

VIRTUAL ASTRONOMICAL OBSERVATORY

Smart Applications in Biology

Matthew J. Graham, Caltech

The VAO is operated by the VAO, LLC.

What is a smart application?

- One built around technologies that *understand* data and *know* or can *infer* what to do with it
- What makes things smart?
 - RDF: all data can be represented as subject – predicate – object
 - Ontology: a conceptual model of domain knowledge in terms of classes, properties and relationships
 - Description logic: the backbone for inferencing and checking instances, relations, subsumption and concept consistency

Why is smartness prevalent in biology?

- X-informatics is the discipline of organizing, accessing, mining and analyzing information describing complex systems in (x = bio-, geo-, chemo-, astro-, econo-, ...)
- Bioinformatics was born in 1977 with the sequencing of the bacteriophage $\Phi\text{-}X174$
- Developments in genomic and information technology have produced a huge amount of complex and disparate *information*
- Smartness introduced via semantic technologies to address this

The Zebrafish FlipTrap data repository

- A systems-based approach for analysis of gene function in developing vertebrate embryos in real time and space
- The FlipTrap screen is a gene trap that fuses the Citrine fluorescent protein to the trapped protein to generate a fully functional tagged version
- Expression patterns of the marked gene during development can then be imaged, etc.
- The data repository holds images, metadata, sequence data and annotations
- It makes extensive use of the Zebrafish anatomical ontology (2400 classes, 8 properties, 11038 entity annotation axioms) and the Gene ontology (30393 terms - 99.2% with definitions incl. 18939 biological process, 2735 cellular component and 8719 molecular function)

Example: smart data entry

CALTECA	
Center of Excellence in C	
Summary Image data Molecular data Functional data	
Generation: F1 +	Only those
Day screened: Day 2 \$	structures
Stage: Gastrula (5.25-10.33 hrs)	ontology t
Site of expression: hi	the coloct
Choose one: hindbrain hindbrain commissure hindbrain interneuron	available t
Cytoplasm Endoplasmic reticulum Extracellular matrix Golgi Membrane Mitochondria Not localized Nuclear envelope Nucleolus Nucleolus Nucleolus	down.
Additional comments:	
No. of filesets to upload:	
Add screen Delete screen	

Only those anatomical structures defined by the ontology to be present at the selected "stage" are available for selection in the autocomplete dropdown.

Example: smart querying

Example: smart results

Other smarts

- Suggestions
 - Search for related data products based on semantic similarity
- Environments
 - Virtual lab books linked to data and literature
 - Shared workflows with myExperiment.org
- Data mining
 - Incorporating domain knowledge into the discovery process

IVOA Victoria – Apps 3

Smart applications in astronomy?

- Linked data
 - ADS, CDS, NED
- The Linnaean problem:
 - Linnaeus' original system in 1735 already had 6 levels of hierarchy: 3 kingdoms, 35 classes, orders, genera, species, subspecies. Is astronomical knowledge still too coarse-grained to warrant the depth of modelling that an ontology can provide?
 - Niche areas of taxonometric astronomy: solar system, exoplanets, supernovae?
 - "The Eurybates family is a compact core inside the Menelaus clan, located in the L₄ swarm of Jupiter Trojans."

- arXiv:1004.4180

9

May 17, 2010