Large Synoptic Survey Telescope Introduction & data management requirements

John Swinbank

Technical Manager, LSST Data Release Production swinbank@princeton.edu

IVOA Interoperability Meeting June 2015

Outline

- The facility
 - Design & capabilities
 - Status & timeline
- Science goals
- Data products
 - Alerts
 - Catalogues & images
 - Community driven
- Software stack
- Data distribution & VO

~10 deg² field of view

3.2 gigapixel camera

8.4m (~6.5m effective)

• The telescope:

•

- 6 bands (ugrizy; 320-1050nm)
- 2s readout; 5s slew & settle •

- The survey:
 - $18000 + deg^2$
 - 10 years
 - 30s exposure/visit
 - ~825 visits
 - r~24.5/visit; r~27.5 total

Location

Sites and data flow

HQ Site

Science Operations Observatory Management Education & Public Outreach

Archive Site Archive Centre Alert Production Data Release Production (50%) Calibration Products Production EPO Infrastructure Long-term storage (copy 2) Data Access Centre Data Access and User Services French Site Data Release Production (50%) Long-term storage (copy 3)

Long-haul networks Path diverse At least 2 × 40 Gbps

Summit and Base Sites

Telescope and Camera Data Acquisition Crosstalk Correction Long-term storage (copy 1) Chilean Data Access Centre

Summit to base 100 Gbps

Survey operations: 2022

Frontiers of survey astronomy

- Time domain science:
 - Novae, black-hole binaries, GRBs ...
 - Source characterization
 - Instantaneous discovery
- Census of the Solar System:
 - NEOs, PHAs, moving objects
 - Solar system & planet formation
- Mapping the Milky Way:
 - Structure and accretion history
 - Properties of all stars within 300 pc
- Dark energy and dark matter:
 - Strong Lensing
 - Weak Lensing
 - Supernovae

IVOA INTEROPERABILITY MEETING • SEXTEN/SESTO, ITALY • JUNE 2015

Frontiers of survey astronomy

- Time domain science:
 - Novae, black-hole binaries, GRBs ...
 - Source characterization
 - Instantaneous discovery
- Census of the Solar System:
 - NEOs, PHAs, moving objects
 - Solar system & planet formation
- Mapping the Milky Way:
 - Structure and accretion history
 - Properties of all stars within 300 pc
- Dark energy and dark matter:
 - Strong Lensing
 - Weak Lensing
 - Supernovae

Exposure 2

Exposure 1 -Exposure 2

Frontiers of survey astronomy

- Time domain science:
 - Novae, black-hole binaries, GRBs ...
 - Source characterization
 - Instantaneous discovery
- Census of the Solar System:
 - NEOs, PHAs, moving objects
 - Solar system & planet formation
- Mapping the Milky Way:
 - Structure and accretion history
 - Properties of all stars within 300 pc
- Dark energy and dark matter:
 - Strong Lensing
 - Weak Lensing
 - Supernovae

Frontiers of survey astronomy (

- Time domain science:
 - Novae, black-hole binaries, GRBs •
 - Source characterization
 - Instantaneous discovery
- Census of the Solar System:
 - NEOs, PHAs, moving objects •
 - Solar system & planet formation •
- Mapping the Milky Way:
 - Structure and accretion history •
 - Properties of all stars within 300 pc
- Dark energy and dark matter: •
 - Strong Lensing •
 - Weak Lensing
 - Supernovae

Data products

- A stream of ~10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
- A catalog of orbits for ~6 million bodies in the Solar System.
- A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 trillion observations ("sources"), and ~30 trillion measurements ("forced sources"), produced annually, accessible through online databases.
- Deep co-added images.
- Services and computing resources at the Data Access Centres to enable user-specified custom processing and analysis.
- Software and APIs enabling development of analysis codes.

Level

Level

ω

IVOA INTEROPERABILITY MEETING • SEXTEN/SESTO, ITALY • JUNE 2015

Level 1: Alerts

- State-of-the-art image differencing pipeline
- Alerts issued within 60 seconds of observation
- 10M/night (average), 10k/visit (average), 40k/visit (peak)
- Each alert includes:
 - Position
 - Flux, size, and shape
 - Light curves in all bands (up to a ~year; stretch: all)
 - Variability characterization (eg., low-order light-curve moments, probability the object is variable)
 - Cut-outs centred on the object (template, difference image)

Alert distribution

- VOEvent
 - "Or some other format that is broadly accepted and used by the community at the start of LSST commissioning"
- LSST limited broker
 - Rate limited distribution directly to end users
 - Minimal filtering capability, based only on the contents of individual event packets; no classification
 - Early experiments now underway
 - e.g. https://github.com/SimonKrughoff/CometDemo
- "Fire hose" streams to selected public brokers
 - Likely operated under an MOU with LSST
 - Providing advanced filtering and event annotation services

Level 2: Annual Releases

- Calibrated and consistent catalogues & images
 - Objects, detections, detections in difference images, coadds, etc
 - Enable static sky science and time-domain science which is not time sensitive (e.g. statistical investigations of variability)
- Made available in annual Data Releases
 - Two releases in the first year
- Complete reprocessing for each release
 - Every DR will reprocess all data taken up to the beginning of that DR
 - Including reprocessing of level 1 data
- Projected catalog sizes:
 - 18 billion (DR1) → 37 billion (DR11) separate objects
 - 750 billion (DR1) → 30 trillion (DR11) individual measurements
- Cumulative ~500 PB image and ~50 PB catalogue data

