Astronomical Data Query Language

	[image: image1.jpg]

	 International
 Virtual
 Observatory
Alliance

IVOA Astronomical Data Query Language

Version 1.04
IVOA Working Draft 8 May 2006
This version:

1.04: http://www.ivoa.net/Documents/WD/ADQL/ADQL-20060508.doc

Latest version:

http://www.ivoa.net/Documents/latest/ADQL.html
Previous versions:

none

Working Group:

http://www.ivoa.net/twiki/bin/view/IVOA/IvoaVOQL
Editors:

Yuji Shirasaki, Maria A. Nieto-Santisteban, Masatoshi Ohishi, William
O’Mullane, and Alexander Szalay

Authors:

IVOA VOQL Working group

Abstract

This document describes the Astronomical Data Query Language (ADQL) and its two representations as String (ADQL/s) and XML (ADQL/x). ADQL has been developed based on SQL 92. This document describes the subset of the SQL 92 grammar supported by ADQL. Special extensions to SQL 92 have been defined in order to support astronomy specific operations such as Region and XMATCH.
Status of this document

This is an IVOA Working Draft
for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than “work in progress”.

Acknowledgments

This working draft has been developed based on discussions at various IVOA meetings and continuing emails on the mailing list. The editors express their appreciation for many valuable contributions by Naoki Yasuda, Clive Page, Bob Mann, Martin Hill, and many others.

Contents
1Abstract

2Status of this document

2Acknowledgments

31
Introduction

32
Astronomical Data Query Language (ADQL)

42.1
Restrictions on SQL 92

52.2
Extensions to SQL 92

102.3
Version information

103
ADQL example

114
ADQL XSD

115
Changes from previous versions

116
References

12Appendix A
 ADQL Grammar

12A-
1 Core Query Syntax

15A-
2 Full Query Syntax

1 Introduction

The Astronomical Data Query Language (ADQL) is the language used by the International Virtual Observatory Alliance (IVOA) to represent astronomy queries posted to VO
services. The IVOA has developed several standardized protocols to access astronomical data, e.g., SIAP, and SSAP for image and spectral data respectively, and the SkyNode Interface protocol to access catalogs. Different VO services have different needs in terms of query complexity. For example, SIAP and SSAP might be satisfied using a single table query. However, SkyNodes usually include more than one catalog table which makes necessary richer language expressivity. ADQL 1.0 has been designed in a layered hierarchy so services implement and register the complexity level that meets their needs. In this way, clients know what type of queries a VO service will accept.

ADQL 1.0 is based on the Structured Query Language (SQL), specifically on SQL 92. The VO has a number of tabular data sets and many of them are stored in Relational Databases (RDBs), making SQL a convenient access language. ADQL 1.0 focuses on a subset of the SELECT statement, adding a few extensions to define specific astronomy operations like REGION and XMATCH.

SkyNode services (often denoted as nodes) are an example of VO data services accepting queries in ADQL. The mechanism of passing a query to a node is described in the SkyNode Interface specification [1] developed by the IVOA VOQL WG as well. SkyNodes are defined and implemented as XML Web services. To access some SkyNode implementations you can visit OpenSkyQuery.net. The Open SkyQuery portal is an example of how astronomers can use ADQL to query a federation of astronomical databases which have been published as SkyNodes.

2 Astronomical Data Query Language (ADQL)

ADQL is based on a subset of SQL which has been extended to support queries specific to astronomy. ADQL has two representations:

ADQL/s : A string form based on the SELECT statement of the SQL 92 standard [2] that conforms to the ADQL grammar (see appendix). Some non standard SQL extensions have been added to support astronomy queries.

ADQL/x : An XML document conforming to the ADQL schema [3]. The XML document is the mechanism used to pass a query to VO services as for example the SkyNode Web service interface.
ADQL/s and ADQL/x are translatable to each other without loss of information.

The formal notation for syntax of computing languages is often expressed in the “Backus Naur Form” BNF
. Appendix to this document provides the BNF definition of ADQL/s and classifies the language elements as CORE or EXTENSIONS.

All VO services accepting ADQL queries SHALL conform to the CORE specification.

[I don’t think the section structure below:

Restrictions
Extensions
…

works any more and it is specially confusing considering now we have ADQL CORE and ADQL EXTENSIONS.
Yuji has a much better understanding of the CORE and EXTENSION structure so I leave it up to him to how to restructure the document.
But in the mean time, I will edit and comment on the existing text.
]
2.1 Restrictions on SQL 92

In essence, an ADQL query is basically any valid SELECT SQL statement. However, as described below, ADQL imposes certain restrictions or modifications to the SQL standard in order to simplify the querying process.

2.1.1 Aliases

All table names in ADQL SHALL have an alias. Aliasing tables is part of standard SQL but is no required. ADQL enforces it and makes it compulsory.

This means queries in ADQL/s must take the form:

SELECT t.* FROM table t

This makes substitution of table names much easier as it must be done in only one place and makes the XMATCH syntax simpler.

