

Jeff Lusted
University of Leicester

Complex Queries and a VOQL

Select...
From...
Where...

When MySQL was developed the founders participated in a large research
project involving data collected on all twins in Sweden older than 65 Years.

The Twin Study - MySQL

SELECT
CONCAT(p1.id, p1.tvab) + 0 AS tvid,
CONCAT(p1.christian_name, ' ', p1.surname) AS Name,
p1.postal_code AS Code,
p1.city AS City,
pg.abrev AS Area,
IF(td.participation = 'Aborted', 'A', ' ') AS A,
p1.dead AS dead1,
l.event AS event1,
td.suspect AS tsuspect1,
id.suspect AS isuspect1,
td.severe AS tsevere1,
id.severe AS isevere1,
p2.dead AS dead2,
l2.event AS event2,
h2.nurse AS nurse2,
h2.doctor AS doctor2,
td2.suspect AS tsuspect2,
id2.suspect AS isuspect2,
td2.severe AS tsevere2,
id2.severe AS isevere2,
l.finish_date

FROM
twin_project AS tp
LEFT JOIN twin_data AS td ON tp.id = td.id
AND tp.tvab = td.tvab
LEFT JOIN informant_data AS id ON tp.id = id.id
AND tp.tvab = id.tvab
LEFT JOIN harmony AS h ON tp.id = h.id
AND tp.tvab = h.tvab
LEFT JOIN lentus AS l ON tp.id = l.id
AND tp.tvab = l.tvab
LEFT JOIN twin_data AS td2 ON p2.id = td2.id
AND p2.tvab = td2.tvab
LEFT JOIN informant_data AS id2 ON p2.id = id2.id
AND p2.tvab = id2.tvab
LEFT JOIN harmony AS h2 ON p2.id = h2.id
AND p2.tvab = h2.tvab
LEFT JOIN lentus AS l2 ON p2.id = l2.id
AND p2.tvab = l2.tvab,
person_data AS p1,
person_data AS p2,
postal_groups AS pg

WHERE
p1.id = tp.id AND p1.tvab = tp.tvab AND
p2.id = p1.id AND p2.ptvab = p1.tvab AND
tp.survey_no = 5 AND
(p2.dead = 0 OR p2.dead = 9 OR
(p2.dead = 1 AND
(p2.death_date = 0 OR
(((TO_DAYS(p2.death_date) - TO_DAYS(p2.birthday)) / 365)
>= 65))))
AND
(
(td.future_contact = 'Yes' AND td.suspect = 2) OR
(td.future_contact = 'Yes' AND td.suspect = 1
AND id.suspect = 1) OR
(ISNULL(td.suspect) AND id.suspect = 1
AND id.future_contact = 'Yes') OR
(td.participation = 'Aborted'
AND id.suspect = 1 AND id.future_contact = 'Yes') OR
(td.participation = 'Aborted' AND ISNULL(id.suspect)
AND p2.dead = 0))
AND
l.event = 'Finished'
AND SUBSTRING(p1.postal_code, 1, 2) = pg.code
AND (h.nurse IS NULL OR h.nurse=00 OR h.doctor=00)
AND NOT (h.status = 'Refused' OR h.status = 'Aborted'
OR h.status = 'Died' OR h.status = 'Other')

Select...
From...
Where...

I think this query is looking for distinct
objects, ie: ones with no close neighbours,
but I'm not certain...

Courtesy of Richard McMahon.

SELECT
distinct ls.sourceid,ls.ra,ls.dec,
 rtrim(substring
 (mfy.filename,charindex("w2",mfy.filename,1),32))
 as yfilename,
 rtrim(substring
 (mfj.filename,charindex("w2",mfj.filename,-1),32))
 as j_1filename,
 rtrim(substring
 (mfh.filename,charindex("w2",mfh.filename,-1),32))
 as hfilename,
 rtrim(substring
 (mfk.filename,charindex("w2",mfk.filename,-1),32))
 as kfilename,
 lml.yenum as yextnum,
 lml.j_1enum as j_1extnum,
 lml.henum as hextnum,
 lml.kenum as kextnum

