
UWS as a data-staging UWS as a data-staging 
mechanism for SIAPmechanism for SIAP

Guy Rixon

GWS session 2, 
IVOA Beijing Interop

May 2007



What is UWS?What is UWS?
● A pattern for controlling asynchronous jobs

– Post instructions to UWS to create a job
– Review quoted completion time; commit job to 

execution
– Poll phase of job until “COMPLETED”
– Results cached on server; client downloads later
– Termination time for results negotiable
– Delete job when results fetched...
– ...or just abandon it and let it time out.

● http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf

http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf


Applying the UWS patternApplying the UWS pattern
● UWS pattern + application = service protocol

Client UWS

create job(job specification)

commit job

negotiate termination time

Poll for completion

Download results(choice of resource)

Job instructions 
and results 
specified by 
application.
Other “boilerplate” 
specified by UWS.



SOAP or RESTSOAP or REST
● UWS spec has both SOAP and REST bindings
● Affects how you download results:

– SOAP: all results packed in one XML doc
– REST: one web resource per result; MIME types vary

● Clients:
– SOAP binding needs custom, rich client
– REST binding can be driven by web browser

● Otherwise, no semantic difference
● Choose the binding that best fits the application
● Expect most IVOA standards would use REST.



What is data staging?What is data staging?
● SIAP as an example:
● Find virtual images using query on catalogue: quick
● “Stage” selected images into service cache: slow

– Images may have to be computed or got from off-line 
storage

– Staging runs asynchronously
● Download images from service as each staging job 

completes
– (Or have them pushed to a VOSpace.)



UWS for data stagingUWS for data staging
● Caveats:

– My interpretation, not DAL-WG policy
– This differs from data staging in UWS v0.3 spec

● queryData is synchronous; stageData is 
asynchronous => use UWS on stageData only

● DAL is RESTful, so use UWS REST binding
● One UWS job per staged image

– Because it's simpler
– Because it gives more control to the user



DemoDemo
● Stages INT-WFS images from Cambridge
● This is prototype code demonstrating UWS
● It's not a released, supported science service
● Runs on my laptop :)



What it's doingWhat it's doing
query catalogue &
create staging jobs

start selected jobs

poll for completion

download image

Synchronous: blocks until query is complete 
then returns VOTable. Using VOTable, 
creates staging jobs in PENDING state; adds 
job URIs to the table. Query is POSTed 
because it creates web resources. Query 
gets delegated to SIA v1 in Cambridge.

Triggering controls are UWS. URIs for those 
controls are in the table. Unselected jobs 
eventually time out and go away.

Pure UWS.

Application specifies that an image results.
UWS reveals its URI.



How it worksHow it works

1) Query image catalogue
• Delegated to existing SIA in Cambridge
• Request is POSTed (because it creates resources on server)
• Returns SIA VOTable, synchronously

2) Create UWS job for each image returned
• Jobs are created PENDING
• User selects which jobs to activate; others time out

3) Each job → one image → one download URI
• Images cached on server
• Deleted when job deleted/timed out



Parts listParts list
● One Java web-app 
● Recycled, original SIA v1 in Perl
● 3 servlets

– query, job-list, job
● 8 JSPs

– One for each UWS resource
– Some UWS resources have two JSPs: XML and HTML

● 4 non-servlet Java classes
● 2 HTML pages