>>> Maria’s comment

I would prefer to make compulsory the use of alias to prefix columns parameters in ADQL/s.

It just makes life easier for everybody at the expense of typing a bit more

· It is less work for portals which otherwise have to go node by node checking whether or not the columns are unique to all nodes

· It makes easier to understand queries at first glance

Select s.ra, s.dec, s.r

from SDSSDR3:photoObj s, TWOMASS: photoObj t

Where XMATCH(s, t) and s.r > 15

>>>

>>> Yuji’s comment

Then, how about making it compulsory when multiple tables are specified in the from clause? When only one table is specified, there is no ambiguity at all.

>>>
>>> Maria’s comment

My experience is that users get confused and don’t understand why sometimes they have to include the alias and sometimes they don’t.
My suggestion would be to keep the alias table compulsory.

>>>
2.1.2 Comments

Comments will only be supported using the /* … */ syntax to delimit comments, instead of the standard SQL 92 syntax “--“. Comments are only supported before or after the main query – they may not be interspersed with the actual query.
>>> Maria’s comment

- Do we really need this for ADQL 1.0?
>>>
2.1.3 INTO clause

In SQL we may use ‘SELECT INTO’ to create a new table to store data. In ADQL, INTO is supported for future interoperability with VOStore and VOSpace which will define how to specify the format of the end points e.g.:
SELECT g.* INTO VOS:/JHU/gal FROM galaxy g WHERE g.redshift > 3.5
The VOStore and VOSpace protocols are under development within the Grid and Web Services WG of the IVOA.

2.2 Extensions to SQL 92

2.2.1 Regions

ADQL adds a keyword Region to be used in the WHERE clause to specify the search area constraint. The Region specification is supported as defined by the IVOA Data Model WG in the STC specification [4]. An example of a Region specification in ADQL/s would be:

Region(‘CIRCLE J2000 19.5 –36.7 1’)

The coordinate system and units have been set fix (ICSR??)
 to simplify ADQL and the SkyNode implementations. The central position is expressed in degrees and the radius in arcminutes.
>>> Yuji’s comment

Why unit of radius is defaulted to arcminute ? I think it is better to have same unit for all the RA, DEC and radius. If not, user will be confused what unit is a default ?

>>>
>>> Maria’s comment

Because of historical reasons basically. A search radius of 1 degree is a big radius, people usually think of arcminutes.
>>>
2.2.2 Archive Qualification
>>> Yuji’s comment

This syntax is for a portal service, isn’t it ? So I suggest to make another section like “Extension for portal service” and move this section there.

>>>
>>> Maria’s comment

Well, even though never was the intention to create a different ADQL/s or /x definition for portals, I’m afraid it is becoming necessary. I will talk about this during the meeting.
>>>
ADQL allows for an archive to be specified in front of the table name. The archive’s name is referred by using its IVOA resource identifier or alternatively its SHORTNAME (registration name) pre-appended to the table name with the ‘:’ separator, The IVOA Resource identifier guarantees uniqueness since IVOA Resources are built to be unique. Using SHORTNAMES implies using a mapping service that relates SHORTNAMES and IVOA Resources identifiers. An example of usages would be:

ivo://sdss.jhu/skynode/2mass:PhotoPrimary

or

TWOMASS:PhotoPrimary

In both cases the query would refer to the PhotoPrimary table of the TWOMASS SkyNode. In the first case refers specifically to the one hosted at JHU, in the second case

the SHORTNAME needs to be resolved into a IVOA Resource identifier or more specifically into its SkyNode Web service URL.

/*****

As agreed in Madrid we will add the IVOA Resource identifier to qualify an archive

*****/

2.2.3 XMATCH

ADQL includes a family of XMATCH keywords which mean cross-match between two or more astronomical catalogues. The meaning of XMATCH is defined more precisely in the SkyNode Interface specification. This document only specifies the syntax. The XMATCH keyword appears in the WHERE clause and looks like a function. At the moment only two cross-match functions have been defined XMATCH_CHI2 and XMATCH_DISTANCE
. As new functions become accepted, they will be included in the ADQL grammar specification.

XMATCH_CHI2 has as parameters the sequence of tables involved in the cross-match followed by the maximum value of chi-square that yields a match. As presented in the example, tables can be prefixed by the operator “!”. This indicates that the user wants to find those objects that yield a match in SDSS and TWOMASS but not in USNOB.

SELECT
o.objId, o.ra, o.r, o.type, t.objId, p.objid

FROM
SDSS:PhotoPrimary o,

TWOMASS:PhotoPrimary t,

USNOB:PhotoPrimary p

WHERE
XMATCH_CHI2(o,t,!p, 3.5)

 AND
Region('CIRCLE J2000 182.5 -0.89 8')

 AND
o.type = 3

XMATCH_DISTANCE has as parameters the sequence of coordinate frame and coordinate value expressions of two tables and maximum angular distance to judge the match. When a great circle distance between the two locations is less than the max distance, the function returns true.

