Current status of the Characterisation data model

Characterisation metadata

• Should answer the question:

Where, when, what, how precise and reliable are the data according to the usage I will make of them?

- FoV, Bandpass, Resolution, Quantum Efficiency, etc...
- It is a summary of metadata to be used for data retrieval as in DAL but also for data analysis: resampling, source detections, multi-wavelength analysis, etc...

Organising metadata

- Lists the properties of an observation : coverage, resolution , sampling precision, sensitivity, psf, transmission curve, etc...
- Defines characterisation axes as *space, time, wavelength*, 'observable' which is the measured quantity like flux, photons, counts
- Organise them according to increasing level of details

Table representation

- All properties are described on each axis
- The deepest layers are not necessarily provided by data producers
- The first two levels are mandatory

Characterisation table for a 2D image Axes \rightarrow

Properties ↓

General	Spatia.	Temperal	Spectral	Flux/Observable
Location	Central position	Mid- Time	Central wavelength	Average flux
Bounds	Min RA,DEC, Max RA,DEC	Start/stop ume	Min Max Wavelength	Saturation, Limiting flux
Support	FOV as accurate array of poly	Array of time intervals	Array of WI intervals	1
Sensitivity	Quartum efficiency (x.y)		Transmission $CHVE(\lambda)$	Function property e.g. Linearity
Filling factor	Effective/ Total area	Dead time		
Resolution	PSF (v.y.) or its FWHM	Ý	FWHM of the band	Statistical error
Sampling	Pixel scale (x,y)	?	FWHM of the band	Quantisation

Table I: 2D-Image Characterization

Characterisation table for a 1D spectrum

Ceneral	Spatial	Temporal	Spectral	Flux/Observable
Location	Central position	Mid Time	Central wavelength	Average flux
Bounds	Slit Min Max RA,DEC	Start/stop time	Min Max Wavelength	Saturation, Limiting flux
Support	Slit as accurate array of poly	Array of time intervals	Array of WI intervals	Lowest and highest value
Sensitivity	$\operatorname{Response}(x,y)$ n the slit		Quentum eff (lambda)	Function property e.g. Linearity
Filling factor	Effective/ Total area	Dead time		
Resolution	Bound "Size"		LSF or its FWHM	Statistical error
Sampling	Bound "size"		Pixel scale in lambda	Quantization

Table 2: 1D-Spectrum Characterization

Multiple levels needed

- Under **Resolution** concept for spatial axis, we can hook the PSF information
- Using a fine to coarse approach:
 - Lev 4: Variability variation of resolution with x,y, λ ,T,...
 - e.g. a profile for any position on the characterisation axes, that is one curve for each position, -> Complex maps for diff λ, T etc...
 - A value (FWHM) for each position -> simple map
 - An averaged profile for all positions
 - Lev 3: **Support** intervals of possible values for resolution/ PSF estimation

Could be a list

- Lev 2: **Bounds** min max possible values within the sampled area
- Lev 1: **Reference Value** a reference value for the whole field of view (FWHM)
- Similar approach for Line Spread Function
- Use a Map object
- A general concept that is useful for many instrumental / ancillary metadata Mireille Louys, Interop Kyoto, May 2005

UML encoding

- The model is a framework to define the various facets of the characterisation
- It suggests a structure for place holders
- On line at

http://alinda.u-strasbg.fr/Model/Characterisation/DM

Scope of Characterisation (1)

- Accuracy is a concept close to Coverage
- Quality may be expressed as a set of flags defined from Characterisation elements, the instrumental chain and calibration pipeline → It does not depend only on characterisation Mireille Louys, Interop Kyoto, May 2005

Scope of Characterisation (2)

- The **Coverage**, **Sampling**, and **Resolution** concepts apply to different types of observations
 - Images, 1D-spectrum, etc...
 - On-going exercise on IFU, datacubes, etc...
- Characterisation also allows for characterising a data collection using the first 2 levels + Coverage support
- Reuse the model concepts when modelling the different data types for a more homogeneous framework and easier navigation between the different data

Still to be done

- Characterisation does not fully handle complex dependencies of one concept upon several axes (Maps, not multi-variable functions)
- Ex: Sensitivity
 - One sensitivity variation along each axis assumes implicitely that these are independent which is not always the case
 - It is a multidimensional function of all the characterisation axes.
- Investigate how to describe functions in XML
 - MathML, etc...

Data model and Utypes

- The Utypes correspond to roles in the metadata structure
- They are identified by a path in the DM like:
 - Coverage/spatial/support
 - Or SPATIAL/RESOLUTION/VARIABILITY
- Homogenize with Utype list definition (Alberto Micol)

Links between Characterisation and other parts of DM

- The Characterisation DM relies on the coordinates and region description of *STC*
- Reuses *Quantity* objects for scalar values, maps,....
- Many possibilities currently investigated for XML serialisation (coll. Brian Thomas)
 - Needs some more iterations but in progress

Next steps

- Characterisation Draft document to be reviewed mid-July 05
- Finalize convergence of the U-type list and the DM classes and stabilize them
- Finalize XML serialisation (cf F. Bonnarel's talk)
- Provide reference implementation :
 - VOTable, lib of Java classes ??

Conclusion

- Collaborative effort within the subgroup
- Integration of previous modelling attempts and current discussions ideas
- Many inputs, discussions and feedback between the subgroup participants during the iterations

