
Firefly on CANFAR

Successful deployment and a test of Interoperability
(and a suggestion for platform API standardization)

IVOA Interop, College Park, June 2025

CADC: Brian Major, Shiny Brar, Stephen Gwyn
Caltech: Gregory Dubois-Felsmann, Loi Ly

Summary

> Firefly now available on CANFAR deployments

> Interesting interoperability challenges
- Authentication and Authorization: an application on a

science platform (Firefly) using a variety of potentially
protected TAP services

- Container standardization across platforms
- Interacting with other tools running on the platform and

other platforms – standard discovery needed

Firefly on CANFAR

● Firefly: https://github.com/Caltech-IPAC/firefly

○ "Web-based UI library for astronomical data archive access and
visualization developed at Caltech"

○ Catalogs and rich IVOA support - Registry, DAL protocols, including
TAP

● CANFAR: https://github.com/opencadc/science-platform

○ container-based interactive and batch science-platform

Interoperability Considerations

1. AAI: an application on a science platform (Firefly) using
a variety of potentially protected TAP services

2. (Interactive) container standardization across platforms

3. Interacting with other tools running on the platform and
other platforms

1. Authentication and Authorization

- Authentication and Authorization to run Firefly and use
compute resources handled upfront by CANFAR and group
membership checks (OIDC and GMS).

- But how to make authenticated queries from Firefly to
protected TAP services? (eg, CADC user-managed YouCat
tables "TAP-next").

- And is this same problem other tools (eg TOPCAT) face?

1. Authentication and Authorization (cont)

- Current Solution: Use Firefly Token Relay plugin support
- Decide which credentials to send to the chosen TAP server
- But opens up questions about token reuse:

- When should tokens be relayed? Same domain?
- Does the scope of the token need to be modified?
- Does the Token exchange protocol help?

- Limitation: Only CANFAR credentials available, so can only interact with
CANFAR services.

- TOPCAT: built-in (prototype) support for negotiating with services via HTTP
Challenges (401) to acquire credentials for services from associated organizations.

- Open question: how to support authentication to multiple organizations in tools like
Firefly that expect AAI to be handled at a higher layer?

2. Interactive Container Compatibility

● See previous talk in Malta for context:

○ https://wiki.ivoa.net/internal/IVOA/InterOpNov2024GWS/IVOA-Malta-ImageMetad
ata.pdf

● Compatible container execution across platforms

○ Batch Execution - easy: command and arguments built in, or provided. No
networking to deal with.

○ Interactive - more difficult…

● Core interactive "types": notebook desktop carta firefly contributed

○ contributed - an interface with an attempt of standard rules for
user-contributed interactive containers

○ batch/headless: no type required because no interactivity

https://wiki.ivoa.net/internal/IVOA/InterOpNov2024GWS/IVOA-Malta-ImageMetadata.pdf
https://wiki.ivoa.net/internal/IVOA/InterOpNov2024GWS/IVOA-Malta-ImageMetadata.pdf

2. Interactive Container Compatibility (cont)
 Firefly vs Contributed Interactive "Types"

Firefly "Contributed" Rule Summary

Ingress:
container
port

● default 8080 (can be
changed)

● listen at 5000 ● Apps not likely to agree on
universal port

● Deployments allow the
specification of port

Ingress: URL
base path

● always expects baseURL
+ /firefly

● need URL path
translation in ingress

● access path should be self
discovered

● Most apps require base path to
be configured

● Some don't: vscode, pluto
● Path a runtime consideration
● Apps should self discover

base path

Startup ● container entrypoint (or
custom startup)

● plugin jar files provided at
build time

● basic app customization
through runtime ENV

● entrypoint or /skaha/startup.sh ● Use container entrypoint
● ENV for runtime config

2. Interactive Container Compatibility (cont)
 Summary

"Contributed" definition should be modified to:

● Platforms should allow for the specification of port(s)
○ This aligns with metadata in execution broker

● Apps should self discover base path
○ Not be required to run at / or a specific subpath

● Use container entrypoint
○ But allow config overrides via ENV vars at runtime

3. Interacting with other tools running on the
platform or other platforms

● Firefly has an API – Jupyter Notebooks running in CANFAR can use
the API of their Firefly session.

● All containers mount user-storage – data visible to all via:
○ /cavern/home/…
○ /cavern/projects/…

● cavern is a POSIX based VOSpace - so that API is available too

● CANFAR API (and CLI) allows the discovery of sessions across
multiple deployments. Exposes URLs (thus their APIs) to all running
interactive sessions.

3. Interacting with other tools running on the
platform or other platforms (cont)

● CANFAR API (skaha), and CANFAR CLI, allow the discovery of
sessions across multiple deployments. Exposes URLs (thus their
APIs) to all running interactive sessions.

● With a session (and tool APIs) running at multiple platforms, users
can have "local" data access in multiple locations.

● Standardizing the session launch and discovery API would allow
distributed computation across platforms.

○ Should the DSP working group start this work?

Thank you
brian.major@nrc-cnrc.gc.ca

nrc.canada.ca • info@nrc-cnrc.gc.ca

https://nrc.canada.ca/en/
mailto:info@nrc-cnrc.gc.ca