>>> Maria’s comment

The function should return a table with pairs t1, t2 within 1 arcsec of each other, I would add a distance row in that table

>>>

>>> Yuji’s reply

If you are thinking that a xmatch function should return a table, I think that the xmatch function should be specified at the FROM clause rather than at WHERE clause. WHERE clause is the place where criteria are described for selecting rows from the table defined at the FROM clause.

>>>
>>> Maria’s comment – as of May 07 (other comments come from prior discussions)
I accept the point that XMATCH may be misplaced. It is certain true that is more of table and probably belongs to the FROM rather than the WHERE.

What I don’t agree is with a different treatment for XMATCH_CHI2 and XMATCH_DISTANCE.
The essential diference between those two should be that in the CHI2 the last parameter specifies a sigma threshold and in DISTANCE the last parameter specifies the angular distance within two objects will be considered a match.
>>>

XMATCH_DISTANCE(‘FK5’, t1.ra, t1.dec, ‘FK5’, t2.ra, t2.dec, 1 [arcsec])
>>>> But in any case, I don’t think this was the original idea suggested in Kyoto

The whole idea of having a XMATCH function different from the XMATCH_CHI2 came from ESAC when they pointed out they didn’t want to deal with the XCHI2 computation, and the X, Y, and Z and wanted to use a different XMATCH algorithm. The XMATCH_DISTANCE function above doesn’t seem to address the problem of XMATCH using a different algorithm.
>>> Yuji’s reply

Sorry, I cannot catch your point … but I can say:

1. XMATCH_DISTNACE function uses a different algorithm than that of chi2 computation. And if ESAC wants to use another algorithm they may propose another XMATCH function.

2. XMATCH_DISTANCE function does not require computation of X,Y,Z coordinate, it just requires RA and DEC values which exist as columns in the table.

>>>

You are also taking one step ahead and trying to specify what columns to use in the XMATCH …I don’t think that it has been fully discussed or agreed in any IVOA how to handle column specification (I might be wrong though)

>>> Yuji’s reply

Using columns for function arguments is a standard usage in SQL. Why do we need to discuss whether column can be specified in the function or should not.

>>>

My concern is that if we start doing this, then the next logical question is why not do the same in the XMCHI2 …

So we would get to things like:

SELECT
o.objId, o.ra, o.r, o.type, t.objId, p.objid

FROM
SDSS:PhotoPrimary o,

TWOMASS:PhotoPrimary t,

USNOB:PhotoPrimary p

WHERE
XMATCH_CHI2(o.ra, o.dec, t.ra, t.dec,!p.ra, !p.dec, 3.5)

 AND
Region('CIRCLE J2000 182.5 -0.89 8')

AND
o.type = 3

which implies more changes and will delay implementation more and more …

>>> Yuji’s reply

Each xmatch function may have specific arguments for the function. So I don’t think it is necessary to change the argument of the XMATCH_CHI2.
>>>

The other thing is … why do you have to specify the FK5? The coordinate frame should be a piece of metadata for the table. What if t1 is actually in International coordinates, and you specify FK5? That would take us into translation services …
>>> Yuji’s reply

I agree you, it is not necessary to specify the coordinate frame. Remove the arguments.

>>>

>>> Maria’s

If we want to get the specification out and get people to implement it “It has to be simple”

We can do more complex things when we have a first generation under control. (At least that is my dream ()
>>> Maria’s

2.2.4 Built-in Functions

In ADQL built-in functions which are defined on the server system may be called. These would include, e.g., a function to provide great circle distance, converter such as from sexagesimal to decimal, or unit converters. If a user knows that certain functions exist in the target system (SkyNode, etc.), the user may include such functions in the ADQL query. VO protocols, as for example the SkyNode Interface Specification, define methods by which all functions available on the server may be discovered. An example of a function call would be:
SELECT HEALPIXID(a.ra,a.dec), a.ra, a.dec

FROM photobjall a
A concise set of common built-in functions that represent the necessary astronomical functionality, together with their standard function names, will be defined in later versions of the ADQL specification.

2.2.5 Mathematical Funtions

Mathematical functions shall be allowed in ADQL as follows:
/*** There are more here than in the ****/
Mathematical functions:
acos(x), asin(x), atan(x), atan2(x, y) where x and y are numeric, and

cos(x), cot(x), sin(x), tan(x) where x is expressed in radians
abs(x), ceiling(x), degrees(x), exp(x), floor(x), log(x), log10(x), mod(x, y),
pi(), power(x, y), radians(x), sqrt(x), rand(), round(x, n), truncate(x, n)

where x and y are numeric and n is an integer.
2.2.6 XPATH for Columns

/***** Maria’s comment

This needs to be specified in the grammar as an Extension in COLUMN_NAME definition and COLUMN_TABLE

****/

>>> Yuji’s reply

Xpath grammar is Added.

