Towards a Simple Numerical Access Protocol (SNAP)
1. Overview

This specification defines a prototype standard for retrieving raw simulation data from a variety of astronomical simulation repositories. SNAP is designed primarily to allow straightforward access to ‘raw’ simulation data. This includes both the retrieval of the entire simulation state (the particle positions and velocities within the simulation box, or the physical quantaties at each grid point) – known as a snapshot – at a particular instance (or timestep), a specified sub-volume of a simulation (all the particles/grid-points within a certain region), or raw data from a post-processed simulation. The latter mostly takes the form of catalogues of objects that have been identified within a larger simulation, or suite of simulations. Examples include catalogues of dark matter halos extracted using a Friends-of-Friends algorithm from a single cosmological simulations, or a catalogue of simulated globular clusters, each the result of the same simulation code, but run with slightly different parameters or starting conditions for each. Individial catalogues can themselves be queried to obtain simulated objects within certain user-defined parameter ranges. For all SNAP services, this includes the option of retrieving the raw simulation data for each object.
Astrophysical and cosmological simulations clearly cover an enormous range of scales and processes. As there is no uniform reference scale for simulation, in the way that there is for astronomical image data (ra, dec), it is difficult to place tight contraints on the type of Simulation/Theory service queries that are to be allowed. In this draft of a Simple Numerical Access Protocol, we assume that the state of the entire simulation, i.e. all the grid points or particles, is well defined in each output or snapshot. Therefore, the future evolution of the simulation can be fully determined from the information contained within a snapshot at a particular timestep, and is not also influenced on the state of the simulation and previous timesteps. Hence, at the bare minimum, a raw simulation output here consists of a set of particles or grid points in a well defined volume, each with a 2 or 3d position vector. In practice, particles may each also have assigned a velocity, density and “matter type” (dark matter, baryonic, etc). Grid based simulations would have a variety of physical properties associated with each grid point, depending on the simulation.
In this version of SNAP, we describe the first realisation of this service, in which a user is able to retrieve the raw data from an entire simulation box, or a spatially defined rectangular (and possibly spherical) subsample. The bulk of this document represents a technical specification for the simple numerical access interface. For examples of how the interface is intended to be used, please refer to the Usage Examples section below.
2. Requirements for Compliance

Compliance with this specification requires that a simple numerical access web service be maintained with the following characteristics:

1. The Snapshot Retrieval (getSnap) web method MUST be supported as defined in section 7 below.

This method allows clients to retrieve single simulation snapshots through a simple synchronous HTTP GET request using the access reference (URL) returned earlier by the simulation query. The response to the GET request is the requested image, returned with a MIME type such as "image/fits", "image/jpeg", and so forth. Both FITS and graphics images (JPEG, PNG, etc.) can be retrieved. Any FITS images returned by the service should contain a valid FITS world coordinate system (WCS). (what is the analogue to this for SNAP?) It is unclear also to me… I would say data files in some kind of standard format, to be specified later. In my experience, HDF5 is the best… But some people may not agree. Therefore it is better to think to different possibilities, like FITS, Raw, or even ASCII (if the data file is not too large)…
2. The Sub-Volume Extraction method MAY be supported as defined in section 5 below

This method allows clients to extract the particles in a spatially defined sub-volume of the simulation box. The client determines the hexahedric (and eventually spherical) region within the simulation, the bounds and scale (i.e. units) of which are specified in the simulation metadata, and the service returns the simulation particles contained within this region. The service MUST use a staging method (section 6) to return the particle file, as extracting a sub-sample of particles or grid points from a larger simulation box is likely to be a time-consuming process and would thus require some kind of caching. [have I got this right?]
3. Finally the SNAP service MUST be registered by providing the information defined in section 7 below.

Registration allows clients to use a central registry service to locate compliant simulation access services and select an optimal subset of services to query, based on the characteristics of each service and the simulation data collections it serves.

Here, SNAP service refers to a web service which returns the raw data contained within a snapshot of an astrophysical simulation. The Simple Numerical Access specification defines a number of web methods which services must provide to implement a compliant service. A web method is a function defined by a web service and called via the web. Since the SNA service described here is URL-based (e.g., as opposed to using SOAP/WSDL), the web methods described here are implemented as URLs using HTTP GET or POST.

2.1 Compliance

The keywords "MUST", "REQUIRED", "SHOULD", and "MAY" as used in this document are to be interpreted as described in RFC 2119 [34].

An implementation is compliant if it satisfies all the MUST or REQUIRED level requirements for the protocols it implements. An implementation that satisfies all the MUST or REQUIRED level and all the SHOULD level requirements for its protocols is said to be "unconditionally compliant"; one that satisfies all the MUST level requirements but not all the SHOULD level requirements for its protocols is said to be "conditionally compliant".

