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What is OpenAPI?
 Standard for describing HTTP RESTful 

API’s

 Machine and human-readable

 Described in JSON or YAML

 Defines paths, operations, parameters, 
payloads and responses.

 Clear, concise, technical

 Large tooling ecosystem
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Adoption in the IVOA
 Tested and pushed for by the recent 

Protocol Transition Tiger Team (P3T)

 TAP-next, SCS, DALI are getting OpenAPI 
descriptions

 Looking at how to include in the Registry



Code Generation & Tooling

Because OpenAPI specifications are machine-readable, it is possible to generate client 
and server code from the specification itself.

• Usually done through a templating engine

• Available tooling varies by language

• Attempted in the past by P3T (to varying levels of success)
 Issues with polymorphism (oneOf, allOf, anyOf etc.)

 

Lots of open-source tools around this idea, with varying levels of support, completeness, as well as 
commercial tools.
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Code Generation

OpenAPI Specification

4

Jinja2 Template Python Code (FastAPI)



This Talk
 What does the current tooling 

around Python server-generation 
look like?
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Why Python?
 Popularity.
 Difficulty in the past.
 I like it. 

Why Servers? (and not clients?)
 Lots of excellent clients in IVOA
 Largest burden for new implementors:

 Compliant, easy-to-use servers
 In their framework/language of choice

Why not use my XYZ server?
 Institutional policies around software / 

security
 It doesn’t use our language / framework.
 Reliance on outside support / developers.



Criteria for Success
CRITERIA NOTES

Running the Tool How easy is it to run the tool itself? 
Can I use docker? Does it require Java? NodeJs? Python 

package?
Valid Python Are there syntax errors? Obviously broken code? 

Why is my IDE immediately complaining?

Packaging Best Practices Does it create a README, requirements.txt, setup.py, a 
Dockerfile, unit tests?

Python Best Practices Type annotations, linting, formatting, separation of concerns.

Does it Run? It’s a low bar, I know.

Schema Coverage Does it cover the relevant endpoints, parameters, requests and 
responses?

Does it pass the vibe check? How recently was it updated? Are there 80+ issues open?
Does it have passable documentation?
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Tools Evaluated

TOOL LINK

openapi-generators/python-aiohttp https://openapi-generator.tech/docs/generators/python-aiohttp/

openapi-generators/python-blueplanet https://openapi-generator.tech/docs/generators/python-blueplanet/

openapi-generators/python-fastapi https://openapi-generator.tech/docs/generators/python-fastapi/

openapi-generators/python-flask https://openapi-generator.tech/docs/generators/python-flask/

fastapi-code-generator https://github.com/koxudaxi/fastapi-code-generator

swagger-codegen/python-flask https://github.com/swagger-api/swagger-codegen/

oasdiff 
(not a server generator)

https://github.com/oasdiff/oasdiff

7
Bonus!



openapi-generators/python-aiohttp

 ✔  Easy to use the generator tool
 ✔  Generated requirements.txt, setup.py, README, tests

 ✔  Logic functions separate from routing

❌Immediately broken. 
 ✔ Custom base model for schemas / parameters.

❌Used that model for enums?? Instead of, you know:

❌Inconsistent type-hinting, no enforcement based off OpenAPI doc.   (0.0 < ra < 360.0)

❌Failed immediately on launch. No OpenAPI 3.1 support (undocumented)

      ❌You can just change the version number to “3.0”, it’s just regex.

 ✔ Swagger docs!

❌Broken imports in test file + relative imports.

 ✔ Did run, eventually. ❌Wouldn’t use it personally.
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openapi-generators/python-blueplanet

 ✔  Nice verbose terminal output, optional file post-processing.

 ✔  OpenAPI 3.1.0 beta support. (It warned me!)
 ✔  Generated requirements.txt, setup.py, README, tests + Makefile & Dockerfile!

 ✔  Nothing immediately broken, no syntax errors.

 ✔ Swagger docs!
 ✔ Custom base model for schemas / parameters.

❌Used that model for enums….

  … wait a second …

❌Same broken imports in test file + relative imports.

Both packages appear to use Connexion package under-the-hood.
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 For Ciena’s BluePlanet platform, but can be run as a microservice.

https://connexion.readthedocs.io/en/stable/


openapi-generators/python-flask
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 Can you guess what’s about to happen...?

 All use the same underlying 
generator engine.

 All have the same fundamental 
limitations.

 The only real changes are the 
framework they use.



openapi-generators/python-fastapi

 ✔  Does not use the Connexion engine!

 ✔ Uses Pydantic for typehinting, validation and 
enforcement!

 ✔  Model / routes / implementation separation.
 ✔  All the package files + goodies + docker-compose 
file!

 ✔  No errors, ran out of the box.

❌Documentation is lacking to say the least.

 ❌ True of all of the tools under the openapi-
generators toolset.

Given how well-documented FastAPI + Pydantic 
are, it’s not a huge impediment to using the 
package.



fastapi-code-generator

 Describes itself as experimental, solo developer.

❌Lots of open Github issues.
      Seems like the developer doesn’t close issues, even if ❔
they’re finished?

 ✔ Pydantic data-models from OpenAPI (and GraphQL)

 ✔ Ability to create custom code templates.

❌Doesn’t use typical FastAPI patterns for annotations.

 ✔  Properly constrains parameters.

❌ No packaging, produces very minimalistic code.

✔ Ran perfectly when dropped into a barebones package.

❌ But...
An actual snippet from my 
presentation notes ->



swagger-codegen/python-flask

By Swagger – Smartbear

 ✔ Java-based CLI, with Docker option.

 ✔  Large organization, lots of support.

 ❌ It’s just Connexion again. 

Swagger has their online SwaggerEditor tool that 
allowed real-time visualization of the OpenAPI doc and 
endpoints.

The online tool had options to generate a variety of 
hosts and clients straight from your browser but...

They put it behind a paywall. Boo.



Takeaways
 Unfortunately, not exceptional news.

 Somewhat disappointed there aren’t 
more options.

 Old issues persist with polymorphism, 
discriminated models, etc.

 Better options for other languages.
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Best Option?
 Currently, probably 

openapi-generators/python-fastapi

 Developers experienced with FastAPI + 
Pydantic will be fine with it.

Something to remember:

 Code generation isn’t the goal of using 
OpenAPI

 Just a cherry on top.

TOOL VERDICT

openapi-generators/python-aiohttp ❌

openapi-generators/python-
blueplanet

❌

openapi-generators/python-fastapi Okay...

openapi-generators/python-flask ❌

fastapi-code-generator Only very simple APIs

swagger-codegen/python-flask ❌



BONUS – OASDIFF 

https://github.com/oasdiff/oasdiff

A diff generator for OpenAPI that detects breaking 
changes!

 Human readable reports!

 Github actions!

Issues with identifying breaking changes in standards 
would happen automatically!

https://github.com/oasdiff/oasdiff
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