Level 2: Process & products 1

Level 3: User created

- Products created by the community and made available through an LSST Data Access Centre
- Use-cases not fully enabled by Level 1 and 2:
 - Reprocessing images to search for SNe light echos
 - Characterization of diffuse structures (e.g., ISM)
 - Extremely crowded field photometry (e.g., globular clusters)
 - Custom measurement algorithms
- Enabling Level 3:
 - User databases and workspaces ("mydb")
 - Enabling user computing at the LSST data centre
 - For processing that will greatly benefit from co-location with the LSST data
 - Sized for ~10% of total compute budget
 - Making the LSST software stack available to end-users

All-new software stack

- Difficulty adapting existing public codes to LSST requirements (AstroMatic suite, PHOTO, Elixir, IRAFbased pipelines, etc):
 - Run efficiently at scale
 - Flexible (plugging/unplugging of algorithms at runtime)
 - Developed by a large team (20+ scientists and programmers)
 - Maintainable over ~25 years of R&D, Construction, and Survey Operations
 - Support a variety of hardware and software platforms
 - Logging and provenance built into the design
- Early on (~2006), a decision was made to transfer scientific know-how, but not code.

Design & language choices

- Python
 - 2.7 currently; 3+ later
 - All high-level code
 - Whenever performance demands allow
- C++
 - Limited subset of C++11 currently; more as compilers permit
 - Computationally intensive code
 - Exposed to Python through SWIG
- Modular
 - (Virtually) everything is a Python module
 - ~60 separate packages
- Open source, transparent development
 - GPL v3+
 - http://github.com/lsst http://dm.lsst.org
 Under construction!

Database & Science UI

- Science User Interface provides access to and analysis of LSST data
- Web and machine interfaces to database
- Visualization capabilities
- User workspace

- Massively parallel, distributed, fault tolerant, spatially sharded, relational database
- Built on existing, well understood technologies (MySQL, xrootd)
- Commodity hardware, open source
- Advanced prototype available (qserv)

earches History Search by Position 21	Read	FITS File _J2000; Tyj	Preference pe=CENTER; Filte	es Cat er=_all_; Image Size	talogs Plo =0.0278 deg	ot Layers					Backgroun
T Image Data			I4 4 -	1 of 1 🕨 🔰 (1	- 5 of 5)			as Text Save	Add filters	Coverage Multi-Color D	etails
goodSeeingCoaddId	tract	patch	filterName	ra	dec	fluxMaq0	fluxMaq0Sigma	measuredFwhm			
19922944	0	304,0	u	21.458185000	0.104445058	6.20437012e+10	0.000000	1.699982			
19922945	0	304,0	g	21.458185000	0.104445058	6.22980014e+10	0.000000	1.699982	6		
19922946	0	304,0	r	21.458185000	0.104445058	6.43898982e+10	0.000000	1.699982	4		
19922947	0	304,0	i	21.458185000	0.104445058	6.58835005e+10	0.000000	1.699982		and the state of the	
19922948	0	304,0	z	21.458185000	0.104445058	6.12743987e+10	0.000000	1.699982			1000000
										•	
5T Filter u 1x			LSST Filter g	ix		LSST Filter r 1x		LSST Filter i	ix	LSST Filter z 1x	
T Filter u 1x ge Image: 💠 🔷	IMAGE		LSST Filter g Change Image:	1x : 💠 💠 1	IMAGE	LSST Filter r 1x Change Image:	→ IMAGE	LSST Filter i Change Image:	1x	LSST Filter z 1x Change Image:	₩AGE

Access protocols Internal: native RDBMS protocol, HTTP(S)

Actively assessing distribution methods:

- Public: SCS, TAP, SIAPv2, VOSpace, DataLink, OAuth/OpenID, ... Libraries and toolkits in languages we can use are
- Catalogs
 - Internal: native RDBMS storage
 - Query: native SQL, ADQL
 - Bulk: compressed FITS binary tables (or HDF5)
- Images: •
 - Internal: internal format (may be FITS)
 - Public: compressed FITS (MEF)
- Time Domain Events
 - Internal: native RBMS storage
 - External: VOEvent + VOEvent Transport Protocol (evolved)

Adopt community standards where practical; drive development of standards where possible; build from scratch only when unavoidable.

vital to drive adoption

Conclusion

LSST will:

- Commence survey operations in ~7 years
- Produce an unprecedented volume of transient alerts
 - Published to the worldwide community with low latency
- Generate annual data releases providing trillions of source measurements and petabytes of image data
 - Available to the US, Chile and international partners with no proprietary period
- Use and develop community standards for making data available wherever possible
 - Virtual Observatory standards are expected to play a major role

Extra slides

Example: VOEvent evolution

- Existing VOEvent format imposes significant overheads
- Example: •
 - From http://wiki.ivoa.net/internal/IVOA/IvoaVOEvent/example1-v1.0.xml
 - Information content: ~40 bytes
 - Data on the wire: • 787 bytes

```
voEvent xmlns="http://www.ivoa.net/xml/VOEvent/v1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="ivo://raptor.lanl/VOEvent#23564" role="observation" version="1.0"
 xsi:schemaLocation="http://www.ivoa.net/xml/VOEvent/v1.0
 http://www.ivoa.net/internal/IVOA/IvoaVOEvent/VOEvent-v1.0.xsd">
 ▼<Who>
    <PublisherID>ivo://raptor.lanl/organization</PublisherID>
    <Date>2005-04-15T14:34:16</Date>
  </Who>
 What>
    <Param name="RA" ucd="pos.eq.ra" unit="deg" value="185.0"/>
    <Param name="Dec" ucd="pos.eq.dec" unit="deg" value="13.2"/>
    <Param name="magnitude" ucd="phot.mag;em.opt.R" unit="mag"
    value="18.2"/>
  </What>
 ▼<Why>
    <Concept>Fast Orphan Optical Transient</Concept>
  </Whv>
 </VOEvent>
```

Need compact serialization, provisions for bulk delivery.