>>>

To support XPATH as well as SQL, and since some of our data formats are described as XSD, it may be possible to express selections and selection criteria as a simple XPath. Square brackets ([,]) and standard operators such as parent are NOT supported. An example of a valid query of this form would be:

SELECT /Resource/Contact/Name

FROM Resource

WHERE /Resource/Type LIKE ‘catalog’

2.2.7 Returning subset of records – TOP and OFFSET
ADQL supports the TOP keyword to return only the first N records from a query, for example:

SELECT TOP 10 g.* FROM galaxy g
The semantics of this may vary on different database management systems. TOP is not defined as part of the SQL 92 standard, but most systems provide a mechanism to limit the number of objects returned. TOP by itself imposes nothing on the system In ADQL the assumption is that TOP returns the first N records satisfying the criteria specified in the query.

ADQL supports the OFFSET keyword to skip the first N rows:

SELECT OFFSET 10 g.* FROM galaxy g
It is important to note that ADQL does not guarantee that the same results will be yielded from the same query using TOP and OFFSET. Both keywords are defined as EXTENSIONS in the grammar.
>>> Yuji’s comment

TOP is a Core spec. and OFFSET is an Extension. Do you agree ?

>>>

2.2.8 Units

ADQL allows units for all constant values specified in the query. optional. ADQL does not specify what the units mean, and it simply allows for them syntactically specified, e.g:
SELECT g.* FROM galaxy g WHERE g.gmag > 100 [Jansky]
/***** Yuji’s comment

refer to the VOTable document about syntax of unit.

It might be better to enclose the unit by brackets [].
*****/
2.2.9 Table Names with special chars

/***** Maria’s comment

In Madrid we agreed that unless someone gives a strong reason why not use quotes as the SQL standard defines, we should change the [] for “”

· Strong opinions? Why we were using [] instead of “”?

*******/

ADQL supports the use of ‘[]’ to enclose literal names which may otherwise cause parse errors. For example if a table name starts with a number the parser could not deal with this but the following is valid:
SELECT a.* from [2df] a
This is also true for table names with spaces in or tables whose names are reserved words. Many database systems also support this syntax.
2.3 Version information

ADQL/x documents SHALL contain a version identifier for the version of ADQL. This will start as 1.0. The version number is a dot separated string of numbers. The version number is included in the document solely so the receiving node may decide if it wishes to deal with the document or to return an exception. This is assumed to only come into use at some later stage when there may be a major version change causing some possible incompatibility between versions. We should strive for backward compatibility i.e. only adding new features not deprecating the old.

3 ADQL example

An ADQL/s might be as follows:
SELECT a.objid, a.ra, a.dec

FROM SDSSDR2:Photoprimary a

WHERE Region('CIRCLE J2000 181.3 -0.76 6.5')
This would be represented in ADQL/x as follows:

<?xml version="1.0" encoding="utf-8"?>
<Select xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.ivoa.net/xml/ADQL/v1.0">

 <SelectionList>

 <Item xsi:type="columnReferenceType" Table="a" Name="objid" />

 <Item xsi:type="columnReferenceType" Table="a" Name="ra" />
<Item xsi:type="columnReferenceType" Table="a" Name="dec" />
 </SelectionList>

 <From>

 <Table xsi:type="archiveTableType" Archive="SDSSDR2" Name="Photoprimary" Alias="a" />

 </From>

 <Where>

 <Condition xsi:type="regionSearchType">

 <Region xmlns:q1="http://www.ivoa.net/xml/STC/STCregion/v1.10" xsi:type="q1:circleType" unit="deg">

 <q1:Center>181.3 -0.76</q1:Center>

 <q1:Radius>6.5</q1:Radius>

 </Region>

 </Condition>

 </Where>

</Select>
4 ADQL XSD

The XML schema for ADQL is found at http://www.ivoa.net/xml/ADQL/ADQL-v1.0.xsd.
5 Changes from previous versions

· None. This is the first release.
6 References

· IVOA SkyNode Interface 1.0 http://www.ivoa.net/Documents/latest/SNI.html

· ISO/IEC 9075:1992(E) Information technology – Database languages - SQL

· ADQL XML schema. http://www.ivoa.net/xml/ADQL/ADQL-v1.0.xsd
· Space-Time Coordinates for the Virtual Observatory Version 1.10
 http://www.ivoa.net/xml/STC/STCregion/v1.10
· [Translation Services & Translation Styles sheets. How do we reference to Style sheets?]
Appendix A
 ADQL Grammar
>>> Maria’s comment
[I’m including in a different document what I believe is a easier, simpler way to specify the BNF. I only did the CORE specification didn’t have time to get into the FULL syntax spec..

My general comment on the FULL syntax specification is that is too complicated.
The idea of extensions is good but as defined I don’t see how services would implement some of the extensions.]
>>>
ADQL grammar is described in an extended BNF. The following conventions are used:

· optional items are enclosed in meta symbols [and]
· repetitive items (zero or more times) are enclosed in meta symbols { and }
· terminals of only one character are surrounded by quotes (") to distinguish them from meta-symbols
· terminal and non-terminal symbols are distinguished by using bold faces for terminals and suppressing < and > around non-terminals
· case should be ignored.

