
OpenAPI & Code Generation

Joshua Fraustro
June - 2025

EXPANDING THE FRONTIERS OF SPACE
ASTRONOMY

1

What is OpenAPI?
 Standard for describing HTTP RESTful

API’s

 Machine and human-readable

 Described in JSON or YAML

 Defines paths, operations, parameters,
payloads and responses.

 Clear, concise, technical

 Large tooling ecosystem

2

Adoption in the IVOA
 Tested and pushed for by the recent

Protocol Transition Tiger Team (P3T)

 TAP-next, SCS, DALI are getting OpenAPI
descriptions

 Looking at how to include in the Registry

Code Generation & Tooling

Because OpenAPI specifications are machine-readable, it is possible to generate client
and server code from the specification itself.

• Usually done through a templating engine

• Available tooling varies by language

• Attempted in the past by P3T (to varying levels of success)
 Issues with polymorphism (oneOf, allOf, anyOf etc.)

Lots of open-source tools around this idea, with varying levels of support, completeness, as well as
commercial tools.

3

Code Generation

OpenAPI Specification

4

Jinja2 Template Python Code (FastAPI)

This Talk
 What does the current tooling

around Python server-generation
look like?

5

Why Python?
 Popularity.
 Difficulty in the past.
 I like it.

Why Servers? (and not clients?)
 Lots of excellent clients in IVOA
 Largest burden for new implementors:

 Compliant, easy-to-use servers
 In their framework/language of choice

Why not use my XYZ server?
 Institutional policies around software /

security
 It doesn’t use our language / framework.
 Reliance on outside support / developers.

Criteria for Success
CRITERIA NOTES

Running the Tool How easy is it to run the tool itself?
Can I use docker? Does it require Java? NodeJs? Python

package?
Valid Python Are there syntax errors? Obviously broken code?

Why is my IDE immediately complaining?

Packaging Best Practices Does it create a README, requirements.txt, setup.py, a
Dockerfile, unit tests?

Python Best Practices Type annotations, linting, formatting, separation of concerns.

Does it Run? It’s a low bar, I know.

Schema Coverage Does it cover the relevant endpoints, parameters, requests and
responses?

Does it pass the vibe check? How recently was it updated? Are there 80+ issues open?
Does it have passable documentation?

6

Tools Evaluated

TOOL LINK

openapi-generators/python-aiohttp https://openapi-generator.tech/docs/generators/python-aiohttp/

openapi-generators/python-blueplanet https://openapi-generator.tech/docs/generators/python-blueplanet/

openapi-generators/python-fastapi https://openapi-generator.tech/docs/generators/python-fastapi/

openapi-generators/python-flask https://openapi-generator.tech/docs/generators/python-flask/

fastapi-code-generator https://github.com/koxudaxi/fastapi-code-generator

swagger-codegen/python-flask https://github.com/swagger-api/swagger-codegen/

oasdiff
(not a server generator)

https://github.com/oasdiff/oasdiff

7
Bonus!

openapi-generators/python-aiohttp

 ✔ Easy to use the generator tool
 ✔ Generated requirements.txt, setup.py, README, tests

 ✔ Logic functions separate from routing

❌Immediately broken.
 ✔ Custom base model for schemas / parameters.

❌Used that model for enums?? Instead of, you know:

❌Inconsistent type-hinting, no enforcement based off OpenAPI doc. (0.0 < ra < 360.0)

❌Failed immediately on launch. No OpenAPI 3.1 support (undocumented)

 ❌You can just change the version number to “3.0”, it’s just regex.

 ✔ Swagger docs!

❌Broken imports in test file + relative imports.

 ✔ Did run, eventually. ❌Wouldn’t use it personally.

8

openapi-generators/python-blueplanet

 ✔ Nice verbose terminal output, optional file post-processing.

 ✔ OpenAPI 3.1.0 beta support. (It warned me!)
 ✔ Generated requirements.txt, setup.py, README, tests + Makefile & Dockerfile!

 ✔ Nothing immediately broken, no syntax errors.

 ✔ Swagger docs!
 ✔ Custom base model for schemas / parameters.

❌Used that model for enums….

 … wait a second …

❌Same broken imports in test file + relative imports.

Both packages appear to use Connexion package under-the-hood.

9

 For Ciena’s BluePlanet platform, but can be run as a microservice.

https://connexion.readthedocs.io/en/stable/

openapi-generators/python-flask

10

 Can you guess what’s about to happen...?

 All use the same underlying
generator engine.

 All have the same fundamental
limitations.

 The only real changes are the
framework they use.

openapi-generators/python-fastapi

 ✔ Does not use the Connexion engine!

 ✔ Uses Pydantic for typehinting, validation and
enforcement!

 ✔ Model / routes / implementation separation.
 ✔ All the package files + goodies + docker-compose
file!

 ✔ No errors, ran out of the box.

❌Documentation is lacking to say the least.

 ❌ True of all of the tools under the openapi-
generators toolset.

Given how well-documented FastAPI + Pydantic
are, it’s not a huge impediment to using the
package.

fastapi-code-generator

 Describes itself as experimental, solo developer.

❌Lots of open Github issues.
 Seems like the developer doesn’t close issues, even if ❔
they’re finished?

 ✔ Pydantic data-models from OpenAPI (and GraphQL)

 ✔ Ability to create custom code templates.

❌Doesn’t use typical FastAPI patterns for annotations.

 ✔ Properly constrains parameters.

❌ No packaging, produces very minimalistic code.

✔ Ran perfectly when dropped into a barebones package.

❌ But...
An actual snippet from my
presentation notes ->

swagger-codegen/python-flask

By Swagger – Smartbear

 ✔ Java-based CLI, with Docker option.

 ✔ Large organization, lots of support.

 ❌ It’s just Connexion again.

Swagger has their online SwaggerEditor tool that
allowed real-time visualization of the OpenAPI doc and
endpoints.

The online tool had options to generate a variety of
hosts and clients straight from your browser but...

They put it behind a paywall. Boo.

Takeaways
 Unfortunately, not exceptional news.

 Somewhat disappointed there aren’t
more options.

 Old issues persist with polymorphism,
discriminated models, etc.

 Better options for other languages.

14

Best Option?
 Currently, probably

openapi-generators/python-fastapi

 Developers experienced with FastAPI +
Pydantic will be fine with it.

Something to remember:

 Code generation isn’t the goal of using
OpenAPI

 Just a cherry on top.

TOOL VERDICT

openapi-generators/python-aiohttp ❌

openapi-generators/python-
blueplanet

❌

openapi-generators/python-fastapi Okay...

openapi-generators/python-flask ❌

fastapi-code-generator Only very simple APIs

swagger-codegen/python-flask ❌

BONUS – OASDIFF

https://github.com/oasdiff/oasdiff

A diff generator for OpenAPI that detects breaking
changes!

 Human readable reports!

 Github actions!

Issues with identifying breaking changes in standards
would happen automatically!

https://github.com/oasdiff/oasdiff

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

