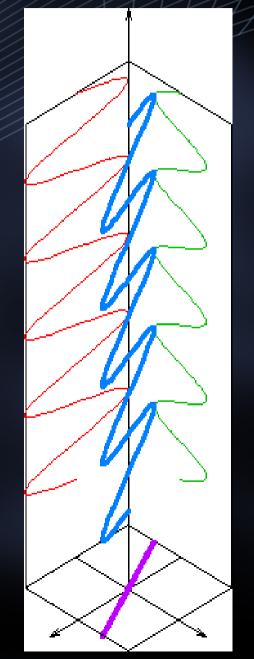

Data model extensions: Polarimetry

Interferometry

Anita Richards JBCA, University of Manchester IVOA data model group with thanks to Paddy Leahy & Robert Laing

Some polarization jargon


CIRCULAR Left-hand LHC, L, LL etc.

Right-hand RHC, R, RR etc.

Cross hands LR RL make linear

Stokes V = (RR-LL)/2

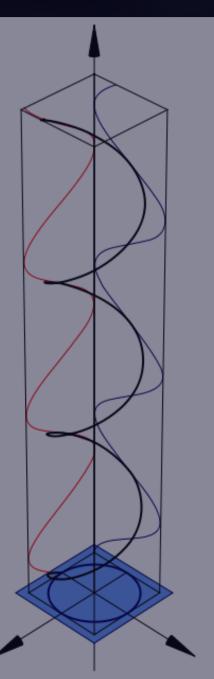
Fractional V/I, |V|/I, % etc.

LINEAR

Stokes Q = (RL + LR)/2

Stokes U = (RL - LR)/2i

Polarized intensity P = $\sqrt{(Q^2+U^2+V^2)}$


Polarization angle $\chi = \frac{1}{2}$ atan2(U/Q)