A- 1 Core Query Syntax

A-1-1 Construction
select ::=
SELECT [TOP unsigned_integer] selection_list
FROM table_name [AS] table_alias
[WHERE search_condition]
A-1-1-1 Top

· TOP n returns only n rows.

· A service MAY have a default TOP number to limit the number of returned records.

/***** Yuji’s comment

TOP is moved to Core syntax, as it is convenient to check the content of a table and easy to implement.

*****/

A-1-1-2 Select list

· Only a column or a representative of all columns “*” MAY be specified in a selection list.

selection_list ::=
[table_alias “.”] “*” | aliased_column_list

aliased_column_list ::= aliased_column { “,” aliased_column }

aliased_column ::= qualified_column [[AS] column_alias]
qualified_column ::= [table_alias “.”] column_name
· “*” represents all the columns.
· “*” may be qualified by a table alias name.
· A column name MAY be qualified by a table alias name. Table name is not used for qualifying the column, as alias to the table is mandatory.
A-1-1-3 FROM Clause

· Exactly one table SHALL be specified in the FROM clause.

· An alias name SHALL be given to the table.

A-1-1-4 WHERE Clause
· Boolean value expression that conforms to CORE syntax SHALL be specified.

· A logical operator “AND” MAY be used. “OR” and “NOT” are not supported in Core spec.

/***** Yuji’s comment

“OR” and “NOT” are moved to EXTENTION based on the following considerations:

1. SIAP and SSAP don’t support “OR” nor “NOT” logic. By moving this to extension it becomes easy to adapt ADQL on these services.
2. Some particular OR and NOT logic might be difficult to implement:

Region(‘…’) OR mag < 20

NOT Region(‘…’)

3. There are alternative ways to emulate OR logic.

a < x OR a > y (a NOT BETWEEN x and y

a = ‘apple’ OR a = ‘orange’ (a IN (‘apple’, ‘orange’)

****/
· Only one spatial condition MAY be specified at most.

search_condition ::=

non_spatial_condition [AND spatial_condition

[AND non_spatial_condition]]

| spatial_condition [AND non_spatial_condition]

spatial_condition ::= spatial_predicate
· A service MAY enforce to use a spatial condition.

· A service SHOULD ignore spatial condition if it is meaningless for the queried table.

· Box and Circle shape spatial condition SHALL be supported.

spatial_predicate ::= REGION “(” spatial_region_literal “)”
spatial_region_literal
::= spatial_box_literal | spatial_circle_literal
· Only “AND” is defined.

non_spatial_condition ::=

condition_primary

| non_spatial_condition AND condition_primary

· Comparison, between, in and like predicate SHALL be supported:

condition_primary ::=

boolean_predicate | “(” non_spatial_condition “)”
boolean_predicate ::= comparison_predicate | between_predicate

| in_predicate | like_predicate

comparison_predicate ::=

value_expression comparison_operator value_expression

between_predicate ::= value_expression [NOT] BETWEEN
value_expression AND value_expression

in_predicate ::= value_expression [NOT] IN in_predicate_value

in_predicate_value ::=

“(” constant_literal { “,” constant_literal } “)”
like_predicate ::=
string_value_expression [NOT] LIKE string_pattern
· Wild card used for expressing a string pattern of LIKE predicate:
· ‘_’ matches one arbitrary character.

· ‘%’ matches arbitrary number of characters.

· Numeric and string value expression SHALL be supported.

value_expression ::=
numeric_value_expression | string_value_expression

numeric_value_expression ::=

numeric_value_term

| numeric_value_expression “+” numeric_value_term

| numeric_value_expression “-” numeric_value_term

numeric_value_term ::=

numeric_value_factor

| numeric_value_term “*” numeric_value_factor

| numeric_value_term “/” numeric_value_factor

numeric_value_factor ::= [“+” | “-”] numeric_value_primary

numeric_value_primary ::=

value_primary | numeric_value_function

string_value_expression ::=

string_value_term

| string_value_expression || string_value_term

string_value_term ::=

value_primary | string_value_function

value_primary ::= parenthesised_value_expression
| unparenthesised_value_primary

parenthesized_value_expression ::= “(” value_expression “)”
unparenthesised_value_primary ::=

column_reference | unsigned_numeric_value | string_value

| function | aggregate_function

· A count(*) aggregate function SHALL be supported. The other aggregate functions are parts of extended specification.
aggregate_function ::= count(*)
· Comparison operators defined in Core specification are:

comparison_operator ::= “=” | “>” | “<” | <> | != | >= | <=

· See data type section to see which operators are supported for each data type.

· If a Boolean value expression that is not supported is specified, it should be evaluated as true rather than throwing an exception.
A-1-2 Specification number

· QL-C01 [Core] All services SHALL implement the SELECT core syntax.
· QL-C02 [Core] All services SHALL support numeric, string data types.
· QL-C03 [Core] All services SHALL support count(*) aggregate function.