4. Simulation Query

As with data from surveys and observations, users will search for available simulation archives using a VO registry query form. Work is underway to determine how the Universal Content Descriptor (UCD) language can be extended to encompass the description of simulated data (simulations, and catalogues of simulated objects extracted from simulations, or post-processed simulations). It is envisaged that users will typically search for simulations of a particular type, object, and scope. Type refers to the approach used simulate the system (hydro, SPH, N-body), object refers to type of objects that the simulation is being performed to analyse (galaxies, halos, stellar clusters, stars, etc). Scope is a description of the scale of the simulation (cosmological, cluster, galaxy, etc).
Following such a query, a VOtable listing all available simulation data-sets that satisfy the registry query is returned, flagging them as a Simulation (or Theory) service. Metadata describing the main technical and physical details of the simulation (resolution, box-size, cosmological/astrophysical parameters) is returned for each simulation. For an archive containing a catalogue of simulated objects, or post-processed simulation products, a link to an advanced query service is provided in which the user can refine the search over a number of catalogues (as long are they are supported by the same Simulation query service). For example, one result from a query for “Dark Matter” + “N-body” simulations might be a searchable catalogue of dark matter halos extracted from a cosmological N-body simulation. The User can then select an advanced query service link to search within this catalogue for halos within a certain mass or redshift range, for example, in the same way one might search an SDSS archive for particular galaxy types. [I would not expect the archive service to provide also catalogues or, generally speaking, post-processed data support. One may focus, for example, on providing tools for advanced data selection and so on… I have to think about this a bit.
For SNAP services (for which the raw particle data is available) an access reference, impemented as a URL, to the data is returned for each individual simulation. For archives that provide access to simulation snapshots at several timesteps, an access reference will be listed for each timestep. Following a specific query to a catalogue of simulated objects (e.g. the halo catalogue), a URL reference to the raw data is provided for each object listed. For each simuation for which there is a Subvolume Extraction Service a link to the service is provided. Following this link transfers metadata information regarding the scale and bounds of the simulation box to the query form so that the physical size and volume of the region to be extracted can be well-defined.
[So results that correspond to Simulation (or Theory) services will have a more advance query form – like the GAVO one -- that allow you to search within simulated catalogues. Other Simulation archives might provide a particle extraction service. I can’t think of a SIAP like query equivalent (i.e. ra, dec, radius) that could be accepted by any Simulation service.] I agree
4.1 Input

4.2 Successful Output

4.3 Error Responses and Other Unsuccessful Results
5. Sub-Volume Extraction Service

The most basic function that a SNAP service must provide is direct access to the raw particle data from a simulation output, via an access URL following a general Simulation Query (see 4. Simulation Query). However, a SNAP service may also operate a Sub-volume extraction service for each simulation that it supports. This is a service which extracts portions of a simulation output or snapshot corresponding to a defined hexahedric or spherical sub-volume of the simulation box. This service can be selected for one simulation snapshot at a time. A metadata table containing the snapshot box-size, scale and units is transferred to the service on selection. This ensures that the service itself is aware of the spatial scale and units of the simulation box, hence determing the co-ordinates within which a volume can be extracted.
The input query must consist of a position in the simulation box denoting the centre of the cubic (or spherical) sub-volume, and the side-length (or radius) of the cube (sphere). For regions that intersect the boundary of the simulation box, the service has the option of applying periodic boundary conditions (if applicable). The resulting particle file will be made available through an access URL, possibly using the Snapshot staging method, notifying the client when the sub-volume extraction has been completed and the resulting particle file is available for retrieval. Raw simulation data will be returned as a binary file, allowed formats still to be determined [discuss in victoria presumably – HDF5, gadget, fits, ..]. The only constraint so far on the file format is that it places no upper limit on the number of columns that can be included in the table that it contains.
However, due do rapidly improving hardware and fast and efficient parallel codes, the resolution, and therefore the filesize of a single single can be extremely large. For example, many cosmological simulations now contain 10243 particles within the simulation box. The file containing their positions and velocities will then be at least 20GB. Recently, the Virgo consortium (http://www.virgo.dur.ac.uk/) completed a 21603. It is therefore important to stress that, differently from what generally happens when retrieving observational images and data, simulation data cannot be retrieved via http with some kind of encoding for the binaries (e.g. base64) since this is extremely expensive, both for CPU and for size if large datasets are being handled. FTP, or ideally GridFTP, must be used to retrieve the higher resolution simulations.
5.1 Input

An input Sub-Volume query must consist of an x,y,z position in the box, plus the side length (or radius) of a cube (sphere) surrounding this point. Therefore, there needs to be some initial information as to what the allowed range of x,y,z can be, what the scale is in (Mpc, km). This is contained in the table of metadata describing the simulations which is transferred to the sub-volume extraction query form so that the region extracted is defined in terms of the scale and units of the simulation box.
5.2 Successful Output

5.3 Error Responses and Other Unsuccessful Results
6. Snapshot Staging

This is similar to image staging in SIAP. By Snapshot Staging we refer to the processing the server performs to retrieve or generate the requested simlation volume or subvolume from a similar box and cache them in online storage for retrieval by a client. Staging is necessary for large archives which must retrieve simulation data from hierarchical storage, or for services which can dynamically extract subvolumes, where it may take a substantial time (e.g., minutes or hours) to retrieve the particles in the relevant region of the simulation box. Issuing a staging request for a set of simulation subvolumes (e.g. for a set of small cubes randomly placed in a simulation box) also permits large servers to optimize subvolume extraction, for example to take advantage of parallelization for large requests.

