

Experiences and **Lessons** learned from EP scientific workflow

Zhen Zhang on behalf of the China-VO team

Einstein Probe 🛞 🕬

FXT FoV

~1 sq.deg

China A DC National Astronomical Data Center 国家天文科学数据中心

Circular Orbit(eccentricity~0) Altitude:600km Inclination: 29 degree

> WXT FoV ~3600 sq.deg

WXT (12 modules) FOV≥3600 sq deg (1.1 sr) Band 0.5~4keV

> FXT (2 units) FOV~1 deg Band 0.3~10keV

Φ2992mm×3418mm ~1450kg

Maneuverability: 60°/4min **APE:** ≤3' AKE for FXT: ≤10" @1σ Attitude Stability: 1.8"/s

X band: 240Mbps VHF: 600bps Beidou: ~560bits/message/10S

Multi-Organizations

The insitute of high energy physics (IHEP) provides FXT data analysis softwares.

Data Level

Real procedure for highenergy astrophysical data

Four challenges we faced

Ching-VVN N DC National Astronomical Data Center 国家天文科学数据中心

Integratibility

Dependency bugs caused by integration of programs from multi-organizations.

Traceability

Fault tracing when data products are not expected.

Schedulability

Directed acyclic graph(DAG)is difficult to describe some control cases.

Extendibility

Frequent updates of algorithms and customized software require agile deployment.

The classification of dependency bug (DB)

Solutions for DB

The Execution Module

• Solution:

- Containerization as Primary
- Virtualization as Supplement
- Allocate containers to appropriate nodes by K8S+Argo
- Advantages:
 - Autonomous
 Development Team
 - Avoid dependency bugs
 - Improve integration efficiency

DAG is difficult to describe some control cases:

- 1. BackTrace: Auxiliary data are insufficient or data need to be merged, back to data receiving software.
- 2. Parallel successors with indefinite : Indefinite number of observations need to be executed in parallel.
- **3. Priority**: Allocating resources to timeliness software from resource-intensive but low-timeliness applications.

The Control Module

A control/execution separation architecture (Yared, 2020)

- Execution module sends messages to the message bus.
- Control module listens messages and dynamically update workflow topology.

Problem: Invasive to algorithms.

The Control Module

- Pre-processing Aspect: Expected resource occupancy, input parameters, etc.
- Post-processing Aspect:

Execution status, output products,

etc.

Controller

- *Message parser*: Parses messages from the communication aspect.
- Topology Updater: Dynamically update workflow topology (circular execution, indefinite parallel, etc).
- **Scheduler**: Select tasks from the queue based on priority, resources.

Two Methods to extend

 Deploy as a step:Package the new algorithm as an image and schedule it through the pipeline.

```
Listen on private environment:
Autonomously listen to the
messages of the
communication aspect and
process them, making it more
flexible.
```

The Traceability

Data and workflow activities are linked by metadata.

Data

Data can be addressed using data type and meta data.

- **Data Type**: such as light curve, image, catalogue.
- **Metadata**: locate specific data within a data type, such as observation id, CMOS id, version.

Activities

Workflow activities are also rich in metadata.

- **parent activity**: The activity that triggered this activity.
- Input parameters: Such as observation id, CMOS id, etc.
- Runtime information: Logs, startup time, etc.

Advantages

	Development	Deployment	Efficiency	Fault Tolerancy	Reproducibility
Traditional Methods	Each module is written into a package, forcing a unified environment	Global recompilation is time-consuming and prone to dependency conflict issues.	Difficult to achieve elastic expansion of resources and dynamic scheduling of tasks.	A single module failure may cause the entire system to crash.	Recordation are incomplete and invasiveness.
New Framework	Modules adopts different technology stacks and environments. Team autonomy and decoupling.	Modules are packaged into images, achieving agile deployment.	Intelligent scheduling based on resources and priorities, playing a "peak cutting" role.	Containerization ensures that the failure of a single activity does not affect the non- successor activities.	Metadata are structured, making it easy to trace back.

Containerization of algorithms

Message queue to support extension

Structured metadata to find provenance

Achievements

01

For pipeline itself

- Updated 300+ times
- Integration time shortened from hours to minutes.
- Triggered 60000+ times

02

For scientific outputs

- Produced 100+ TB products
- 12 scientific papers

Discovering Sky at the Longest wavelength (DSL) A distributed interferometric array composed by 10 satellites.

Solar Polar-orbit Observatory (SPO) A satellite with large orbital inclination that images the solar polar region.

Thank You!

Zhen Zhang zhangzhen@nao.cas.cn

