

VIRTUAL ASTRONOMICAL OBSERVATORY

Semantics and Data Mining or How to decide what is useful

Matthew J. Graham, Caltech

The VAO is operated by the VAO, LLC.

What use is semantics in KDD?

- Data mining is "the *semi-automatic* discovery of patterns, associations, changes, anomalies, and statistically significant structures and events in data"
- Such discoveries are evaluated (filtered) based on relevance (according to some metric of interestingness) and content (qualitative condition based on domain knowledge) constraints
- Traditionally the user assumes the responsibility of choosing which aspects of the domain knowledge are most important for the current task (hence *semi-automatic*)

- One of the ten challenging problems in data mining research is the incorporation of background or domain knowledge into the discovery process (Yang & Wu 2006)
- The main difficulty lies in representing and acquiring domain knowledge
- Ontologies are a viable construct for representing knowledge (OWL, SWRL, SPARQL/SQRWL)

Definitions

- An **ontology** is a specification of an abstract, simplified view of a domain: it is a 5-tuple $o := [C, \mathcal{R}, \mathcal{H}, rel, \mathcal{R}]$
 - $\ensuremath{\mathcal{C}}$ is a set of concepts which represent the entities in the ontology domain
 - \mathcal{R} is a set of relations defined among concepts
 - \mathcal{H} is a taxonomy which defines *is-a* relations among concepts
 - *rel* is a function that specifies the relations on \mathcal{R} such that if *r* belongs to \mathcal{R} , *rel*(*r*) = (c_1 , c_2)
 - \mathcal{R}^{o} is a set of axioms that describe constraints on the ontology expliciting implicit facts
- A **knowledge base** specifies an instantiation for a particular ontology: it is a 4-tuple KB := [o, *1*, *inst*, *inst*]
 - o is an ontology
 - \mathcal{I} is a set of instances
 - *inst* is the concept instantiation function mapping C to $2^{\mathcal{I}}$
 - instr is the relation instantiation function mapping \mathcal{R} to $2^{\mathcal{RI}}$

VAO

Example - II

Ontology

- C := {Thing, Light curve, Transient, Star, Mass limit, Periodic, Aperiodic, CV, GRB, White dwarf, Massive, Chandrasekhar}
- \mathcal{R} := {hasProgenitor, hasA, hasMassLessThan, has MassGreaterThan}
- *H*:= {(Light curve, Thing), (Periodic, Light curve), (Aperiodic, Light curve), (Transient, Thing), (CV, Transient), (GRB, Transient), (Star, Thing), (White dwarf, Star), (Massive, Star), (Mass limit, Thing), (Chandrasekhar, Mass limit)}
- *rel*: hasProgenitor(CV, White dwarf), hasProgenitor(GRB, Massive), hasA (CV, Periodic), hasA(GRB, Aperiodic), hasMassLessThan(White dwarf, Chandrasekhar), hasMassGreaterThan(GRB, Chandrasekhar)
- Knowledge base
 - o := [C, R, H, rel, A^o:={}]
 - *I* := {CSS1000510:114521-042606, 40 Eridani B, Eta Carinae}
 - inst := {(CSS100510:114521-042606, CV), (40 Eridani B, White dwarf), (Eta Carinae, Massive)}

Application ontologies

- Contains essential knowledge in order to drive data mining tasks
- Smart workflows
 - Recommender systems
 - Competitive intelligence tools
- OntoDM (<u>http://kt.ijs.si/panovp/OntoDM</u>):
 - dataset: data items
 - datatype: primitive, structured
 - data mining task: predictive modelling, pattern discovery, clustering, probability distribution estimation
 - generalization: predictive model, pattern, clustering, probability distribution
 - data mining algorithm: distance function, kernel function, refinement operator
 - function: aggregation function, prototype function, evaluation function, cost function
 - constraint: evaluation, language constraint
 - data mining scenario: query, inductive query

Constraints

- A constraint is a predicate on the power set of the set of items I, that is, it is a function c: 2¹ -> {true, false}. An itemset S is said to satisfy c, if and only if, c(S) is true.
- Interestingness metrics based on semantic similarity:
 - Edge counting: distance between ontology concepts
 - Information theoretic: information content of the lower common ancestor of two concepts

 $p_{ms}(c1,c2) = min (\{p(c)\}; sim(c1, c2) = -ln p_{ms}(c1, c2))$

- Taxonomical based on family ties
 - {White dwarf, Massive} have same parent
 - {White dwarf/DA, Massive} have common ancestor and are at least nth (n=1) cousins to each other
- Relational based on relations between concepts
 - {Aperiodic, GRB, Massive} are weakly connected
 - No strongly connected itemsets

Data mining with ontologies - I

• Clustering:

- Linkage-based:
 - the similarity between two objects is measured based on the similarities between the objects linked with them
- Relational Fuzzy C-Means:
 - processes n vectors in p-space as data input, and uses them, in conjunction with first order necessary conditions for minimizing the FCM objective functional, to obtain estimates for two sets of unknowns
- Correlation Cluster Validity
 - Validate number of clusters by computing correlation between reconstruction matrix after fuzzy clustering and original dissimilarity matrix
- Ontological SOM
 - Represent contribution of ontology term to description of associated node and replace distance metric with an ontology-based dissimilarity measure

Data mining with ontologies - II

Detecting rare events via reasoning

 Application of description-logic reasoning over an ontology to automate classification of instances into family and subfamily groups

• Fuzziness

 Markov Logic Networks – allows declarative domain knowledge to be expressed with real-valued weight indicating strength of statements

10

Association Rules

 Discover strong rules between concepts/instances using different measures of interestingness

Network characterization

 Establish functional relationships between instances and then predict functions and networks from these

