Interactive Visualizations of the Sky

Ryan Scranton

16 May 2006

Andrew Connolly & Simon Krughoff (U. Pitt.), Roy Williams (Caltech), Carol Christian & Alberto Conti (STSCI)

Visualizing the Sky

The Problem

- ★ How do we visualize 40GB of imaging, maps and and meta-data on the sky?
- * Need large dynamic range to handle survey data and pointed observations, from 4π steradians to arcsecond scales.
- ★ Need to display multiple observations simultaneously data discovery and time domain
- ★ The interface must be interactive, flexible and expandable from the client and server sides.
- ★ In the end, it should be tied to data sources so that data retrieval and viewing is seamless.

Our Solution

 Imaging data ingested (reprojected & tiled) into World Map Server (WMS) from FITS images & WCS

Our Solution

• Survey meta-data and maps generated by **STOMP** footprint server

• World Wind connects to our WMS to dynamically retrieve and reproject imaging data based on user's vantage point (image pyramids)

STOMP: Space and Time Ordered Mapping Package http://nvogre.phyast.pitt.edu/gestalt/

- All astronomical statistics are measurements of spatial properties (area, angular distance, density, etc.).
- Describe complex geometries on the sphere and possibly spatial variations
- Find unions, intersections, and overlaps between multiple observations
- Wrap database interactions and map making software in simple Java interface

STOMP: Space and Time Ordered Mapping Package

- Pixelized survey footprints with 1" resolution
- Hierarchical scheme: extremely rapid localization & efficient angular statistics.

STOMP: Space and Time Ordered Mapping Package

Map unions, intersections and overlaps are simple and fast

STOMP: Space and Time Ordered Mapping Package

Spatial variations are easily encoded