Linear feeds X, XX, Y, YY

Cross hands XY YX

Diagrams thanks to Wikipaedia

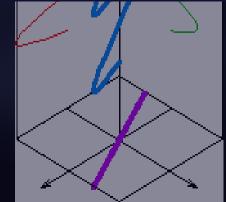
Some polarization jargon

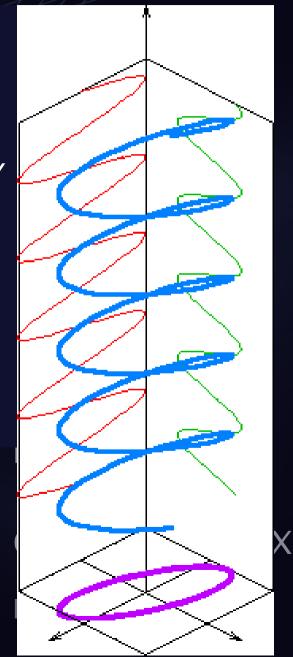
CIRCULAF ELLIPTICAL

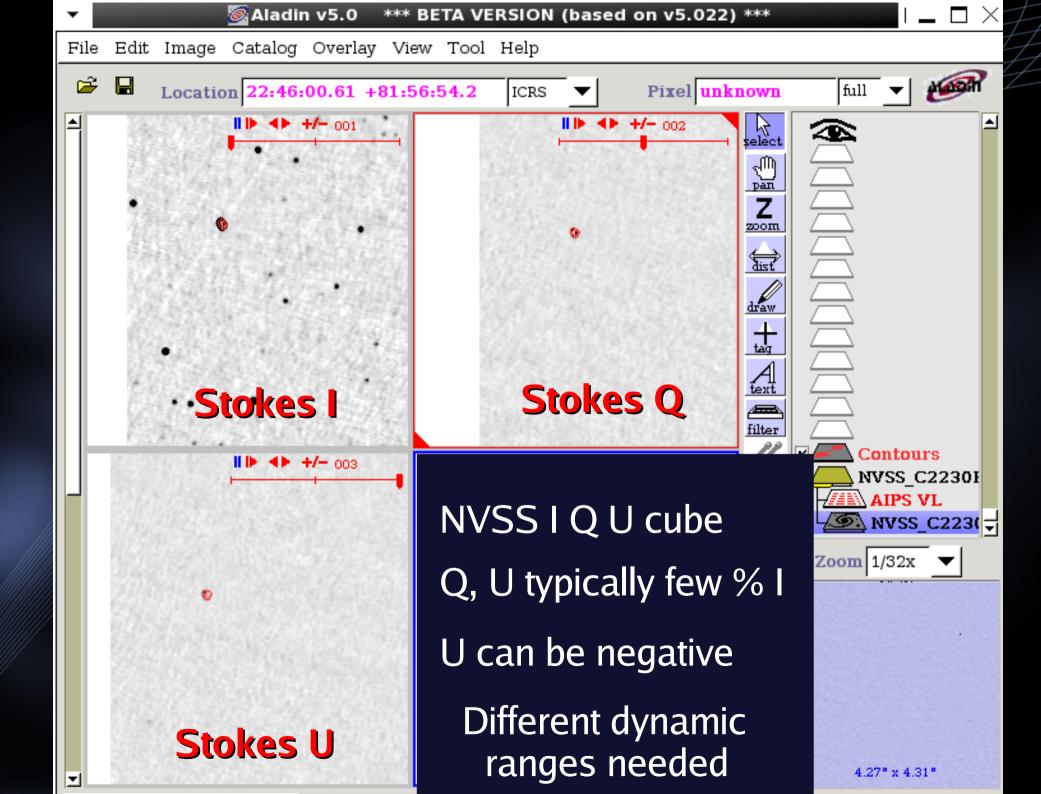
etc.

Right-hand RHC, R, F etc.

Cross hand: LR RL make linea


Stokes V = (RR-LL)/2


Fractional V/I, |V|/I, % etc.


Left-hand Combination of LHC, L, LL linear and circular TOTAL INTENSITY Stokes I

> **OPTICAL/IR** rotated prisms give O, E

End products are the same

Astronomical polarization

Observable

- Forms of flux density but with additional derived properties
- No specified polarization (usually) implies total intensity
- Polarization axis
 - A single data set can have one or more polarizations
 - If the polarization axis is present, must specify
 - number of polarizations present
 - ordered list of labels e.g.
 - NVSS image 'cube' I Q U or single images P, χ
 - Visibility data LL RR LR RL (ORDER CAN DIFFER)
 - Spectrum LHC or LCP or L
 - CONVENTIONS DIFFER
- Need agreed vocabulary and definitions
 - Software should recognise multiple lables in common use

Polarization axis

- Often only one polarization state per image (etc.)
- Each plane of multiple polarization axis inherits first plane properties, but can replace them
 - Spatial and spectral location, bounds usually the same
 - Sensitivity, dynamic range etc. can differ
 - First plane may not be total intensity
 - Some properties may not make sense for pol. angle
- Metadata extraction tools should recognise FITS codes (not all possibilities are official)

Use case 1. Finding suitable (semi-)raw data

- Search e.g. VLA, MERLIN archive by position etc.
 - Want data with e.g. RR LL RL LR
 - Targets, calibrators in same config, close in time
 - Possible extra information such as
 - Primary beam leakage, sensitivity maps
 - External ionospheric data (GPS, electron counts..)
 - Models for standard calibration sources
 - Just need pointer to these, not full description
- Enable a typical interferometry archive pipeline to produce images in various polarization products
 - Assume that pipeline knows observatory-specific heuristics (e.g. 2003 delay error in cross-hands).

