraints are edited one by one from the list of available columns.

✓ Constraints are stacked in a container.

✓ ADQL queries can be refined by hand



✓ The query editor gathers the tables declared as joined  in the TAP_SCHEMA

✓ Join statements are automatically set into the query 



✓ Query results or  data files referenced by them can be put in the cart.

✓ The shopping cart content can be downloaded in a ZIP archive.
○ Asynchronously processed



✓ Data searched in TAP nodes can be exported with SAMP
○ Query results
○ Data files referenced by query results



✓ Both schemas and tables exposed by a service can be filtered
○ Essential for huge resources like Vizier



✓ Displayed data are formatted on the fly
○ URLs
○ Vectors
○ Bibcodes
○ STC Regions



✓ Datalink responses are shown as forms built on the fly
○ SAMP connection for linked files
○ Region editor for cutouts
○ HTML forms when input parameters are requested



✓ Capabilities as tested by TapHandle
○ One row per server (not per service)



Scheduled
Uploading position lists
Uploading job results
Support of extended functions by the query  editor

Aggregation (count, min, max…)
ADQL functions.

Better error handling
Lot of minor changes making together the interface more comprehensive

Thinking about a better use of the meta data
Better representation of joined table sets.
Extended use of the meta data

plain text meta data
Units
UCDs 

Thinking about persistence for the query results
User sessions
Connecting VOSpace?