FROM
 (SELECT sourceID,T2.*
 FROM ukidssdr1plus..lasSource
 LEFT JOIN (
 SELECT masterObjID,count(*) AS numNeighbs,
 MIN(distanceMins) AS minSep
 FROM ukidssdr1plus..lasSourceNeighbours
 GROUP BY masterObjID
) AS T2 ON sourceID=T2.masterObjID
) AS T1 LEFT JOIN lasSourceNeighbours as X
 ON T1.sourceID=X.masterObjID,
 ukidssdr1plus..LasSource as ls,
 ukidssdr1plus..Lasdetection as ldy,
 ukidssdr1plus..Lasdetection as ldj,
 ukidssdr1plus..Lasdetection as ldh,
 ukidssdr1plus..Lasdetection as ldk,
 ukidssdr1plus..Lasmergelog as lml,
 ukidssdr1plus..Multiframe as mfy,
 ukidssdr1plus..Multiframe as mfj,
 ukidssdr1plus..Multiframe as mfh,
 ukidssdr1plus..Multiframe as mfk

WHERE
 (T1.numneighbs is null or
 T1.minSep >= 4.0/60.0) and
 T1.sourceid=ls.sourceid and
 ldy.objid=ls.yobjid and
 ldj.objid=ls.j_1objid and
 ldh.objid=ls.hobjid and
 ldk.objid=ls.kobjid and
 ls.framesetid=lml.framesetid and
 mfy.multiframeID=lml.ymfid and
 mfj.multiframeID=lml.j_1mfid and
 mfh.multiframeID=lml.hmfid and
 mfk.multiframeID=lml.kmfid and
 ((ls.j_1apermag3-ls.kapermag3) >= 2.5 or ls.j_1class < -500) and
 (ls.yclass < -500 or
 (ls.yclass > -500 and ls.j_1class > -500 and
 ls.yapermag3 > ls.j_1apermag3)) and
 ls.kapermag3 >= 12.5 and
 ls.kapermag3 <= 17.0 and
 ls.kapermag3err <= 0.1 and
 ldk.x > 64 and
 ldk.y > 64 and
 ldk.x < 4060 and
 ldk.y < 4060 and
 ls.kclass = -1 and
 ls.hclass > -500 and
 (ls.priorsec = 0 or ls.priorsec = ls.framesetid)
 lml.yenum > 0 and lml.j_1enum > 0 and
 lml.henum > 0 and lml.kenum > 0

Did You Spot The Errors?

<<== Go Back

 Difficult to understand
“ How am I supposed to understand this?”

 Difficult to be sure you got the data
 intended (even if you think you

understood it!)
“ How do I know it is right?”

Two Fundamental Problems

Scientists will:

 Struggle with interesting and difficult
 problems in their own domain.

 Struggle with boring and increasingly
 complex problems in SQL

A Future Prospect?

Clarity.

 With a better level of abstraction

 Capable of piecemeal development

 Capable of supporting extensions

 With reasonable levels of re-usability

But the end product is still usable SQL!

Use a Set-Based Language.

Query {

include <file name>

Extrns {} ;
Macro <name> {} ;
Map <name> {} ;
Set <name> {} ;

};

Block Structured

 An EXTRNS block for specific environment

 One or more MACRO blocks for re-usability

 One or more MAP blocks for UCD's

 (One or more MODEL blocks for data models)

 One or more SET blocks to contain the query

Block Level Language

Extrns {
table: LasSource, owner ukidssdr1plus ;
table: LasSourceNeighbours, owner ukidssdr1plus ;
result: ObjectsWithMinSeparationData, limit 10000 ;

};
Set MinimumSeparationData {

from: lasSourceNeighbours ;
attribute: masterObjID, numNeighbs: count(*) ,

 minSep: min(distanceMins) ;
group: by masterObjID ;

};
Set SourceFilter {

from: LasSource ;
condition: . . . ;

 condition: kapermag3 >= 12.5 ;
};
Set ObjectsWithMinimumSeparationData {

from mp : MinimumSeparationData ;
from ls : SourceFilter ;
attribute : ls.sourceID, . . . , mp.* ;
join: mp left join ls on ls.sourceID = mp.masterObjID ;