Use case 2. Analysing 'science ready' polarization images

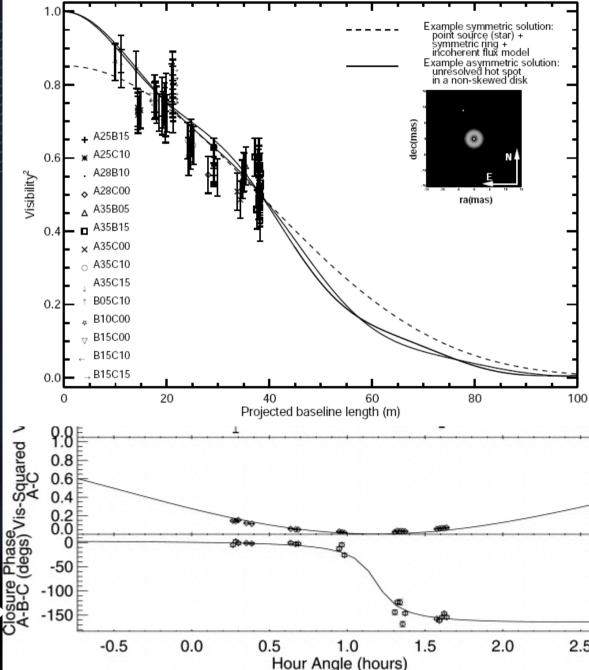
- Want data at a certain location with Stokes I Q U
 - Need usual total intensity information
 - Model must indicate polarization calibration status
 - Has leakage been corrected?
 - Ideally, typtical residual/extra systematic QU errors
 - Or could be pointer to map
 - Similarly, has pol. angle been rotated to conventional origin?
 - Noise statistics/error maps desirable but deducable
 - Pointer to processing history (if only for humans)
- Pipeline to advanced products, e.g. rotation measure, pol. angle, fractional polarization
 - Human might have to calculate errors

Polarization summary

- Registry-level description (not mutually exclusive):
 - Linear? Circular? Other polarization products?
- Draw up agreed vocabulary (allow unambiguous alternatives e.g. LHC, LCP, with code to interpret)
- Polarization axis must be explicitly ordered
- Facility to describe calibration status e.g.
 - Leakage
 - Pol. angle
 - Systematic as well as statistical errors in both
- Pointers to external/supporting data, history
- User/observatory provides processing pipelines

Interferometry data 1

Calibrated, multi-antenna mm/m-wave visibility data


- Spatial, spectral etc. axes as usual
 - Description of products e.g. image resolution range
- Spatial frequency axis
 - Coverage missing spacings etc. excellent quality indicator
 - Also useful for images etc.!
- Ready to image, extract 'light' curves etc.
 - Most information packaged with data e.g. bandpass table
 - Cal. status may differ on spectral, polarization etc. axes
- Might need to extract calibration sources
 - e.g. to align multi-epoch flux scale
- Pointers to external/supporting data, history
- User/observatory provides processing pipelines

Interferometry data 2

- Raw-ish, multi-antenna mm/m-wave visibility data
 - Ideally as per calibrated data (more complicated pipelines)
 - All information not always available
 - e.g. position, frequency/config, pols, integration time
 - Baseline lengths as on Earth surface
 - Can calculate effective resolution, field of view etc.
 - Should this be observatory's responsibility?
 - Sometimes easiest to find by processiing data!
 - Places with public archives most likely to provide good information anyway...
 - Some information belongs in provenance

Optical/IR interferometry

- 1-few movable baselines
- Typical products:
 - Visibility amplitude
 - Closure phase
- As a function of:
 - Time
 - Hour Angle
- Projected baseline or spatial frequency
 Archive (VLTI)
 - Investigate potential demand by non-PIs?
 - Are all results published?

Interferometry priorities

- Adding a spatial frequency axis would help select appropriate quality calibrated data
- Main demand for VO development is for polarization!
- Characterise most present data in terms of products
- Encourage use of data provider pipelines
 - Relatively few observatories, much information often packaged with data
 - Use switches/pointers to confirm existence of supporting info
 - MERLINImager 'proof of concept'
 - Essential for massive data sets
 - (E)VLA development; EVN provide user-side version
- Future: ALMA and VLTI, MRO etc requirements; SKA