UWS as a data-staging
mechanism for SIAP

Guy Rixon

GWS session 2,
IVOA Beijing Interop
May 2007

What is UWS?

* A pattern for controlling asynchronous jobs

- Post instructions to UWS to create a job

- Review quoted completion time; commit job to
execution

- Poll phase of job until “COMPLETED”

- Results cached on server; client downloads later
- Termination time for results negotiable

- Delete job when results fetched...

- ...or just abandon it and let it time out.
« http://www.ivoa.net/internal/I[VOA/lvoaGridAndWebServices/UWS-0.3.pdf

http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf

Applying the UWS pattern

« UWS pattern + application = service protocol

Client

UWS

|

~ —Job instructions

and results
specified by
application.

Other “boilerplate”
specified by UWS.

SOAP or REST

 UWS spec has both SOAP and REST bindings

Affects how you download results:

- SOAP: all results packed in one XML doc
- REST: one web resource per result; MIME types vary

Clients:

- SOAP binding needs custom, rich client
- REST binding can be driven by web browser

» Otherwise, no semantic difference
* Choose the binding that best fits the application
* Expect most I[VOA standards would use REST.

What is data staging?

» SIAP as an example:
* Find virtual images using query on catalogue: quick
o “Stage” selected images into service cache: slow

- Images may have to be computed or got from off-line
storage

- Staging runs asynchronously

 Download images from service as each staging job
completes

- (Or have them pushed to a VOSpace.)

UWS for data staging

» Caveats:
- My interpretation, not DAL-WG policy
- This differs from data staging in UWS v0.3 spec

* queryData is synchronous; stageData is
asynchronous => use UWS on stageData only

DAL is RESTful, so use UWS REST binding
 One UWS job per staged image

- Because it's simpler
- Because it gives more control to the user

Demo

« Stages INT-WFS images from Cambridge

* This is prototype code demonstrating UWS

* |t's not a released, supported science service
 Runs on my laptop :)

‘Ag““‘ ‘\:':i’/)
‘] Cadd ‘\\/7:\[\ /

What it's doing

query catalogue & w Synchronous: blocks until query is complete

create staging jobs J then returns VOTable. Using VOTable,
creates staging jobs in PENDING state; adds
job URIs to the table. Query is POSTed
because it creates web resources. Query
gets delegated to SIA v1 in Cambridge.

Y
[start selected jobs

#

[poll for completion

i

[download image

Triggering controls are UWS. URIs for those
controls are in the table. Unselected jobs
eventually time out and go away.

Pure UWS.

. R

Application specifies that an image results.
UWS reveals its URI.

A

How It works

1) Query image catalogue

- Delegated to existing SIA in Cambridge
- Request is POSTed (because it creates resources on server)
- Returns SIA VOTable, synchronously

2) Create UWS job for each image returned

- Jobs are created PENDING
- User selects which jobs to activate; others time out

3) Each job — one image — one download URI

- Images cached on server
- Deleted when job deleted/timed out

Parts list

One Java web-app

Recycled, original SIA v1 in Perl

3 servlets
— query, job-list, job
8 JSPs

- One for each UWS resource
- Some UWS resources have two JSPs: XML and HTML
4 non-servlet Java classes

« 2 HTML pages