A- 2 Full Query Syntax

A-2-1 Construction

select_e ::= SELECT [ALL | DISTINCT]
[OFFSET unsigned_integer]
[TOP unsigned_integer]
selection_list_e

[INTO store_reference]

FROM table_list

[WHERE search_condition_e]

[GROUP BY group_item_list]

[HAVING search_condition_e]

[ORDER BY order_list]

A-2-1-1 Select list
selection_list_e ::= [table_alias “.”] “*”
| aliased_select_item_list

aliased_select_item_list ::=

aliased_select_item { “,” aliased_select_item }
· A value expression MAY be specified in the selection list.

aliased_select_item ::=

value_expression_e [[AS] select_item_alias]

| xpath_expression [[AS] select_item_alias]

value_expression_e ::=

numeric_value_expression | string_value_expression

| datetime_value_expression | boolean_value_expression

datetime_value_expression ::= datetime_value_primary

datetime_value_primary ::=

value_primary | datetime_value_function

xpatch_expression ::= “/” relative_element_path

[“/” “@” attribute_name]

relative_element_path ::= element_name { “/” element_name }

A-2-1-2 INTO, OFFSET, ALL, DISTINCT

· INTO specifies the location of VOSpace where the query result is stored.

· TOP returns only the first n rows from the offset position.

· OFFSET skips the first n rows.

· The recurrence of the query result is not guaranteed by TOP and OFFSET selection. It is recommended to use them with the ORDER BY clause, which is the only way to guarantee the recurrence of the query result under the condition that contents of the table are not changed.

· ALL or DISTINCT: ALL selects all the rows. It is default. DISTINCT rejects duplicated rows from the query result.

A-2-1-2 FROM Clause
· A comma-separated table list SHALL be specified.

aliased_table_list ::=

aliased_table { “,” aliased_table } [“,” aliased_votable]

| aliased_votable { “,” aliased_table }

aliased_table ::=

aliased_static_table | aliased_joined_table

aliased_derived_table
· Table name MAY be qualified by a service identifier or a short name:
aliased_static_table ::=

[service_identifier “:” | service_short_name “:”]

table_name [AS] table_alias

service_identifier ::= ivo:// authority_name “/” resource_path

service_short_name ::= identifier
· One VOTable uploaded to the service MAY be specified by using “#upload” keyword.
aliased_votable ::= #upload [AS] table_alias
· Table join construction MAY be used

aliased_joined_table ::=

cross_join | conditional_join | natural_join

cross_join ::= aliased_table CROSS JOIN aliased_static_table

conditional_join ::= natural_join

| aliased_table [join_type] JOIN aliased_table

join_specifier

natural_join ::=

aliased_table NATURAL [join_type] JOIN aliased_table

join_type ::= INNER | outer_join_type [OUTER]

outer_join_type ::= LEFT | RIGHT | FULL
join_specifier ::= join_condition | join_by_column_name

join_condition ::= ON comparison_predicate

join_by_column_name ::= USING “(” column_name_list “)”
column_name_list ::= column_name { “,” column_name }
· Derived sub-query table MAY be specified.

aliased_derived_table ::= “(” select_e “)” [AS] table_alias
A-2-1-3 WHERE Clause
· Logical operators “OR”, “AND” and “NOT” MAY be used.

search_condition_e ::=

boolean_term | search_condition_e OR boolean_term

boolean_term ::= boolean_factor | boolean_term AND boolean_factor

boolean_factor ::= [NOT] boolean_value
· Multiple spatial conditions MAY be specified

· Cross match condition MAY be specified

boolan_value_e ::=

boolean_value | spatial_condition | xmatch_condition
· A spatial comparison predicate MAY be specified

spatial_condition_e ::=

spatial_predicate | spatial_comparison_predicate

spatial_comparison_predicate ::= column_name

[spatial_comparison_operator] spatial_literal
· Region comparison operator are:

spatial_comparison_operator ::= WITHIN | OVERLAP | COVERS
· If boolean value expression that is not supported is specified, it is recommended to evaluate it true rather than to throw an exception.
A-1-1-4 GROUP BY, HAVING, ORDER BY

· GROUP BY clause MAY be used:

group_item_list ::= value_expression { “,” value_expression }

· HAVING clause MAY be used:

· ORDER BY clause MAY be used:

order_list ::= order_item { “,” order_item }

order_item ::= value_expression [ASC | DESC]

A-1-2 Specification number

QL-E01 [Ext] Value expression in the selection list.
QL-E02 [Ext] INTO syntax.
QL-E03 [Ext] OFFSET syntax.

QL-E04 [Ext] ALL and DISTINCT syntax.
QL-E05 [Ext] Table name qualified by a service identifier or a short name.
QL-E06 [Ext] #upload keyword for uploaded VOTable.

QL-E07 [Ext] Multiple tables separated by commas.
QL-E08 [Ext] All of the table join types.