};

Macro extract_name(@source, @target, @len) {
 TRIM(TRAILING from
 SUBSTRING(@source, POSITION(@target in @source), @len))
};

Set DistinctObjects {
 attribute yfilename: extract_name(mfy.filename, 'w2', 32) ;

. . .
from do: DistinctObjects_FirstCut ;
from mlf: MergeLogFilter ;
from dfy, dfj, dfh, dfk: DetectionFilter ;
from mfy, mfj, mfh, mfk: Multiframe ;
. . .
condition: . . . ;

};

Query with Macro

Extrns {
. . .
table: twomass_psc, owner wfau-dsacat ;
result: result01 ;

};

include <hv-cone-search.v1-3.macro>
include <psc-ucds.map>

Set result01 {
map: ucd ;
map SPECT_FLUX_VALUE: h_msigcom ;
from t: twomass_psc ;
condition: cone_search(83, +5, 0.001) ;
condition:
. . .
condition:

};

Query with Macro and Map.

Macro cone_search(@RA, @DEC, @CIRCRADIUS_DEG) {
 ((POS_EQ_DEC_MAIN <= @DEC + @CIRCRADIUS_DEG)
AND (POS_EQ_DEC_MAIN >= @DEC - @CIRCRADIUS_DEG))
 AND ((POS_EQ_RA_MAIN >= @RA -
 CASE WHEN @CIRCRADIUS_DEG >= PI() / 2 - ABS(@DEC)
 THEN PI()
 ELSE ASIN(COS(PI()/2 - @CIRCRADIUS_DEG) /
 SIN (PI()/2 - ABS(@DEC)))
) AND (POS_EQ_RA_MAIN <= @RA +
 CASE WHEN @CIRCRADIUS_DEG >= PI() / 2 - ABS(@DEC)
 THEN PI()
 ELSE ASIN(COS(PI()/2 - @CIRCRADIUS_DEG) /
 SIN (PI()/2 - ABS(@DEC)))))
 AND ((2.0 * ASIN(SQRT(
 POWER(SIN(((POS_EQ_DEC_MAIN -
 @DEC) / 2.0)), 2) + ((COS(POS_EQ_DEC_MAIN) *
 (COS(@DEC) * POWER(SIN(((POS_EQ_RA_MAIN -
 @RA) / 2.0)), 2)))))))
 < @CIRCRADIUS_DEG)
};

Macro Include expands to...

Map Include expands to...
Map ucd {

POS_EQ_RA_MAIN: ra ;
POS_EQ_DEC_MAIN: dec ;
POS_EQ_X: cx;
POS_EQ_Y: cy;
POS_EQ_Z: cz;

. . .
SPECT_FLUX_VALUE: j_m, j_cmsig, h_m, h_cmsig,
 h_msigcom, . . . , vr_m_opt;

};

And Other Functionalities...

Extrns {
. . .
table: twomass_psc, owner wfau-dsacat ;
result: result01 ;

};

include <hv-cone-search.v1-3.macro>

Set result01 {
. . .
from t: twomass_psc ;

condition: cone_search(calcRA, calcDec, calcRad) ;
condition calcRa: . . . ;
condition calcDec: . . . ;
condition calcRad: . . . ;
condition: . . . ;

};

Named Conditions...

Extrns {
. . .
table: twomass_psc, owner wfau-dsacat ;
result feintObjects:

 ivo://uk.le.ac.star#jlusted/results/feintObjects.vot ;
};

include <wfau-dsacat-support.macro>
if htm(twomass_psc)

include <htm-cone-search.v09.macro>
else

include <hv-cone-search.v1-3.macro>

Set feintObjects {
from t: twomass_psc ;
condition: cone_search(calcRA, calcDec, calcRad) ;
condition: . . . ;

};

(1) Results in VOSpace
(2) Virtual Includes
(3) Conditional Includes

Virtual Tables.

Extrns {
. . .
table: twomass_psc, owner wfau-dsacat ;
result: result01 ;

};

Set result01 {
base: twomass_psc ;
row:
row:
row:
row:

};

