
OpenAPI & Code Generation

Joshua Fraustro
June - 2025

EXPANDING THE FRONTIERS OF SPACE
ASTRONOMY

1

What is OpenAPI?
 Standard for describing HTTP RESTful

API’s

 Machine and human-readable

 Described in JSON or YAML

 Defines paths, operations, parameters,
payloads and responses.

 Clear, concise, technical

 Large tooling ecosystem

2

Adoption in the IVOA
 Tested and pushed for by the recent

Protocol Transition Tiger Team (P3T)

 TAP-next, SCS, DALI are getting OpenAPI
descriptions

 Looking at how to include in the Registry

Code Generation & Tooling

Because OpenAPI specifications are machine-readable, it is possible to generate client
and server code from the specification itself.

• Usually done through a templating engine

• Available tooling varies by language

• Attempted in the past by P3T (to varying levels of success)
 Issues with polymorphism (oneOf, allOf, anyOf etc.)

Lots of open-source tools around this idea, with varying levels of support, completeness, as well as
commercial tools.

3

Code Generation

OpenAPI Specification

4

Jinja2 Template Python Code (FastAPI)

This Talk
 What does the current tooling

around Python server-generation
look like?

5

Why Python?
 Popularity.
 Difficulty in the past.
 I like it.

Why Servers? (and not clients?)
 Lots of excellent clients in IVOA
 Largest burden for new implementors:

 Compliant, easy-to-use servers
 In their framework/language of choice

Why not use my XYZ server?
 Institutional policies around software /

security
 It doesn’t use our language / framework.
 Reliance on outside support / developers.

Criteria for Success
CRITERIA NOTES

Running the Tool How easy is it to run the tool itself?
Can I use docker? Does it require Java? NodeJs? Python

package?
Valid Python Are there syntax errors? Obviously broken code?

Why is my IDE immediately complaining?

Packaging Best Practices Does it create a README, requirements.txt, setup.py, a
Dockerfile, unit tests?

Python Best Practices Type annotations, linting, formatting, separation of concerns.

Does it Run? It’s a low bar, I know.

Schema Coverage Does it cover the relevant endpoints, parameters, requests and
responses?

Does it pass the vibe check? How recently was it updated? Are there 80+ issues open?
Does it have passable documentation?

6

Tools Evaluated

TOOL LINK

openapi-generators/python-aiohttp https://openapi-generator.tech/docs/generators/python-aiohttp/

openapi-generators/python-blueplanet https://openapi-generator.tech/docs/generators/python-blueplanet/

openapi-generators/python-fastapi https://openapi-generator.tech/docs/generators/python-fastapi/

openapi-generators/python-flask https://openapi-generator.tech/docs/generators/python-flask/

fastapi-code-generator https://github.com/koxudaxi/fastapi-code-generator

swagger-codegen/python-flask https://github.com/swagger-api/swagger-codegen/

oasdiff
(not a server generator)

https://github.com/oasdiff/oasdiff

7
Bonus!

openapi-generators/python-aiohttp

 ✔ ️Easy to use the generator tool
 ✔ ️Generated requirements.txt, setup.py, README, tests

 ✔ ️Logic functions separate from routing

❌Immediately broken.
 ✔ Custom base model for schemas / parameters.

❌Used that model for enums?? Instead of, you know:

❌Inconsistent type-hinting, no enforcement based off OpenAPI doc. (0.0 < ra < 360.0)

❌Failed immediately on launch. No OpenAPI 3.1 support (undocumented)

 ❌You can just change the version number to “3.0”, it’s just regex.

 ✔ Swagger docs!

❌Broken imports in test file + relative imports.

 ✔ Did run, eventually. ❌Wouldn’t use it personally.

8

openapi-generators/python-blueplanet

 ✔ ️Nice verbose terminal output, optional file post-processing.

 ✔ ️OpenAPI 3.1.0 beta support. (It warned me!)
 ✔ ️Generated requirements.txt, setup.py, README, tests + Makefile & Dockerfile!

 ✔ ️Nothing immediately broken, no syntax errors.

 ✔ Swagger docs!
 ✔ Custom base model for schemas / parameters.

❌Used that model for enums….

 … wait a second …

❌Same broken imports in test file + relative imports.

Both packages appear to use Connexion package under-the-hood.

9

 For Ciena’s BluePlanet platform, but can be run as a microservice.

https://connexion.readthedocs.io/en/stable/

openapi-generators/python-flask

10

 Can you guess what’s about to happen...?

 All use the same underlying
generator engine.

 All have the same fundamental
limitations.

 The only real changes are the
framework they use.

openapi-generators/python-fastapi

 ✔ ️Does not use the Connexion engine!

 ✔ Uses Pydantic for typehinting, validation and
enforcement!

 ✔ ️Model / routes / implementation separation.
 ✔ ️All the package files + goodies + docker-compose
file!

 ✔ ️No errors, ran out of the box.

❌Documentation is lacking to say the least.

 ❌ True of all of the tools under the openapi-
generators toolset.

Given how well-documented FastAPI + Pydantic
are, it’s not a huge impediment to using the
package.

fastapi-code-generator

 Describes itself as experimental, solo developer.

❌Lots of open Github issues.
 Seems like the developer doesn’t close issues, even if ❔
they’re finished?

 ✔ Pydantic data-models from OpenAPI (and GraphQL)

 ✔ Ability to create custom code templates.

❌Doesn’t use typical FastAPI patterns for annotations.

 ✔ ️Properly constrains parameters.

❌ No packaging, produces very minimalistic code.

✔ Ran perfectly when dropped into a barebones package.

❌ But...
An actual snippet from my
presentation notes ->

swagger-codegen/python-flask

By Swagger – Smartbear

 ✔ Java-based CLI, with Docker option.

 ✔ ️Large organization, lots of support.

 ❌ It’s just Connexion again.

Swagger has their online SwaggerEditor tool that
allowed real-time visualization of the OpenAPI doc and
endpoints.

The online tool had options to generate a variety of
hosts and clients straight from your browser but...

They put it behind a paywall. Boo.

Takeaways
 Unfortunately, not exceptional news.

 Somewhat disappointed there aren’t
more options.

 Old issues persist with polymorphism,
discriminated models, etc.

 Better options for other languages.

14

Best Option?
 Currently, probably

openapi-generators/python-fastapi

 Developers experienced with FastAPI +
Pydantic will be fine with it.

Something to remember:

 Code generation isn’t the goal of using
OpenAPI

 Just a cherry on top.

TOOL VERDICT

openapi-generators/python-aiohttp ❌

openapi-generators/python-
blueplanet

❌

openapi-generators/python-fastapi Okay...

openapi-generators/python-flask ❌

fastapi-code-generator Only very simple APIs

swagger-codegen/python-flask ❌

BONUS – OASDIFF

https://github.com/oasdiff/oasdiff

A diff generator for OpenAPI that detects breaking
changes!

 Human readable reports!

 Github actions!

Issues with identifying breaking changes in standards
would happen automatically!

https://github.com/oasdiff/oasdiff

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