QL-E09 [Ext] A sub-query table.
QL-E10 [Ext] Multiple regions condition.
QL-E11 [Ext] GROUP BY syntax.

QL-E12 [Ext] HAVING syntax.
QL-E13 [Ext] ORDER BY syntax.

QL-E14 [Ext] OR and NOT logical operand
QL-E15 [Ext] All the aggregate functions

QL-E16 [Ext] ADQL mathematic functions.

QL-E17 [Ext] Cross-match function.
QL-E18 [Ext] Unit for numeric literal

QL-E19 [Ext] Boolean data type support

QL-E20 [Ext] DateTime data type support.

QL-E21 [Ext] Space data type support.

QL-E22 [Ext] Numeric array data type support.

A- 3 Keyword, Identifier and delimited identifier

A-3-1 Keyword

· ADQL Keywords:
SELECT, ALL, DISTINCT, TOP, OFFSET, INTO, FROM, WHERE, GROUP, BY, HAVING, ORDER, AS, #upload, CROSS, JOIN, NATURAL, INNER, OUTER, LEFT, RIGHT, FULL, ON, USING, WITHIN, OVERLAPS, COVERS, IS, NOT, BETWEEN, TRUE, FALSE, UNKNOWN, LIKE, IN, ASC, DESC, BETWEEN, AND, OR…
· keywords are case insensitive.

A-3-2 Identifier

· Identifier represent a column name, a table name, a function name and alias name.

· Identifier that includes a non-permitted character, that is case-sensitive or that matches the ADQL keywords SHALL be delimited by delimiters.

identifier ::= nondelimited_identifier | delimited_identifier
delimited_identifier ::= “[” any_string “]”

· Non-delimited identifier is case insensitive.
· Non-delimited identifier SHALL begin with a letter {a-z} or an underscore {_}. Subsequent characters in an identifier SHALL be letters, underscores or digits {0-9}.
identifier ::= nondelimited_identifier | delimited_identifier

nondelimited_identifier ::=

nondelimited_identifier_head { nondelimited_identifier_part }

nondelimited_identifier_head ::=

“A”|“B”|“C”|“D”|“E”|“F”|“G”|“H”|“I”|“J”|“K”|“L”|“M”|“N”|“O”
|“P”|“Q”|“R”|“S”|“T”|“U”|“V”|“W”|“X”|“Y”|“Z”|“_”
nondelimited_identifier_part ::=

nondelimited_identifier_head |“0”|“1”|“2”|“3”|“4”|“5”|“6”
|“7”|“8”|“9”
· The way of writing ”[” and ”]” within a delimited identifier is to write two adjacent brackets. e.g. [O/Fe] --> [[[O/Fe]]].

· Use of the delimited identifier is not encouraged and should be avoided.

A-4 Data types

· All the columns SHALL be assigned one of the data types described in this document or service-specific data types.

A-4-1 Numeric type

· The numeric data type are a part of the extended specification.

· All the SHALL specifications defined for the numeric data types MUST be supported.
A-4-1-1 Integer and Floating-Point types

unsignedByte
1 byte

short

2 byte
int

4 byte

long

8 byte
float

4 byte

double

8 byte
A-4-1-2 Literal expression

numeric_literal ::= [sign] unsigned_number

unsigned_number ::= exact_number | approximate_number

exact_number ::= unsigned_integer [“.” [unsigned_integer]]

| “.” Unsigned_integer

approximate_number ::= exact_number E signed_integer

sign ::= “+” | “-”
A-4-1-3 Functions, operators, and predicates for numeric value expression

· Following predicates SHALL be supported for numeric value expression.

boolean_predicate_for_numeric ::=

Comparison_predicate | between_predicate | in_predicate
· Following comparison operators SHALL be supported for numeric value expression.

numeric_comparison_operator ::=

“=” | “<” | “>” | “<=” | “>=” | “<>” | “!=”

· Mathematical operator “+”, “-”, “*” and “/” SHALL be supported for numeric value expression. “%” and “^” MAY be supported.
Binary_operator_for_numeric ::=

“+” | “-” | “*” | “/” | “%” | “^”

· Following function MAY be supported.

Numeric_value_function_name ::=

abs | exp | ln | log | pi | sqrt | acos | asin
| atan | atan2 | cos | cot | sin | tan

· General function

distance(‘frame’ coord1a, coord2a, ‘frame’ coord1b, coord2b)

A-4-2 Character type

· Character data type is a part of the core specification.
A-4-1-1 character types

char

1 byte

char[n]
n byte string

char*

string with variable unlimited length
A-4-1-2 Literal expression
· A single quote can be specified in a string constant by writing two adjacent single quotes,
String_literal ::= “'” { non_single_quate_character
| doubled_single_quates } “'”
A-4-1-3 Functions, operators, and predicates for a character data type

· The following comparison operators SHALL be supported for character data types

comparison_operator_for_string ::=

“=” | “<” | “>” | <= | >= | <> | !=
· The string connection operator MAY be supported.

binary_operator_for_string ::= ||

· The following predicates SHALL be supported.

boolean_predicate_for_string ::= comparison_predicate

| between_predicate | in_predicate | like_predicate

· The following string functions MAY be supported.

string_value_function_name ::=

substring | length | lower | upper
A-4-3 DateTime data type

· Timestamp, Date and Time data types are a part of the extended specification.