As with image staging, a key point here is that snaphot staging is optional for both the simulation service and for the client application. Simulation services which do not offer an subvolume extraction services – allowing only the retrieval of the entire volume, or particles belonging to pre-selected objects in archive – can make their data available immediately for retrieval, (URL direct to file).
When staging of data is necessary the technique used is to stage data on the server for later retrieval by the client; the data is only staged for a period of time and is eventually deleted by the service. This therefore permits the getSnap method to be identical whether or not staging is used, because it is simpler for the client (getSnap operates the same for any type of service), because it is simpler for the service in that the service can proceed to generate the simulation sub-volume regardless of the state or accessibility of the client, and because it provides an implicit network caching mechanism which permits multiple distributed clients to share the same data easily. The chief drawback is that the server has to manage a network data cache on behalf of the each client it is servicing. When cutouts are considered, as in SNAP, I’m afraid the cashing is useless, since it is difficult that the same cutout is reused by more that the “original” user…OK – I’m not entirely sure how this might work for cutouts.. I guess we’ll discuss this in more detail in victoria
Aside from providing the client with asynchronous simulation sub-volume extraction and a network data cache, the staging mechanism provides a messaging capability. The service broadcasts messages to subscribing clients whenever a staging (processing) event occurs, such as when the sub-volume extraction has been completed and is available for retrieval. Service generated messages can also be used to pass informational or diagnostic messages to clients as processing proceeds. This type of messaging is asynchronous and one way: the service broadcasts messages to subscribing clients as things happen, whereas clients send requests to the service to invoke web methods. For example, to initiate staging, subscribe to staging-related messages, or abort a staging operation in progress, the client sends a request to (invokes a web method provided by) the service.

I agree that asynchronous non-blocking staging mechanism is fundamental to make it usable…
6.1 Staging and Messaging Protocols (Preliminary)
7. Snapshot Retrieval

The snapshot retrieval request (getSnap web method) allows a client to retrieve a single raw simulation file given an access reference or "acref" as returned by a prior simulation query. In the case of SNA the acref is a simple URL since SNA is URL-based. The retrieved particle file is in a binary format (to be determined) and consists of a table in which each row is a particle or grid point and with columns describing at least the position of the particle or grid point within the simulation box. However, there is no upper limit to the number of columns contained within the table, as there may be several quantities associated with each simulation entity that are required to fully describe the simulation state at each timestep (x,y,z velocity components, id tags (if necessary), masses, densities, etc). Header metadata includes the number of particles, number of columns and column headings. The latter will consist of names constructed using the UCD vocabulary.

I guess if the particles need to be organised in a specific way (e.g. subhalos listed first) then this can be included in the simulation description, or in a separate file transferred with the data]. It depends if this leads to a time (and CPU) consuming operation… Probably the SNAP user just wants the selected data as they are as fast as possible and then he has his own tools to analyze them. Quite often, it seems that the particles in a simulation box are ordered according to their position in the box, to enable the fast extraction of one portion of the box. Ultimately, I suppose there would be no constraints on how the data provider orders the particles, etc, in a file. It a file does happened to be ordered in some way, then it can be explained in a metadata/readme file somewhere.
A couple of general considerations:

- I think that we should also consider a “thumbnails” service, which returns to the client a “decimated” sample of the data that can be downloaded fast and that can be used for a quick look of the data themselves, and to proceed with selection operations.
- I noticed that, in N-Body/SPH simulation a large fraction of the particles (as it must be!!!) ends up in the clusters. For example the largest cluster can account for 1/3 of the particles of the entire simulation. For the SNAP service, this is a problem, since it reduces its effectiveness…
7.1 Input

The input to the getSnap web method is the simulation acref for the indicated raw simulation data or extract subvolume. The acref for a particular file is obtained through a prior call to the Simulation Query web method.

7.2 Successful Output
7.3 Error Response

8. Service Metadata

8.1. Metadata Query

8.2. Registering a Compliant Service
9. Usage Examples

9.1 Client Examples

Simple Simulation Query

In this example, the client queries the registry for “Cosmological N-body Simulations”. A VOTable containing a list of N-body dark matter simulations is returned. The user can select those in the list that are snap services and therefore gain access to the raw simulation data for one or more timesteps (snapshot) of each simulation for which it is available. For each such service a direct URL is provided to a binary file containing particle positions, velocities, id tags, masses, etc for each snapshot.
Catalogue Query
In this example, the client queries the registry for “Simulated Dark Matter Halos”. A VOTable containing a list of dark matter simulations is returned. Some of the theory services listed will be catalogues of halos extracted from a large simulation, or simulated indivdually at high resolution. For each catalogue a link to an advanced query service is provided to allow the user to search for individual objects in the catalogue within certain parameter ranges, e.g. halos between mass m1 and m2. For snap services, the result of such a query will return, besides some basic physical properties, a URL to retrieve a binary file containing the positions and velocity’s, etc, of the simulation particles that constitute the object (in a defined reference frame).