· If a service support DateTime data types, all the SHALL specifications defined for the DateTime data types MUST be supported.
A-4-1-1 data types

timestamp
date
time
· Timestamp data type describes absolute time in UT.
· Date data type describes date in UT.

· Time data type describes time in UT.

A-4-1-2 Literal expression

timestamp_literal ::= timestamp “'” timestamp_expression “'”
date_literal ::= date “'” date_expression “'”
time_literal ::= time “'” time_expression “'”
timestamp_expression ::=

year “-” month “-” day “T” hour “-” minute “-” second

date_expression ::= year “-” month “-” day

time_expression ::= hour “-” minute “-” second

year ::= digit digit digit digit

month ::= digit digit

day ::= digit digit

hour ::= digit digit

minute ::= digit digit

second ::= digit digit [“.” [{ digit }]]

A-4-1-3 Functions, operators, and predicates

· comparison operator: comparison must be made on same data types.

Comparison_operator_for_datetime ::= | < | > | <= | >= | <> | !=
· Boolean predicate for datetime data types.
boolean_predicate_for_datetime ::=

between_predicate | in_predicate

A-4-5 Boolean type

· Boolean data type SHALL be supported.

A-4-1-1 data type

Boolean

1 byte

A-4-1-1 Literal expression

Boolean_literal ::= TRUE | FALSE

A-4-1-2 Functions, operators, and predicates

· Following Boolean value function SHALL be supported:

Boolean_value_function_name ::=

 region | xmatch_chi2 | xmatch_distance

A-4-6 Numeric array data type

· Numeric array data type is a part of the extended specification.

· If a service support a numeric array data type, all the SHALL specifications defined for numeric array data type MUST be supported.

A-4-1-1 Data type

int[n]

double[n]
· Array types for integer and double precision data type describe the array type metadata defined in SIAP, such as NAXIS and SCALE etc.

· The current specification does not define any operators, functions or literal expression for a numeric array data type.

A-4-7 Space data type
· Space data type is a part of the extended specification.

· If a service support space data type, all the SHALL specifications defined for space data type MUST be supported.

· Any service specific extensions MAY be introduced.
A-4-1-1 Data type

Space

· Space data type describes a spatial position and a region in the sky.

· Circle and box regions SHALL be supported.
· Reference position is GEOCENTER
A-4-1-1 Literal expression

spatial_position_literal ::=

Space “'” Position [frame] pos “'”

spatial_circle_literal ::=

Space “'” Circle [frame] pos radius [radius_unit] “'”
spatial_box_literal ::=

Space “'” Box [frame] pos

size [size_unit] size [size_unit] “'”
frame ::= FK4 | FK5 | ICRS | ECLIPTIC | GALACTIC
pos ::= numeric_literal numeric_literal

radius ::= numeric_literal

size ::= numeric_literal

radius_unit ::= angular_unit

size_unit ::= angular_unit

angular_unit ::= deg | arcmin | arcsec
A-4-1-2 Functions, operators, and predicates

· Following operators SHALL be supported:

spatical_comparison_operator ::= within | overlaps | covers
· Following space functions MAY be supported.

spatical_coordinate_value_function_name ::=
position | circle | box | distance

A-5 Aggregate function

· The count(*) aggregate function is core spec.

· The other aggregate functions is extensions.
aggregate_function ::= count(*) |

aggreagate_function_name “(” [all | distinct] column “)”
aggregate_function_name ::= count | min | max | sum
A-6 Function

· Region function is a part of a core extension.

· The other functions are parts of the extended specification.

� http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html#Johnson75

�Change to release date

�Don’t forget to remove and change to “This is an IVOA Proposed Recommendation made available for public review.�It is appropriate to reference this document only as a recommended standard that is under review and which may be changed before it is accepted as a full recommendation.”

�I removed data (to makes it generic)

�how about columns: alias.columnName?

It makes easier to know where the column belong to in XMATCH and JOIN queries

�Need to check this

�What is the definition of the XMATCH_DISTANCE function?

�I tried this string in the SQL-XML converter � HYPERLINK "http://openskyquery.net/AdqlTranslator/Convertor.aspx" ��http://openskyquery.net/AdqlTranslator/Convertor.aspx� and gives an exception

�Is this a true statement? Does ADQL 1.0 support region description as described in STC 1.21?

In Section 5 ADQL XSD, the schema v1.0 refers to http://www.ivoa.net/xml/STC/STCregion/v1.10

This is a reference to a PR!

�SIA and SSA are not SkyNodes so if we want to start being generic we need to avoid using SkyNode

“All the SkyNodes must support the Core construct”

SHALL is better than MUST

5/8/2006 7:01 PM

Page 1 of 27

